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CHAPTER 1

INTRODUCTION

After the past decade of active research and field trials, wireless sensor networks (which we

call sensornets hereafter) have started penetrating into many areas of science, engineering, and

our daily life. They are also envisioned to be an integral part of cyber-physical systems such as

those for alternative energy, transportation, and healthcare. In supporting mission-critical, real-

time, closed loop sensing and control, CPS sensornets represent a significant departure from

traditional sensornets which usually focus on open-loop sensing, and it is critical to ensure

messaging quality (e.g., timeliness of data delivery) in CPS sensornets. The stringent applica-

tion requirements in CPS make it necessary to rethink about sensornet design, and one such

problem is in-network processing.

For resource constrained sensornets, in-network processing (INP) improves energy effi-

ciency and data delivery performance by reducing network traffic load and thus channel con-

tention. Over the past years, many INP methods have been proposed for query processing

[31, 40, 33, 10] and general data collection [11, 12, 25, 29, 35, 42]. Not focusing on mission-

critical sensornets, however, these works have mostly ignored the timeliness of data delivery

when designing INP mechanisms. Recently, Becchetti 𝑒𝑡 𝑎𝑙. [8] and Oswald 𝑒𝑡 𝑎𝑙. [34] exam-

ined the issue of data delivery latency in in-network processing. Theoretical in nature, these

studies assumed total aggregation where any arbitrary number of information elements (e.g.,

reports after an event detection) can be aggregated into one single packet, which may well be

infeasible in many practical settings. Thus, the interaction between specific, real-world INP

methods and data delivery timeliness remains a largely unexplored issue in sensornet systems.

This is an important issue because

1. It affects the efficiency and quality of real-time embedded sensing and control;

2. As we will show later in the paper, data aggregation constraints (e.g., aggregation ca-

pacity limit and re-aggregation tolerance) affect, to a greater extent than network and

traffic properties, the complexity and the protocol design in jointly optimizing INP and
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the timeliness of data delivery.

Towards understanding the interaction between INP and data delivery latency in foresee-

able real-world sensornet deployments, we focus on a widely used, application-independent

INP method — packet packing where multiple short packets are aggregated into a single long

packet [17, 30]. In sensornets (especially those for real-time sensing and control), an informa-

tion element from each sensor is usually short, for instance, less than 10 bytes [7, 31]. Yet the

header overhead of each packet is relatively high in most sensornet platforms, for instance, up

to 31 bytes at the MAC layer alone in IEEE 802.15.4 based networks. It is also expected that

more header overhead will be introduced at other layers (e.g., routing layer) as we standardize

sensornet protocols such as in the effort of the IETF working groups 6LowPAN [4] and ROLL

[20]. Besides header overhead, MAC coordination also introduces non-negligible overhead

in wireless networks [30]. If we only transmit one short information element in each packet

transmission, the high overhead in packet transmission will significantly reduce the network

throughput; this is especially the case for high speed wireless networks such as IEEE 802.15.4a

ultrawideband (UWB) networks. Fortunately, the maximum size of packet payload is usually

much longer than that of each information element, for instance, 128 bytes per MAC frame in

802.15.4. Therefore, we can aggregate multiple information elements into a single packet to

reduce the amortized overhead of transmitting each element. Packet packing also reduces the

number of packets contending for channel access, hence it reduces the probability of packet

collision and improves information delivery reliability, as we will show in Chapter . The ben-

efits of packet packing have also been recognized by the IETF working groups 6LowPAN and

ROLL.

Unlike total aggregation assumed in [8] and [34], the number of information elements that

can be aggregated into a single packet is constrained by the maximum packet size, thus we have

to carefully schedule information element transmissions so that the degree of packet packing

(i.e., the amount of sensing data contained in packets) can be maximized without violating

application requirement on the timeliness of data delivery. As a first step toward understanding

the complexity of jointly optimizing INP and QoS with aggregation constraints, we analyze the
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impact that aggregation constraints have on the computational complexity of the problem, and

we prove the following:

1. When a packet can aggregate three or more information elements, the problem is strong

NP-hard, and there is no polynomial-time approximation scheme (PTAS).

2. When a packet can only aggregate two information elements, the complexity depends on

whether two elements in a packet can be separated and re-packed with other elements on

their way to the sink: if the elements in a packet can be separated, the problem is strong

NP-hard and there is no PTAS for the problem; otherwise it can be solved in polynomial

time by modeling the problem as a maximum weighted matching problem in an interval

graph.

3. The above conclusions hold whether or not the routing structure is a tree or a linear chain,

and whether or not the information elements are of equal length.

Besides shedding light on the complexity and protocol design of jointly optimizing data deliv-

ery timeliness and packet packing (as well as other INP methods), these findings incidentally

answer several open questions on the complexity of batch-process scheduling in interval graphs

[13].

To understand the impact of jointly optimizing packet packing and data delivery timeliness,

we design a distributed, online protocol tPack that schedules packet transmissions to maxi-

mize the local utility of packet packing at each node while taking into account the aggregation

constraint imposed by the maximum packet size. Using a testbed of 130 TelosB motes, we

experimentally evaluate the properties of tPack. We find that jointly optimizing data delivery

timeliness and packet packing and considering real-world aggregation constraints significantly

improve network performance (e.g. in terms of high reliability, high energy efficiency, and low

delay jitter).

The rest of the paper is organized as follows. We analyze the benefits of packet packing in

lossy wireless networks in Chapter . We discuss the system model and precisely define the joint

optimization problem in Chapter . Then we analyze the complexity of the problem in Chapter ,
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and present the tPack protocol in Chapter . We experimentally evaluate the performance of

tPack and study the impact of packet packing as well as joint optimization in Chapter . We

discuss related work in Chapter , and conclude the paper in Chapter . For convenience, we

summarize in Table 1 the notations used in Chapters and .



5

Table 1: Notations used in Chapter 3 & 4
Common notations

𝐾 maximum number of information elements al-
lowed in a packet

𝐸𝑇𝑋𝑣𝑖𝑣𝑗(𝑙) expected number of transmissions taken to suc-
cessfully deliver a packet of length 𝑙 along link
(𝑣𝑖, 𝑣𝑗)

𝑡𝑣𝑖𝑣𝑘(𝑙) maximum time taken to deliver a packet of
length 𝑙 from 𝑣𝑖 to 𝑣𝑘 in the absence of packet
packing and packing-oriented scheduling
Notations used in Chapter 3 only

𝑅 root of a directed collection tree
𝑥 an information element
𝑣𝑥 the node where 𝑥 is generated
𝑙𝑥 length of 𝑥
𝑟𝑥 time when 𝑥 is generated
𝑑𝑥 deadline of delivering 𝑥 to 𝑅
𝑠𝑥 spare time in delivering 𝑥

[𝑟𝑥, 𝑑𝑥] lifetime of 𝑥
Notations used in Chapter 4 only

𝑛 number of variables in a SAT instance
𝑚 number of clauses in a SAT instance
𝑋𝑗 𝑗th variable of a SAT instance
𝐶𝑖 𝑖th clause of a SAT instance
𝑥𝑗
𝑖 information element corresponding to the vari-

able 𝑋𝑗 in a clause 𝐶𝑖

[𝑟𝑗𝑖 , 𝑑
𝑗
𝑖 ] lifetime of 𝑥𝑗

𝑖

𝑎𝑥𝑗
𝑘 𝑘th auxiliary information element for variable

𝑋𝑗

[𝑟𝑗𝑎𝑥𝑘
, 𝑑𝑗𝑎𝑥𝑘

] lifetime of 𝑎𝑥𝑗
𝑘

𝑧𝑖 information element generated by node 𝑣𝑐𝑖
[𝑟𝑖, 𝑑𝑖] lifetime of 𝑧𝑖
𝑡1 transmission time from any leaf node to its par-

ent
𝑡2 transmission time from any node 𝑣𝑗 to node 𝑣
𝑡3 transmission time from node 𝑣 to node 𝑠
𝑡4 transmission time from any node 𝑣𝑐𝑖 to node 𝑣
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CHAPTER 2

WHY PACKET PACKING

While aggregating short information elements reduces the overhead of transmitting each

information element, it increases the length of packets being transmitted. Given that packet

delivery rate of a wireless link decreases as packet length increases, a longer packet with aggre-

gated information elements may be retransmitted more often, for reliable data delivery, than the

shorter packets without aggregation. To understand whether packet packing is still beneficial

in the presence of lossy wireless links, therefore, we need to understand whether the increased

packet loss rate overshadows the benefits of packet packing. To this end, we mathematically

analyze the issue as follows.

For simplicity, we assume in this chapter that the status (i.e., success or failure) of different

packet transmissions are independent, and we corroborate the analytical results through testbed

based measurement in Chapter where temporal link correlation exists. For convenience, we

define the following notations:

𝑙1 : payload length of an unpacked packet, i.e., the length of a single infor-

mation element;

𝑝1 : delivery rate of an unpacked packet;

𝑘 : packing ratio, i.e., the ratio of the payload length of a packed packet to

that of an unpacked packet;

ℎ : the ratio of header length to payload length in an unpacked packet.

Then, for a packed packet with packing ratio 𝑘, the ratio of the overall length of the packed

packet to that of an unpacked packet is 𝑘𝑙1+ℎ𝑙1
𝑙1+ℎ𝑙1

. Thus, the delivery rate 𝑝𝑘 of the packed packet

can be calculated as follows:

𝑝𝑘 = 𝑝
𝑘𝑙1+ℎ𝑙1
𝑙1+ℎ𝑙1
1 = 𝑝

𝑘+ℎ
1+ℎ

1

To reflect the overhead of transmitting a packet 𝑝𝑘𝑡 over a wireless link, we define the
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amortized cost (AC) of transmitting 𝑝𝑘𝑡 as follows:

𝐴𝐶𝑝𝑘𝑡 =
𝐸𝑇𝑋𝑝𝑘𝑡

𝑙𝑒𝑛𝑝𝑘𝑡

(1)

where 𝑙𝑒𝑛𝑝𝑘𝑡 is the payload length of 𝑝𝑘𝑡, and 𝐸𝑇𝑋𝑝𝑘𝑡 is the expected number of transmissions

taken to successfully deliver 𝑝𝑘𝑡 over the wireless link. Given that the expected number of

transmissions to successfully deliver a packet with packing ratio 𝑘 is 1
𝑝𝑘

, the amortized cost of

transmitting a packet with packing ratio 𝑘, denoted by 𝐴𝐶𝑘, can be calculated as follows:

𝐴𝐶𝑘 =
1/𝑝𝑘
𝑘𝑙1

=
1

𝑘𝑙1𝑝𝑘
(2)

Since an unpacked packet has a packing ratio of 1, the amortized cost of transmitting an

unpacked packet is 𝐴𝐶1, that is, 1
𝑙1𝑝1

.

For a given packing ratio 𝑘, the ratio 𝑅𝑘 of 𝐴𝐶1 to 𝐴𝐶𝑘 reflects whether packet packing is

beneficial, that is, packet packing is beneficial if 𝑅𝑘 > 1. Precisely, 𝑅𝑘 is calculated as follows:

𝑅𝑘 =
𝐴𝐶1

𝐴𝐶𝑘

= 𝑘𝑝
𝑘−1
1+ℎ

1 (3)

In a typical sensornet system [7, 6], the ratio ℎ of header length to that of a single informa-

tion element is around 3, and the packing ratio can be up to 12. For ℎ = 3, Figure 1 shows 𝑅𝑘

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

p
1

R
k

k = 3
k = 6
k = 9
k = 12
reference (R

k
 = 1)

Figure 1: 𝑅𝑘 =
𝐴𝐶1

𝐴𝐶𝑘
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as a function of 𝑝1 and 𝑘, when ℎ = 3. From the figure, we can see that packet packing reduces

the amortized cost of packet transmission as long as the link reliability is no less than 40%,

which is usually the case in practice (e.g., link reliability was ∼75% even in heavily loaded

sensornet systems [7, 6]). We also see that, if link reliability is greater than 67%, the amortized

cost of packet transmission always decreases as the packing ratio increases. Since link reliabil-

ity is usually greater than 67% in practice, we can always try to maximize the packing ratio so

that the amortized cost of packet transmission is reduced.

Denoting 𝑘∗ as the optimal packing ratio that minimize the amortized cost for transmitting

a packet, we then study the relationship between 𝑘∗ and 𝑝1. From (2), we have:

𝐴𝐶𝑘 =
1

𝑘𝑙1𝑝𝑘
=

1

𝑘𝑙1𝑝
𝑘+ℎ
1+ℎ

1

(4)

To minimize 𝐴𝐶𝑘, we need to maximize 𝑓(𝑘) = 𝑘𝑙1𝑝
𝑘+ℎ
1+ℎ

1 . When 𝑘 ∈ 𝑅+, 𝑓(𝑘) is a convex

function. Let 𝑓 ′(𝑘) = 0. we have 𝑘∗
𝑅 = 1+ℎ

ln 𝑝−1
1

. Therefore, when 𝑘 ∈ 𝑁+, 𝑘∗ is calculated as

follows:

𝑘∗ = arg𝑚𝑖𝑛𝑘∈{1,⌈𝑘∗𝑅⌉,⌊𝑘∗𝑅⌋}{𝐴𝐶𝑘} (5)

In Figure ,

𝑘∗ increases as the link reliability increases. When 𝑝1 is greater than 75%, 𝑘∗ increase

faster, which implies that packet packing can bring more benefit on amortized cost when link

reliability is high. Figure shows the relationship between 𝐴𝐶𝑘 and 𝑘 when 𝑝1 = 0.9. From

the figure we can find that it is not always beneficial to pack as many small packets as possible.

There exists a threshold on the packing ratio. When 𝑘 exceeds this threshold, the amortized

cost will increase. This motivates us to explore how to perform packing at each node in the

network.

Remarks: The above analysis focuses on a single link, but the observations easily carry

over to multi-hop networks since link reliability 𝑝1 reflects the impact of channel fading and
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0.2 0.4 0.6 0.8 1
p

1

Figure 2: 𝐾∗ when 𝑙1 = 12, ℎ = 0.375, and 𝐾𝑚𝑎𝑥 = 100.

0 20 40 60 80 100
K

 

Figure 3: 𝐴𝐶𝐾 when 𝑙1 = 12, ℎ = 0.375, and 𝐾𝑚𝑎𝑥 = 100.
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collision even in the case of multi-hop networks.1 The analysis has not considered the benefits

(e.g., fewer number of packet collisions) of reduced channel contention as a result of packet

packing (which reduces the number of packets contending for channel access). We will study

the impact of these factors through testbed based measurement in Chapter .

1Note that the increased per-packet transmission time as a result of increased packet length will not cause
more collision, since the time taken to transmit a packet (e.g., ∼ 4 milliseconds) is usually much less than the
inter-packet interval (e.g., usually at least a few seconds).
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CHAPTER 3

SYSTEM MODEL AND PROBLEM DEFINITION

Having verified the benefits of packet packing in lossy wireless networks in Chapter , we

now discuss the system model and define the joint optimization problems we will focus on in

this paper.

System Model

We consider a directed collection tree 𝑇 = (𝑉,𝐸), where 𝑉 and 𝐸 are the set of nodes and

edges in the tree. 𝑉 = {𝑣𝑖 : 𝑖 = 1 . . . 𝑁} ∪ {𝑅} where 𝑅 is the root of the tree and represents

the data sink of a sensornet, and {𝑣𝑖 : 𝑖 = 1 . . . 𝑁} are the set of 𝑁 sensor nodes in the network.

An edge ⟨𝑣𝑖, 𝑣𝑗⟩ ∈ 𝐸 if 𝑣𝑗 is the parent of 𝑣𝑖 in the collection tree. The parent of a node 𝑣𝑖 in 𝑇

is denoted as 𝑝𝑖. We use 𝐸𝑇𝑋𝑣𝑖𝑣𝑗(𝑙) to denote the expected number of transmissions required

for delivering a packet of length 𝑙 from a node 𝑣𝑖 to its ancestor 𝑣𝑗 , and we use 𝑡𝑣𝑖𝑣𝑘(𝑙) to denote

the maximum time taken to deliver a packet of length 𝑙 from 𝑣𝑖 to 𝑣𝑘 in the absence of packet

packing and packing-oriented scheduling.

Each information element 𝑥 generated in the tree is identified by a 4-tuple (𝑣𝑥, 𝑙𝑥, 𝑟𝑥, 𝑑𝑥)

where 𝑣𝑥 is the node that generates 𝑥, 𝑙𝑥 is the length of 𝑥, 𝑟𝑥 is the time when 𝑥 is generated,

and 𝑑𝑥 is the deadline by which 𝑥 needs to be delivered to the sink node 𝑅. We use 𝑠𝑥 =

𝑑𝑥 − (𝑟𝑥 + 𝑡𝑣𝑥𝑅(𝑙𝑥)) to denote the spare time for 𝑥, and we define the lifetime of 𝑥 as [𝑟𝑥, 𝑑𝑥].

Problem Definition

Given a collection tree 𝑇 and a set of information elements 𝑋 = {𝑥} generated in the tree,

we define the problem of jointly optimizing packet packing and the timeliness of data delivery

as follows:

Problem ℙ: given 𝑇 and 𝑋 , schedule the transmission of each element in 𝑋 to minimize the

total number of packet transmissions required for delivering 𝑋 to the sink 𝑅 while ensuring

that each element be delivered to 𝑅 before its deadline.

In an application-specific sensornet, the information elements generated by different nodes

depend on the application but may well be of equal length [7]. Depending on whether the sen-

sornet is designed for event detection or data collection, moreover, the information elements 𝑋
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may follow certain arrival processes. Based on the specific arrival process of 𝑋 , the following

special cases of problem ℙ tend to be of practical relevance in particular:

Problem ℙ0: same as ℙ except that 1) the elements of 𝑋 are of equal length, and 2) 𝑋

includes at most one element from each node; this problem can represent sensornets that detect

rare events.

Problem ℙ1: same as ℙ except that 1) the elements of 𝑋 are of equal length, and 2) every

two consecutive elements generated by the same node 𝑣𝑖 are separated by a time interval whose

length is randomly distributed in [𝑎, 𝑏]; this problem can represent periodic data collection

sensornets (with possible random perturbation to the period).

Problem ℙ2: same as ℙ except that the elements of 𝑋 are of equal length; this problem

represents general application-specific sensornets.
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CHAPTER 3

COMPLEXITY OF JOINT OPTIMIZATION

The complexity of problem ℙ depends on aggregation constraints such as maximum packet

size and whether information elements in a packet can be separated and repacked with other

elements. For convenience, we use 𝐾 to denote the maximum number of information elements

that can be packed into a single packet. (Note that 𝐾 depends on the maximum packet size and

the lengths of information elements in problem ℙ.) In what follows, we first analyze the case

when 𝐾 ≥ 3 and then the case when 𝐾 = 2, and we discuss how aggregation constraints affect

the problem complexity.

Complexity when 𝐾 ≥ 3

We first analyze the complexity and the hardness of approximation for problem ℙ0, then

we derive the complexity of ℙ1, ℙ2, and ℙ accordingly. The analysis is based on reducing the

Boolean-satisfiability-problem (SAT) [15] to ℙ0 as we show below.

Theorem 1 When 𝐾 ≥ 3, problem ℙ0 is strong NP-hard whether or not the routing structure

is a tree or a linear chain.

Proof To prove that ℙ0 is strong NP-hard, we first present a polynomial transformation 𝑓 from

the SAT problem to ℙ0, then we prove that an instance Π of SAT is satisfiable if and only if the

optimal solution of Π′ = 𝑓(Π) has certain minimum number of transmissions.

Given an instance Π of the SAT problem which has 𝑛 Boolean variables 𝑋1, . . . , 𝑋𝑛 and

𝑚 clauses 𝐶1, . . . , 𝐶𝑚, we derive a polynomial time transformation from Π to an instance Π′

of ℙ0 with 𝐾 ≥ 3 as follows. Firstly, we construct a tree with n+2 nodes shown in Figure 4.

In this tree, each node 𝑣𝑗 , where 𝑗 = 1, . . . , 𝑛 corresponds to the variable 𝑋𝑗 . Node 𝑣 is an

intermediate node and node 𝑆 is the base station. 𝐸𝑇𝑋𝑣𝑗𝑣 is 𝐷, where 𝐷 ≫ 1, and 𝐸𝑇𝑋𝑣𝑠 is

1. (For now, we do not consider the impact of packet length on link reliability and thus ETX.)

The transmission time 𝑡𝑣𝑗𝑣 = 𝑡2 and 𝑡𝑣𝑠 = 𝑡3. This operation takes 𝑂(𝑛) time.

Secondly, assume that variable 𝑋𝑗 appears 𝑘𝑗 times in total in the 𝑚 clauses. Then we add

2𝑘𝑗 + 3 children to node 𝑣𝑗 , labeled as 𝑣𝑗0, . . . , 𝑣
𝑗
2𝑘𝑗+2, and 𝑚 children to node 𝑣, labeled as
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Figure 4: A tree with 𝑛+ 2 nodes

𝑣𝑐1, . . . , 𝑣
𝑐
𝑚. Each new edge has a 𝐸𝑇𝑋 of 1. The transmission time from each child of 𝑣𝑗 to

𝑣𝑗 is 𝑡1, and the transmission time from 𝑣𝑐𝑖 to 𝑣 is 𝑡4. This operation takes 𝑂(𝑛𝑚) time and the

whole tree is shown in Figure 5.

Figure 5: Reduction from SAT to ℙ0 when 𝐾 ≥ 3

After constructing the tree, we define the information elements and their lifetimes as fol-

lows. For each subtree rooted at node 𝑣𝑗 , we first define 2𝑘𝑗 + 1 information elements and

then assign them one by one to the leaf nodes 𝑣𝑗1, . . . , 𝑣
𝑗
2𝑘𝑗+1 of this subtree. If variable 𝑋𝑗

occurs unnegated in clause 𝐶𝑖, we create an information element 𝑥𝑗
𝑖 with lifetime [𝑟𝑗𝑖 , 𝑑

𝑗
𝑖 ] =

[(3𝑖+ 1)(𝑛+ 1) + 𝑗, (3𝑖+ 2)(𝑛+ 1) + 𝑗 + 𝑡1 + 𝑡2 + 𝑡3]. If 𝑋𝑗 occurs negated in clause 𝐶𝑖, we
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create an information element 𝑥𝑗
𝑖 : [𝑟

𝑗
𝑖 , 𝑑

𝑗
𝑖 ] = [3𝑖(𝑛+1)+ 𝑗, (3𝑖+1)(𝑛+1)+ 𝑗 + 𝑡1 + 𝑡2 + 𝑡3].

Let 𝑖𝑗1 < . . . < 𝑖𝑗𝑘𝑗 denote the indices of the clauses in which variable 𝑋𝑗 occurs. For every

two messages 𝑥𝑗

𝑖𝑗𝑡
and 𝑥𝑗

𝑖𝑗𝑡+1

, 𝑡 = 1, . . . , 𝑘𝑗 − 1, define an information element 𝑎𝑥𝑗

𝑖𝑗𝑡
: [𝑟𝑗𝑎𝑡 , 𝑑

𝑗
𝑎𝑡 ] =

[𝑑𝑗
𝑖𝑗𝑡
− 𝑡1 − 𝑡2 − 𝑡3, 𝑟

𝑗

𝑖𝑗𝑡+1

+ 𝑡1 + 𝑡2 + 𝑡3]. We also define 𝑎𝑥𝑗
0 : [𝑟

𝑗
𝑎0
, 𝑑𝑗𝑎0 ] = [𝑗, 𝑟𝑗

𝑖𝑗1
+ 𝑡1 + 𝑡2 + 𝑡3],

and 𝑎𝑥𝑗
𝑘𝑗

: [𝑟𝑗𝑎𝑘𝑗
, 𝑑𝑗𝑎𝑘𝑗

] = [𝑑𝑗
𝑖𝑗𝑘𝑗

− 𝑡1 − 𝑡2 − 𝑡3, 3(𝑚 + 1)(𝑛 + 1) + 𝑗 + 𝑡1 + 𝑡2 + 𝑡3]. In this

way, every two consecutive information elements in this sequence overlap in their lifetimes,

and the size of the overlap is 𝑡1 + 𝑡2 + 𝑡3. After defining these 2𝑘𝑗 + 1 information elements,

we set the source of each element one by one from node 𝑣𝑗1 to node 𝑣𝑗2𝑘𝑗+1. For each node 𝑣𝑗0,

we define an element 𝑧𝑗0 : [𝑗, 𝑗 + 𝑡1 + 𝑡2 + 𝑡3]. For each node 𝑣𝑗2𝑘𝑗+2, we define an element

𝑧𝑗2𝑘𝑗+2 : [3(𝑚+1)(𝑛+1)+ 𝑗, 3(𝑚+1)(𝑛+1)+ 𝑗 + 𝑡1 + 𝑡2 + 𝑡3]. Figure 6 demonstrates how

Figure 6: Lifetimes of information elements

the lifetimes of these 2𝑘𝑗 + 3 information elements are defined.

Similarly, we define 𝑚 information elements generated by nodes 𝑣𝑐1, . . . , 𝑣
𝑐
𝑚, with element

𝑧𝑖 : [𝑟𝑖, 𝑑𝑖] = [(3𝑖+1)(𝑛+1)+ 𝑡1+ 𝑡2− 𝑡4, (3𝑖+2)(𝑛+1)+ 𝑡1+ 𝑡2+ 𝑡3], 𝑖 = 1, . . . ,𝑚, being

generated by node 𝑣𝑐𝑖 . Then, for nodes 𝑣1 to 𝑣𝑛, we define an information element for each of

them with lifetime [4(𝑚+1)(𝑛+1)+ 𝑖, 4(𝑚+1)(𝑛+1)+ 𝑖+ 𝑡2+ 𝑡3], 𝑖 = 1, . . . , 𝑛. For node

𝑣, define an information element with lifetime [4(𝑚+1)2(𝑛+1)+ 𝑖, 4(𝑚+1)2(𝑛+1)+ 𝑖+ 𝑡3].

The whole process to assign an information element for each sensor will take 𝑂(𝑛𝑚) time.

Therefore, the time complexity of the whole transformation is 𝑂(𝑛) + 𝑂(𝑛𝑚) + 𝑂(𝑛𝑚) =

𝑂(𝑛𝑚), which is polynomial in 𝑛 and 𝑚.

Given the instance Π′ of ℙ0 formulated as above, the following claims hold for the optimal

packing scheme:
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Claim 1 If nodes 𝑣𝑐1, . . . , 𝑣
𝑐
𝑚 are ignored, the minimum total number of transmission in Π′ is

𝐶𝑡0 =
∑𝑛

𝑗=1(2𝑘𝑗 + 1) +
∑𝑛

𝑗=1[(𝑘𝑗 + 1)(𝐷 + 1)] + 2𝑛(𝐷 + 1) + 2𝑛+ 1.

Proof It is easy to see that the information elements generated by 𝑣𝑖, 𝑖 = 1, . . . , 𝑛, and 𝑣, can-

not be packed with any other information elements. Therefore, the total number of transmission

for these elements is 𝐶1
𝑡0 = 𝑛(𝐷 + 1) + 1.

Since the 𝐸𝑇𝑋 of each link from 𝑣𝑗 to 𝑣, 𝑗 = 1, . . . , 𝑛 is 𝐷 and 𝐷 ≫ 1, and each

sensor only generates one piece of information element, in an optimal packing scheme, every

information element generated by node 𝑣𝑗𝑡𝑗 , 𝑡𝑗 = 1, , 2𝑘𝑗 + 1, will leave its source immediately

it is generated and then seek the opportunity to pack with other information elements before

it is forwarded from 𝑣𝑗 to 𝑣. Due to our definition on lifetimes for every 2𝑘𝑗 + 1 elements

generated by nodes 𝑣𝑗𝑡𝑗 , 𝑡𝑗 = 1, . . . , 2𝑘𝑗 +1, only at most two consecutive information elements

in this 2𝑘𝑗+1 sequence can be packed together at node 𝑣𝑗 . For any two consecutive information

elements that are packed together, the first element, which is generated by 𝑣𝑗𝑡𝑗 leaves node 𝑣𝑗 at

time 𝑑𝑗𝑡𝑗 − (𝑡2+ 𝑡3), and the second element, which is generated by 𝑣𝑗𝑡𝑗+1 leaves node 𝑣𝑗 at time

𝑟𝑗𝑡𝑗+1 + 𝑡1. Thus in an optimal packing scheme, for all 2𝑘𝑗 +1 incoming elements, node 𝑣𝑗 will

pack them into at least 𝑘𝑗+1 packets, 𝑘𝑗 of which contain two element. In each 2𝑘𝑗+1 sequence,

either information element 𝑎𝑥𝑗
𝑜 arrives at and leaves node 𝑣𝑗 at time 𝑗+ 𝑡1 alone, or information

element 𝑎𝑥𝑗
𝑘𝑗

arrives at and leaves node 𝑣𝑗 at time 3(𝑚+1)(𝑛+1)+𝑗+𝑡1 alone. Thus, the total

number of transmission for these elements is 𝐶2
𝑡0 =

∑𝑛
𝑗=1(2𝑘𝑗 + 1) +

∑𝑛
𝑗=1[(𝑘𝑗 + 1)(𝐷 + 1)].

Besides, we have 2𝑛 more information elements 𝑧𝑗0 and 𝑧𝑗𝑚+1, 𝑗 = 1, . . . , 𝑛, left. Due to the

definition of lifetimes for these information elements, all of them need to leave their sources

as soon as they are generated, and none of them can be packed with a packet containing two

information elements we packed in the last paragraph. In an optimal packing scheme, for a

fixed 𝑗, either 𝑧𝑗0 is packed with 𝑎𝑥𝑗
0 at node 𝑣𝑗 , i.e., 𝑎𝑥𝑗

0 arrives at and leaves node 𝑣𝑗 at time

𝑗 + 𝑡1, or 𝑧𝑗𝑚+1 is packed with 𝑎𝑥𝑗
𝑘𝑗

at node 𝑣𝑗 , i.e., 𝑎𝑥𝑗
𝑘𝑗

arrives at and leaves node 𝑣𝑗 at time

3(𝑚+ 1)(𝑛+ 1) + 𝑗 + 𝑡1, which is shown in Figure 7. Thus, the total number of transmission

for these elements is 𝐶3
𝑡0 = 2𝑛+ 𝑛(𝐷+1). Under this packing scheme, no packet will contain

more than 2 elements, which also satisfies the packing size constraint. Thus, the minimal total
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Figure 7: Example of optimal packing when 𝐾 ≥ 3

number of transmissions in this tree is 𝐶1
𝑡0 + 𝐶2

𝑡0 + 𝐶3
𝑡0 = 𝑛(𝐷 + 1) + 1 +

∑𝑛
𝑗=1(2𝑘𝑗 + 1) +∑𝑛

𝑗=1[(𝑘𝑗 + 1)(𝐷 + 1)] + 2𝑛+ 𝑛(𝐷 + 1) = 𝐶𝑡0.

Claim 2 If nodes 𝑣𝑐1, . . . , 𝑣
𝑐
𝑚 are ignored, in the optimal packing scheme in Π′, every informa-

tion element 𝑞 generated by a leaf node of node 𝑣𝑗, 𝑗 = 1, . . . , 𝑛, is forwarded to the source’s

parent at time 𝑟𝑞, and then leaves the parent to next hop either at time 𝑟𝑞 + 𝑡1 or at time

𝑑𝑞 − (𝑡2 + 𝑡3).

Proof Correctness of this claim can be easily verified by the definition of the information

elements of those leaf nodes.

Claim 3 If nodes 𝑣𝑐1, . . . , 𝑣
𝑐
𝑚 are ignored, in the optimal packing scheme in Π′, for each 𝑗 =

1, . . . , 𝑛, all the information elements 𝑥𝑗
𝑖 leaves node 𝑣𝑗 for 𝑣 either at time 𝑟𝑗𝑖 + 𝑡1, or at the

time 𝑑𝑗𝑖 − (𝑡2 + 𝑡3).

Proof Since in an optimal packing scheme, either element 𝑧𝑗0 is packed with element 𝑎𝑥𝑗
0, or

element 𝑧𝑗2𝑘𝑗+2 is packed with element 𝑎𝑥𝑗
𝑘𝑗

. If 𝑧𝑗0 is packed with 𝑎𝑥𝑗
0, 𝑎𝑥

𝑗
0 leaves 𝑣𝑗 as soon

as it arrives at 𝑣𝑗 , when 𝑧𝑗0 arrives at 𝑣𝑗 , i.e., each element 𝑥𝑗

𝑖𝑗𝑡
leaves from 𝑣𝑗 for 𝑣 at time

𝑑𝑗
𝑖𝑗𝑡
− (𝑡2 + 𝑡3), packed with element 𝑎𝑥𝑗

𝑖𝑗𝑡
, 𝑡 = 1, . . . , 𝑘𝑗 . If 𝑧𝑗2𝑘𝑗+2 is packed with 𝑎𝑥𝑗

𝑘𝑗
, 𝑎𝑥𝑗

𝑘𝑗

leaves 𝑣𝑗 at time 3(𝑚+1)(𝑛+1)+ 𝑗+ 𝑡1, which equals to 𝑑𝑗𝑎𝑘𝑗0
− (𝑡2+ 𝑡3), when 𝑧𝑗2𝑘𝑗+2 arrives

at 𝑣𝑗 , i.e., each element 𝑥𝑗

𝑖𝑗𝑡
leaves from 𝑣𝑗 for 𝑣 at time 𝑟𝑗

𝑖𝑗𝑡
+ 𝑡1, packed with element 𝑎𝑥𝑗

𝑖𝑗𝑡−1
,

𝑡 = 1, . . . , 𝑘𝑗 .
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From Claim 1, 2 and 3, we present the following claim:

Claim 4 The minimum number of transmissions required in Π′, denoted by 𝐶𝑡1, is 𝐶𝑡0 +𝑚 if

and only if the SAT problem Π is satisfiable.

Proof 1) Given a satisfying assignment for the SAT problem, an optimal packing scheme of

the corresponding packet packing problem can be derived as follows: If in the assignment of

SAT problem, variable 𝑋𝑗 is set true, then all information elements 𝑥𝑗
𝑖 are forwarded from

their sources to node 𝑣𝑗 at time 𝑟𝑗𝑖 , and are forwarded from node 𝑣𝑗 to node 𝑣 at time 𝑟𝑗𝑖 + 𝑡1.

If 𝑋𝑗 is set false, then all information elements 𝑥𝑗
𝑖 are forwarded from their sources to node

𝑣𝑗 at time 𝑟𝑗𝑖 , and are forwarded from node 𝑣𝑗 to node 𝑣 at 𝑑𝑗𝑖 − 𝑡2 − 𝑡3. Similarly with the

information elements generated by children nodes of node 𝑣𝑗 , every element generated by node

𝑣𝑐𝑖 , 𝑖 = 1, . . . ,𝑚, cannot get packed at its source since 𝑣𝑐𝑖 is a leaf node. As a result, each

element 𝑧𝑖 is forward by its source and arrives at node 𝑣 at time (3𝑖+1)(𝑛+1)+𝑡1+𝑡2−𝑡4+𝑡4 =

(3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2. Then the spare period for information element 𝑧𝑖 to wait at node 𝑣

is [(3𝑖+ 1)(𝑛+ 1) + 𝑡1 + 𝑡2, (3𝑖+ 2)(𝑛+ 1) + 𝑡1 + 𝑡2]. If clause 𝐶𝑖 is satisfied by setting 𝑋𝑗

to be true, then information element 𝑥𝑗
𝑖 arrives at node v at (3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2 + 𝑗 ∈

[(3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2, (3𝑖 + 2)(𝑛 + 1) + 𝑡1 + 𝑡2], which implies 𝑧𝑖 can be packed with

any packet containing information element 𝑥𝑗
𝑖 . Similarly, if clause 𝐶𝑖 is satisfied by setting 𝑋𝑗

to be false, then information element 𝑥𝑗
𝑖 arrives at node 𝑣 at (3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2 + 𝑗 ∈

[(3𝑖+ 1)(𝑛+ 1) + 𝑡1 + 𝑡2, (3𝑖+ 2)(𝑛+ 1) + 𝑡1 + 𝑡2], which implies 𝑧𝑖 can be packed with any

packet containing information element 𝑥𝑗
𝑖 . Figure 8 gives an example on how to get the optimal

packing scheme from an assignment of SAT instance.

Under this scheme, no packet will contain more than 3 elements, which also satisfies the

packing size constraint. Every element 𝑧𝑖, 𝑖 = 1, . . . ,𝑚, can be packed at node 𝑣 with a packet

containing message 𝑥𝑗
𝑖 if clause 𝐶𝑖 is satisfied due to variable 𝑋𝑗 . Therefore, the additional

number of transmission to send each element 𝑧𝑖 to node 𝑠 is 𝑚. As a result, the total number of

transmission for this tree is 𝐶𝑡0 +𝑚 = 𝐶𝑡1.

2) If we may find that the optimal packing scheme has a total number of transmission 𝐶𝑡1,

which implies that every element 𝑧𝑖 joins a packet consisting of 𝑥𝑗
𝑖 for some 𝑗 value. If 𝑥𝑗

𝑖 leaves
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Figure 8: Example of deriving the optimal packing scheme from the SAT assignment when
𝐾 ≥ 3

from node 𝑣𝑗 at time 𝑟𝑗𝑖 + 𝑡1, and 𝑧𝑖 joins the packet that contains 𝑥𝑗
𝑖 at node 𝑣, this can only

happen when 𝑋𝑗 is unnegated in clause 𝐶𝑖 because (3𝑖+1)(𝑛+1)+𝑡1+𝑡2+𝑗 ∈ [(3𝑖+1)(𝑛+1)+

𝑡1+𝑡2, (3𝑖+2)(𝑛+1)+𝑡1+𝑡2] and 3𝑖(𝑛+1)+𝑗 /∈ [(3𝑖+1)(𝑛+1)+𝑡1+𝑡2, (3𝑖+2)(𝑛+1)+𝑡1+𝑡2].

Thus we set 𝑋𝑗 to be true. If 𝑥𝑗
𝑖 leaves from node 𝑣 at time 𝑑𝑗𝑖 −(𝑡2+ 𝑡3), and 𝑧𝑖 joins the packet

that contains 𝑥𝑗
𝑖 at node 𝑣, this can only happen when 𝑋𝑗 is negated in clause 𝐶𝑖 because

(3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2 + 𝑗 ∈ [(3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2, (3𝑖 + 2)(𝑛 + 1) + 𝑡1 + 𝑡2] and

(3𝑖+2)(𝑛+1)+ 𝑗+ 𝑡1+ 𝑡2 /∈ [(3𝑖+1)(𝑛+1)+ 𝑡1+ 𝑡2, (3𝑖+2)(𝑛+1)+ 𝑡1+ 𝑡2]. Thus we set

𝑋𝑗 to be false. By this way, if we have an optimal solution to this instance of packet packing

problem, we can have a satisfying assignment of the original SAT problem. Note that due to

Claim 3, the following case cannot happen: element 𝑧𝑖 gets packed with 𝑥𝑗
𝑖 by letting 𝑥𝑗

𝑖 leaves

node 𝑣𝑗 at time 𝑟𝑗𝑖 + 𝑡1, and in the meantime, that element 𝑧𝑘 gets packed with 𝑥𝑗
𝑘 by letting 𝑥𝑗

𝑘

leaves node 𝑣𝑗 at time 𝑑𝑗𝑘 − (𝑡2 + 𝑡3).

Then, Claim 4 and the fact that the reduction shown in Figure 5 is a polynomial reduction

from SAT to ℙ0 imply that ℙ0 is strong NP-hard when 𝐾 ≥ 3.

Note that the above proof did not consider the impact of packet length on link reliability

and thus ETX. As long as we construct the reduction so that the ETX along links ⟨𝑣𝑗, 𝑣⟩, 𝑗 =

1, . . . , 𝑛 is significantly greater than that along link ⟨𝑣, 𝑠⟩, however, the above analysis can be
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easily extended to and still hold for cases where ETX is a function of packet length.

Having proved the strong NP-hardness of ℙ0 when 𝐾 ≥ 3, we analyze the hardness of

approximation for ℙ0 using a gap-preserving reduction from MAX-3SAT to ℙ0 [19], and we

have

Theorem 2 When 𝐾 ≥ 3, there exists 𝜖 ≥ 1 such that it is NP-hard to achieve an approxima-

tion ratio of 1 + 1
200𝑁

(1 − 1
𝜖
) for problem ℙ0, where 𝑁 is the number of information elements

in ℙ0.

Proof We first show that the reduction presented in Figure 5 is a gap-preserving reduction [19]

from MAX-3SAT to problem ℙ0. It is easy to verify that the proof of Theorem 1 holds if the

discussion of the proof is based on 3SAT instead of the general SAT problem, in which case∑𝑛
𝑗=1 𝑘𝑗 = 3𝑚 and we denote the reduction as 𝑓 . Therefore, if a 3SAT problem Π is satisfiable,

the minimum cost of the ℙ0 problem Π′ = 𝑓(Π) is

𝐶𝑡1 = 𝐶𝑡0 +𝑚

= (
∑𝑛

𝑗=1(2𝑘𝑗 + 1) +
∑𝑛

𝑗=1(𝑘𝑗 + 1)(𝐷 + 1)+

2𝑛(𝐷 + 1) + 2𝑛+ 1) +𝑚

= 𝑚(3𝐷 + 10) + 𝑛(3𝐷 + 6) + 1

(6)

Since 𝑛 < 4𝑚, (6) implies that

𝐶𝑡1 < 𝑚(3𝐷 + 10) + 𝑛(3𝐷 + 10)

< 5𝑚(3𝐷 + 10)

(7)

Note that the proof of Theorem 1 holds if 𝐷 = 𝑛 +
∑𝑛

𝑗=1(2𝑘𝑗 + 3) = 6𝑚 + 𝑛, which is the
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number of information elements generated by the descendants of node 𝑣. Thus, (7) implies that

𝐶𝑡1 < 5𝑚(3(6𝑚+ 𝑛) + 10)

= 5𝑚(18𝑚+ 3𝑛+ 10)

< 5𝑚(18𝑚+ 3× 4𝑚+ 10)

= 5𝑚(30𝑚+ 10)

< 5𝑚(30𝑚+ 10𝑚)

= 200𝑚2

(8)

If only 𝑚0 of the 𝑚 clauses in Π are satisfiable, then the minimum cost in Π′ = 𝑓(Π) (with

𝐾 ≥ 3 is 𝐶𝑡1 +𝑚−𝑚0. This is because (𝑚−𝑚0) number of 𝑧𝑖’s cannot be packed with any

other packet and have to be sent from node 𝑣 to 𝑠 alone, which incurs an extra cost of 1 each.

Accordingly, if less than 𝑚0 of the 𝑚 clauses in Π are satisfiable, then the minimum cost 𝐶 ′ in

Π′ = 𝑓(Π) is greater than 𝐶𝑡1 +𝑚−𝑚0. Letting 𝜖 = 𝑚
𝑚0

, (8) implies that

𝐶′
𝐶𝑡1

> 𝐶𝑡1+𝑚−𝑚0

𝐶𝑡1

= 𝐶𝑡1+𝜖𝑚0−𝑚0

𝐶𝑡1

= 1 + (𝜖−1)𝑚0

𝐶𝑡1

> 1 + (𝜖−1)𝑚0

200𝑚2

= 1 + 𝜖−1
200𝑚

1
𝜖

= 1 + 1
200𝑚

(1− 1
𝜖
)

≥ 1 + 1
200𝑁

(1− 1
𝜖
)

(9)

where 𝑁 is the number of non-sink nodes in the network and 𝑁 ≥ 𝑚.

Let 𝑂𝑃𝑇 (Π) and 𝑂𝑃𝑇 (Π′) be the optima of a MAX-3SAT problem Π and the correspond-

ing ℙ0 problem Π′ = 𝑓(Π). Then the polynomial-time reduction 𝑓 from MAX-3SAT to ℙ0
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satisfy the following properties:

𝑂𝑃𝑇 (Π) = 1 =⇒ 𝑂𝑃𝑇 (Π′) = 𝐶𝑡1

𝑂𝑃𝑇 (Π) < 1
𝜖

=⇒ 𝑂𝑃𝑇 (Π′) > 𝐶𝑡1(1 +
1

200𝑁
(1− 1

𝜖
))

(10)

From [19], we know that there exists a polynomial-time reduction 𝑓1 from SAT to MAX-3SAT

such that, for some fixed 𝜖 > 1, reduction 𝑓1 satisfies

𝐼 ∈ 𝑆𝐴𝑇 =⇒ MAX-3SAT(𝑓1(𝐼)) = 1

𝐼 /∈ 𝑆𝐴𝑇 =⇒ MAX-3SAT(𝑓1(𝐼)) < 1
𝜖

(11)

Then, (10) and (11) imply the following:

𝐼 ∈ 𝑆𝐴𝑇 =⇒ 𝑂𝑃𝑇 (𝑓(𝑓1(𝐼))) = 𝐶𝑡1

𝐼 /∈ 𝑆𝐴𝑇 =⇒ 𝑂𝑃𝑇 (𝑓(𝑓1(𝐼))) > 𝐶𝑡1(1 +
1

200𝑁
(1− 1

𝜖
))

(12)

Therefore, it is NP-hard to achieve an approximation ratio of 1 + 1
200𝑁

(1− 1
𝜖
) for problem ℙ0.

Based on the definition of polynomial time approximation scheme (PTAS) and Theorem 2,

we then have

Corollary 1 There is no polynomial time approximation scheme (PTAS) for problem ℙ0 when

𝐾 ≥ 3.

Based on the findings for ℙ0, we have

Theorem 3 When 𝐾 ≥ 3, problems ℙ1, ℙ2, and ℙ are strong NP-hard whether or not the

routing structure is a tree or a linear chain, and there is no polynomial-time approximation

scheme (PTAS) for solving them.

Proof To prove the hardness results for ℙ1, let’s consider a special case Π1 of ℙ1 where 1)

every node is generating information elements using the same period 𝑝0 and the same spare

time 𝑠0 for information elements, 2) 𝑝0 is significantly larger than 𝑠0, and 3) 𝑝0 is significantly
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larger than the latest time 𝑟0 when a node generates its first information element such that the

following holds: in the optimal packing scheme for Π1, no two elements from the same node

can be aggregated into the same packet, and the 𝑖-th information element from one node cannot

be packed with the 𝑗-th element from another node unless 𝑖 = 𝑗. It is easy to see that the special

case Π1 does exist by properly choosing the parameters 𝑝0, 𝑠0, and 𝑟0. Therefore, solving Π1

becomes the same as solving an instance Π0 of ℙ0 where the information elements consist of

the first element from every node of Π1. Therefore, ℙ1 is at least as hard as ℙ0. Since ℙ0 is

strong NP-hard, ℙ1 is strong NP-hard, and the there is no PTAS for the problem.

Since ℙ1 is a special case of ℙ2, and ℙ2 is a special case of ℙ, both ℙ2 and ℙ are strong

NP-hard too, and there is no PTAS for them.

Theorems 1 and 3 show that the joint optimization problems are strong NP-hard and there

is no PTAS, whether or not the routing structure is a tree or a linear chain and whether or not

the information elements are of equal length. In contrast, Becchetti 𝑒𝑡 𝑎𝑙. [8] showed that, for

total aggregation, the joint optimization problems are solvable in polynomial time via dynamic

programming on chain networks. Therefore, we see that aggregation constraints make the

difference on whether a problem is tractable for certain networks, and thus it is important to

consider them in the joint optimization. Incidentally, we note that Theorem 3 also answers

the open question on the complexity of Problem (P4) of batch-process scheduling in interval

graphs [13].

Complexity when 𝐾 = 2

We showed in Chapter that the problems ℙ𝑖, 𝑖 = 0, 1, 2, and ℙ are all strong NP-hard and

there is no PTAS for these problems when 𝐾 ≥ 3. We prove in this chapter that, when 𝐾 = 2,

the complexity of these problems depends on whether information elements in a packet can be

separated and re-packed with other elements (which we call re-aggregation hereafter) on their

way to the sink. When re-aggregation is disallowed, these problems are solvable in polynomial

time; otherwise they are strong NP-hard. Note that, when 𝐾 ≥ 3, these problems are all strong

NP-hard even if re-aggregation is disallowed, which can be seen from the proof of Theorem 1.

Note also that, even though re-aggregation may well be allowed in most sensornet systems
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when the in-network processing (INP) method is packet packing, re-aggregation may not be

possible or allowed when INP is data fusion such as lossy data compression [38]. Via the study

on the impact of re-aggregation, therefore, we hope to shed light on the structure of the joint

optimization problems when general INP methods are considered.

In what follows, we first analyze the case when re-aggregation is allowed, then we analyze

the case when re-aggregation is disallowed.

When re-aggregation is allowed

Use a method similar to that of Theorem1, we prove the following theorem.

Theorem 4 When 𝐾 = 2 and re-aggregation is allowed, problem ℙ0 is strong NP-hard, and

this result holds whether or not the routing structure is a tree or a linear chain.

Proof Given an instance Π of SAT problem with 𝑛 Boolean variables 𝑋1, . . . , 𝑋𝑛 and 𝑚

clauses 𝐶1, . . . , 𝐶𝑚, we derive a polynomial time transformation from Π to an instance Π′′

of problem ℙ0 with 𝐾 = 2 as follows. The transformation is the same as what we present

through Figure 5 except for the following changes:

∙ Define a node 𝑝 between node 𝑣 and node 𝑠, and 𝑚 children 𝑝1, . . . , 𝑝𝑚 of node 𝑝. Addi-

tionally, define 𝐸𝑇𝑋𝑣𝑝 = 𝐸𝑇𝑋𝑝𝑠 = 𝐸𝑇𝑋𝑝𝑖𝑝 = 1, and 𝑡𝑣𝑝 = 𝑡3, 𝑡𝑝𝑠 = 𝑡5, and 𝑡𝑝𝑖𝑝 = 𝑡6.

∙ Define 𝑚 information elements 𝑔𝑖’s generated by nodes 𝑝1, , 𝑝𝑚: 𝑔𝑖 : [𝑟
𝑝
𝑖 , 𝑑

𝑝
𝑖 ] = [(3𝑖 +

1)(𝑛+1)+𝑛+0.1+ 𝑡1+ 𝑡2+ 𝑡3− 𝑡6, (3𝑖+1)(𝑛+1)+𝑛+0.1+ 𝑡1+ 𝑡2+ 𝑡3+ 𝑡5], and

for node p, define an information element 𝑔 with lifetime [5(𝑚+ 1)2(𝑛+ 1) + 𝑖, 5(𝑚+

1)2(𝑛+ 1) + 𝑖+ 𝑡5].

∙ For all parameters defined during the transformation in Figure 5, replace 𝑡3 by 𝑡3 + 𝑡5.

Therefore, the time complexity of the new transformation is still 𝑂(𝑛𝑚), and the new re-

duction is shown in Figure 9.

Then, the following claims hold for Π′′:

Claim 5 If nodes 𝑣𝑐1, . . . , 𝑣
𝑐
𝑚, and nodes 𝑝1, . . . , 𝑝𝑚 are ignored, the minimum number of trans-

missions in Π′′ is 𝐶 ′
𝑡0 =

∑𝑛
𝑗=1(2𝑘𝑗 + 1) +

∑𝑛
𝑗=1[(𝑘𝑗 + 1)(𝐷 + 2)] + 2𝑛(𝐷 + 2) + 2𝑛+ 3.
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Figure 9: Reduction from SAT to ℙ0 when 𝐾 = 2

Claim 6 If nodes 𝑣𝑐1, . . . , 𝑣
𝑐
𝑚, and nodes 𝑝1, . . . , 𝑝𝑚 are ignored, in the optimal packing scheme

of Π′′, every information element 𝑞 generated by a leaf node of node 𝑣𝑗 ,𝑗 = 1, . . . , 𝑛, is for-

warded to the source’s parent at time 𝑟𝑞, and then leaves the parent to next hop either at time

𝑟𝑞 + 𝑡1, or at time 𝑑𝑞 − (𝑡2 + 𝑡3 + 𝑡5).

Claim 7 If nodes 𝑣𝑐1, . . . , 𝑣
𝑐
𝑚, and nodes 𝑝1, . . . , 𝑝𝑚 are ignored, in the optimal packing scheme

of Π′′, for each 𝑗 = 1, . . . , 𝑛, all the information elements 𝑥𝑗
𝑖 leave node 𝑣𝑗 for 𝑣 either at time

𝑟𝑗𝑖 + 𝑡1, or at time 𝑑𝑗𝑖 − (𝑡2 + 𝑡3 + 𝑡5).

These claims can be proved in the same way as how Claims 1, 2, and 3 are proved respec-

tively, and we skip the details here. Then, we propose

Claim 8 The minimal number of transmissions required in Π′′, denoted by 𝐶 ′
𝑡1, is 𝐶 ′

𝑡0 + 4𝑚 if

and only if the SAT problem Π is satisfiable.

Proof 1) Given a satisfying assignment for the SAT problem, an optimal packing scheme of

the corresponding packet packing problem can be derived as follows: If in the assignment of

SAT problem, variable 𝑋𝑗 is set true, then all information elements 𝑥𝑗
𝑖 are forwarded from their

sources to node 𝑣𝑗 at time 𝑟𝑗𝑖 , and are forwarded from node 𝑣𝑗 to node 𝑣 at time 𝑟𝑗𝑖 + 𝑡1. If



26

𝑋𝑗 is set false, then all information elements 𝑥𝑗
𝑖 are forwarded from their sources to node 𝑣𝑗

at time 𝑟𝑗𝑖 , and are forwarded from node 𝑣𝑗 to node 𝑣 at 𝑑𝑗𝑖 − (𝑡2 + 𝑡3 + 𝑡5). Similarly with

the information elements generated by children nodes of node 𝑣𝑗 , every information element

generated by node 𝑣𝑐𝑖 , 𝑖 = 1, . . . ,𝑚, cannot get packed at its source since 𝑣𝑐𝑖 is a leaf node.

As a result, each information element 𝑧𝑖 is forward by its source and arrives at node v at time

(3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2 − 𝑡4 + 𝑡4 = (3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2. Then the spare period for

information element 𝑧𝑖 to wait at node 𝑣 is [(3𝑖+1)(𝑛+1)+ 𝑡1+ 𝑡2, (3𝑖+2)(𝑛+1)+ 𝑡1+ 𝑡2].

If clause 𝐶𝑖 is satisfied by setting 𝑋𝑗 to be true, then information element 𝑥𝑗
𝑖 arrives at node 𝑣

at (3𝑖+ 1)(𝑛+ 1) + 𝑡1 + 𝑡2 + 𝑗 ∈ [(3𝑖+ 1)(𝑛+ 1) + 𝑡1 + 𝑡2, (3𝑖+ 2)(𝑛+ 1) + 𝑡1 + 𝑡2], which

implies that 𝑧𝑖 can be packed with the packet containing information element 𝑥𝑗
𝑖 . Similarly, if

clause 𝐶𝑖 is satisfied by setting 𝑋𝑗 to be false, then information element 𝑥𝑗
𝑖 arrives at node 𝑣 at

(3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2 + 𝑗 ∈ [(3𝑖 + 1)(𝑛 + 1) + 𝑡1 + 𝑡2, (3𝑖 + 2)(𝑛 + 1) + 𝑡1 + 𝑡2], which

implies 𝑧𝑖 can be packed with the packet containing information element 𝑥𝑗
𝑖 . However, due

to the packet size constraint, one packet cannot contain more than 2 information elements. In

the meantime, every information element generated by node 𝑝𝑖 cannot get packed at its source

since node 𝑝𝑖 is a leaf node. Thus each information element 𝑔𝑖 is forwarded by its source and

arrives at node 𝑝 at time (3𝑖 + 1)(𝑛 + 1) + 𝑛 + 0.1 + 𝑡1 + 𝑡2 + 𝑡3. Then the spare period for

element 𝑔𝑖 to wait at node 𝑝 is 0. In this case, to minimize the total number of transmission,

if clause 𝐶𝑖 is satisfied by setting 𝑋𝑗 to be true, information element 𝑥𝑗
𝑖 arrives at node 𝑣 with

information element 𝑎𝑥𝑗
𝑖−1 at time (3𝑖+1)(𝑛+1)+ 𝑡1+ 𝑡2+ 𝑗 in one packet. When this packet

arrives at 𝑣, information element 𝑎𝑥𝑗
𝑖−1 and information element 𝑧𝑖 form a new packet while

information element 𝑥𝑗
𝑖 waits at 𝑣 until (3𝑖+ 1)(𝑛+ 1) + 𝑡1 + 𝑡2 + 𝑛+ 0.1. 𝑥𝑗

𝑖 arrives at node

𝑔 at time (3𝑖 + 1)(𝑛 + 1) + 𝑛 + 0.1 + 𝑡1 + 𝑡2 + 𝑡3 and forms a new packet with information

element 𝑔𝑖. In this scheme, 𝑎𝑥𝑗
𝑖−1 first packed 𝑥𝑗

𝑖 at node 𝑣𝑗 , then leaves 𝑥𝑗
𝑖 at node 𝑣 so that

𝑥𝑗
𝑖 can pack another information element 𝑔𝑖 some time later at node 𝑝, which implies that a

carry-over operation is used to achieve the optimal packing scheme. Similarly, if clause 𝐶𝑖 is

satisfied by setting 𝑋𝑗 to be false, element 𝑥𝑗
𝑖 is arrives at node 𝑣 with element 𝑎𝑥𝑗

𝑖 at time

(3𝑖+1)(𝑛+1)+ 𝑡1 + 𝑡2 + 𝑗 in one packet. When this packet arrives at 𝑣, information element
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𝑥𝑗
𝑖 and information element 𝑧𝑖 form a new packet while information element 𝑎𝑥𝑗

𝑖 waits at 𝑣 until

(3𝑖+1)(𝑛+1)+𝑡1+𝑡2+𝑛+0.1. 𝑎𝑥𝑗
𝑖 arrives at node 𝑝 at time (3𝑖+1)(𝑛+1)+𝑛+0.1+𝑡1+𝑡2+𝑡3

and forms a new packet with information element 𝑔𝑖. In this scheme, 𝑥𝑗
𝑖 first packed 𝑎𝑥𝑗

𝑖 at node

𝑣𝑗 , then leaves 𝑎𝑥𝑗
𝑖 at node 𝑣 so that 𝑎𝑥𝑗

𝑖 can pack another information element 𝑔𝑖 some time

later at node 𝑝, which implies that a carry-over operation is used to achieve the optimal packing

scheme. An demonstration on how the optimal packing scheme is derived is given in Figure

10.

Figure 10: Example of deriving optimal packing scheme from SAT assignment when 𝐾 = 2

In the optimal packing scheme, every information element 𝑧𝑖 can be packed at node 𝑣 with

an information element 𝑥𝑗
𝑖 or 𝑎𝑥𝑗

𝑖−1 if clause 𝐶𝑖 is satisfied due to variable 𝑋𝑗 . Therefore, the

additional number of transmission to send each information element 𝑧𝑖 to node 𝑠 is 𝑚, and the

additional number of transmission to send each information element 𝑔𝑖 to node 𝑠 is 𝑚, and the

additional number of transmission to break up m packet at node 𝑣 and send them to node 𝑠 is

2𝑚. As a result, the total number of transmission for this tree is 𝐶 ′
𝑡0 + 4𝑚 = 𝐶 ′

𝑡1.

2) If we may find that the optimal packing scheme has a total number of transmission 𝐶 ′
𝑡1,

which implies that every information element 𝑧𝑖 pack with one information element in a packet

consisting of 𝑥𝑗
𝑖 for some 𝑗 value, and the other information element in the old packet packs

with information element 𝑔𝑖. If 𝑥𝑗
𝑖 leaves from node 𝑣𝑗 at time 𝑟𝑗𝑖 + 𝑡1, and 𝑧𝑖 packs with one
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information element in the packet that contains 𝑥𝑗
𝑖 at node 𝑣, this can only happen when 𝑋𝑗 is

unnegated in clause 𝐶𝑖 because (3𝑖+1)(𝑛+1)+𝑡1+𝑡2+𝑗 ∈ [(3𝑖+1)(𝑛+1)+𝑡1+𝑡2, (3𝑖+2)(𝑛+

1)+𝑡1+𝑡2] and 3𝑖(𝑛+1)+𝑗 /∈ [(3𝑖+1)(𝑛+1)+𝑡1+𝑡2, (3𝑖+2)(𝑛+1)+𝑡1+𝑡2]. Thus we set 𝑋𝑗

to be true. If 𝑥𝑗
𝑖 leaves from node 𝑣 at time 𝑑𝑗𝑖 −(𝑡2+𝑡3+𝑡5), and 𝑧𝑖 packs with one information

element in the packet that contains 𝑥𝑗
𝑖 at node 𝑣, this can only happen when 𝑋𝑗 is negated in

clause 𝐶𝑖 because (3𝑖+1)(𝑛+1)+𝑡1+𝑡2+𝑗 ∈ [(3𝑖+1)(𝑛+1)+𝑡1+𝑡2, (3𝑖+2)(𝑛+1)+𝑡1+𝑡2]

and (3𝑖+2)(𝑛+1)+ 𝑗 + 𝑡1 + 𝑡2 /∈ [(3𝑖+1)(𝑛+1)+ 𝑡1 + 𝑡2, (3𝑖+2)(𝑛+1)+ 𝑡1 + 𝑡2]. Thus

we set 𝑋𝑗 to be false. By this way, if we have an optimal solution to this instance of packet

packing problem, we can have a satisfying assignment of the original SAT problem. Note that

due to Claim 7, the following case cannot happen: element 𝑧𝑖 gets packed with 𝑥𝑗
𝑖 by letting

𝑥𝑗
𝑖 leaves node 𝑣𝑗 at time 𝑟𝑗𝑖 + 𝑡1, and in the meantime, that element 𝑧𝑘 gets packed with 𝑥𝑗

𝑘 by

letting 𝑥𝑗
𝑘 leaves node 𝑣𝑗 at time 𝑑𝑗𝑘 − (𝑡2 + 𝑡3 + 𝑡5).

Then, Claim 8 and the fact that the reduction shown in Figure 9 is polynomial imply that

ℙ0 is strong NP-hard when 𝐾 = 2.

Note that the above proof did not consider the impact of packet length on link reliability

and thus ETX. As long as we construct the reduction so that the ETX along links ⟨𝑣𝑗, 𝑣⟩, 𝑗 =

1, . . . , 𝑛 is significantly greater than that along links ⟨𝑣, 𝑝⟩ and ⟨𝑝, 𝑠⟩, however, the above anal-

ysis can be easily extended to and still hold for cases where ETX is a function of packet length.

Note also that the above proof can be extended to the case when all the information elements

are generated at the same time, as well as the case when the routing structure is a linear chain

(with information elements having different generation time).

Then, we prove the hardness of approximation using a gap-preserving reduction from

MAX-3SAT, and we have

Theorem 5 When 𝐾 = 2 and re-aggregation is allowed, there exists 𝜖 ≥ 1 such that it is

NP-hard to achieve an approximation ratio of 1 + 1
120𝑁

(1− 1
𝜖
) for problem ℙ0, where 𝑁 is the

number of information elements in ℙ0.

Proof The proof is similar to that of Theorem 2.
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We first show that the reduction presented in Figure 9 is a gap-preserving reduction [19]

from MAX-3SAT to problem ℙ′
0. It is easy to verify that the proof of Theorem 4 holds if

the discussion of the proof is based 3SAT instead of the general SAT problem, in which case∑𝑛
𝑗=1 𝑘𝑗 = 3𝑚 and we denote the reduction as 𝑓 . Therefore, if a 3SAT problem Π is satisfiable,

the minimum cost of the ℙ′
0 problem Π′ = 𝑓(Π) is

𝐶 ′
𝑡1 = 𝐶 ′

𝑡0 + 4𝑚

= (
∑𝑛

𝑗=1(2𝑘𝑗 + 1) +
∑𝑛

𝑗=1(𝑘𝑗 + 1)(𝐷 + 2)+

2𝑛(𝐷 + 2) + 2𝑛+ 3) + 4𝑚

= 𝑚(3𝐷 + 16) + 𝑛(3𝐷 + 9) + 3

(13)

Since 𝑛 < 4𝑚, Equation 13 implies that

𝐶 ′
𝑡1 < 𝑚(3𝐷 + 16) + 𝑛(3𝐷 + 16)

< 5𝑚(3𝐷 + 16)

(14)

Note that the proof of Theorem 4 holds if 𝐷 = 𝑛 +
∑𝑛

𝑗=1(2𝑘𝑗 + 3) = 6𝑚 + 𝑛, which is the

number of information elements generated by the descendants of node 𝑣. Thus, Equation 14

implies that

𝐶 ′
𝑡1 < 5𝑚(3(6𝑚+ 𝑛) + 16)

= 5𝑚(18𝑚+ 3𝑛+ 16)

< 5𝑚(18𝑚+ 3× 4𝑚+ 16)

= 5𝑚(30𝑚+ 16)

< 5𝑚(30𝑚+ 16𝑚)

= 240𝑚2

(15)

If only 𝑚0 of the 𝑚 clauses in Π are satisfiable, then the minimum cost in Π′ = 𝑓(Π) (with

𝐾 = 3 is 𝐶 ′
𝑡1+(𝑚−𝑚0). This is because (𝑚−𝑚0) number of 𝑧𝑖’s cannot be packed with any

other packet and have to be sent from node 𝑣 to 𝑠 alone, which incurs an extra cost of 2 each.
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Accordingly, if less than 𝑚0 of the 𝑚 clauses in Π are satisfiable, then the minimum cost 𝐶 ′ in

Π′ = 𝑓(Π) is greater than 𝐶 ′
𝑡1 + 2(𝑚−𝑚0). Letting 𝜖 = 𝑚

𝑚0
, Equation 15 implies that

𝐶′
𝐶′

𝑡1
>

𝐶′
𝑡1+2(𝑚−𝑚0)

𝐶′
𝑡1

=
𝐶′

𝑡1+2(𝜖𝑚0−𝑚0)

𝐶′
𝑡1

= 1 + 2 (𝜖−1)𝑚0

𝐶′
𝑡1

> 1 + 2 (𝜖−1)𝑚0

240𝑚2

= 1 + 𝜖−1
120𝑚

1
𝜖

= 1 + 1
120𝑚

(1− 1
𝜖
)

≥ 1 + 1
120𝑁

(1− 1
𝜖
)

(16)

where 𝑁 is the number of non-sink nodes in the network and 𝑁 ≥ 𝑚.

Let 𝑂𝑃𝑇 (Π) and 𝑂𝑃𝑇 (Π′) be the optima of a MAX-3SAT problem Π and the correspond-

ing ℙ′
0 problem Π′ = 𝑓(Π). Then the polynomial-time reduction 𝑓 from MAX-3SAT to ℙ′

0

satisfy the following properties:

𝑂𝑃𝑇 (Π) = 1 =⇒ 𝑂𝑃𝑇 (Π′) = 𝐶 ′
𝑡1

𝑂𝑃𝑇 (Π) < 1
𝜖

=⇒ 𝑂𝑃𝑇 (Π′) > 𝐶 ′
𝑡1(1 +

1
120𝑁

(1− 1
𝜖
))

(17)

From [19], we know that there exists a polynomial-time reduction 𝑓1 from SAT to MAX-3SAT

such that, for some fixed 𝜖 > 1, reduction 𝑓1 satisfies

𝐼 ∈ 𝑆𝐴𝑇 =⇒ MAX-3SAT(𝑓1(𝐼)) = 1

𝐼 /∈ 𝑆𝐴𝑇 =⇒ MAX-3SAT(𝑓1(𝐼)) < 1
𝜖

(18)

Then, Equation 17 and 18 imply the following:

𝐼 ∈ 𝑆𝐴𝑇 =⇒ 𝑂𝑃𝑇 (𝑓(𝑓1(𝐼))) = 𝐶 ′
𝑡1

𝐼 /∈ 𝑆𝐴𝑇 =⇒ 𝑂𝑃𝑇 (𝑓(𝑓1(𝐼))) > 𝐶 ′
𝑡1(1 +

1
120𝑁

(1− 1
𝜖
))

(19)
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Therefore, it is NP-hard to achieve an approximation ratio of 1 + 1
120𝑁

(1− 1
𝜖
) for problem ℙ0.

We relegate the details to the appendix.

Based on the definition of polynomial time approximation scheme (PTAS) and Theorem 5,

we then have

Corollary 2 There is no polynomial time approximation scheme (PTAS) for problem ℙ0 when

𝐾 = 2 and re-aggregation is allowed.

Based on the relations among ℙ0, ℙ1, ℙ2, and ℙ, we have

Theorem 6 When 𝐾 = 2 and re-aggregation is allowed, problems ℙ1, ℙ2, and ℙ are strong

NP-hard whether or not the routing structure is a tree or a linear chain, and there is no

polynomial-time approximation scheme (PTAS) for solving them.

Proof The proof is similar to that of Theorem 3.

Theorems 4 and 6 show that, when 𝐾 = 2 and re-aggregation is allowed, the joint optimiza-

tion problems are strong NP-hard whether or not the routing structure is a tree or a linear chain,

and whether or not the information elements are of the same length. That is, the complexity

of these problems when 𝐾 = 2 and re-aggregation is allowed is very much similar to the case

when 𝐾 ≥ 3.

When re-aggregation is prohibited

When 𝐾 = 2 and re-aggregation is prohibited, we can solve problem ℙ (and thus its special

versions ℙ0, ℙ1, and ℙ2) in polynomial time by transforming it into a maximum weighted

matching problem in an interval graph. An interval graph 𝐺𝐼 is a graph defined on a set 𝐼 of

intervals on the real line such that 1) 𝐺𝐼 has one and only one vertex for each interval in the

set, and 2) there is an edge between two vertices if the corresponding intervals intersect with

each other. Given an instance of problem ℙ, we solve it using Algorithm 1 as follows:

For Algorithm 1, we have
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Algorithm 1 Algorithm for solving ℙ when 𝐾 = 2 and re-aggregation is prohibited
1: Generate an interval graph 𝐺𝐼(𝑉𝐼 , 𝐸𝐼) for problem ℙ as follows:

∙ Select an arbitrary information element 𝑞 generated by node 𝑣𝑞 at time 𝑟𝑞 and with
spare time 𝑠𝑞, define an interval [𝑟𝑞, 𝑟𝑞 + 𝑠𝑞] for 𝑞 on the real line.

∙ For each remaining information element 𝑝 generated by node 𝑣𝑝 at time 𝑟𝑝 and with
spare time 𝑠𝑝, let node 𝑣𝑝𝑞 be the common ancestor of 𝑣𝑝 and 𝑣𝑞 that is the farthest
away from 𝑅 among all common ancestors of 𝑣𝑝 and 𝑣𝑞, then define an interval
[𝑟𝑞 − 𝑡𝑣𝑞𝑣𝑝𝑞 + 𝑡𝑣𝑝𝑣𝑝𝑞 , 𝑟𝑞 − 𝑡𝑣𝑞𝑣𝑝𝑞 + 𝑡𝑣𝑝𝑣𝑝𝑞 + 𝑠𝑞] for information element 𝑝.

∙ Let 𝑉𝐼 = ∅. Then, for each information element 𝑠, define a vertex 𝑠 and add it to 𝑉𝐼 .

∙ Let 𝐸𝐼 = ∅. If the two intervals that represent any two information elements 𝑢 and
ℎ overlap with each other, define an edge (𝑢, ℎ) and add it to 𝐸𝐼 ; then assign edge
(𝑢, ℎ) with a weight 𝑐𝑜𝑚(𝑢, ℎ) = 𝐸𝑇𝑋𝑣𝑢ℎ𝑅(𝑙𝑢)+𝐸𝑇𝑋𝑣𝑢ℎ𝑅(𝑙ℎ)−𝐸𝑇𝑋𝑣𝑢ℎ𝑅(𝑙𝑢+𝑙ℎ),
where 𝑙𝑢 and 𝑙ℎ are the length of 𝑢 and ℎ respectively.

2: Solve the maximum weighted matching problem for 𝐺𝐼 using Edmonds’ Algorithm [14].
3: For each edge (𝑢, ℎ) in the matching, information elements 𝑢 and ℎ are packed together at

node 𝑣𝑢𝑣. For all other vertices not in the matching, their corresponding information ele-
ments are sent to the sink alone without being packed with any other information element.

Theorem 7 When 𝐾 = 2 and re-aggregation is prohibited, Algorithm 1 solves problem ℙ in

𝑂(𝑛3) time, where 𝑛 is the number of information elements considered in the problem.This

holds whether or not the routing structure is a tree or a linear chain, and whether or not the

information elements are of equal length.

Proof It is easy to see that if information elements 𝑢 and ℎ are packed together, the total num-

ber of transmissions taken to deliver 𝑢 and ℎ is 𝐸𝑇𝑋𝑣𝑢𝑅(𝑙𝑢)+𝐸𝑇𝑋𝑣ℎ𝑅(𝑙ℎ)−𝐸𝑇𝑋𝑣𝑢ℎ𝑅(𝑙𝑢)−
𝐸𝑇𝑋𝑣𝑢ℎ𝑅(𝑙ℎ) +𝐸𝑇𝑋𝑣𝑢ℎ𝑅(𝑙𝑢 + 𝑙ℎ) = 𝐸𝑇𝑋𝑣𝑢𝑅(𝑙𝑢) +𝐸𝑇𝑋𝑣ℎ𝑅(𝑙ℎ)− 𝑐𝑜𝑚(𝑢, ℎ). Let 𝑉𝐼 be the

set of vertices in the interval graph 𝐺𝐼 , 𝑀 be a matching in 𝐺𝐼 , 𝑉1 be the set of nodes in 𝑀 ,
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and 𝑉2 = 𝑉𝐼/𝑉1. Then the weight of 𝑀 , denoted by 𝑊𝑀 , is as follows:

𝑊𝑀 =
∑

(𝑢,ℎ)∈𝑀 𝑐𝑜𝑚(𝑢, ℎ)

=
∑

(𝑢,ℎ)∈𝑀 [𝐸𝑇𝑋𝑣𝑢𝑅(𝑙𝑢) + 𝐸𝑇𝑋𝑣ℎ𝑅(𝑙ℎ)

−(𝐸𝑇𝑋𝑣𝑢𝑅(𝑙𝑢) + 𝐸𝑇𝑋𝑣ℎ𝑅(𝑙ℎ)

−𝑐𝑜𝑚(𝑢, ℎ))]

=
∑

(𝑢,ℎ)∈𝑀(𝐸𝑇𝑋𝑣𝑢𝑅(𝑙𝑢) + 𝐸𝑇𝑋𝑣ℎ𝑅(𝑙ℎ))

−∑
(𝑢,ℎ)∈𝑀 [𝐸𝑇𝑋𝑣𝑢𝑅(𝑙𝑢) + 𝐸𝑇𝑋𝑣ℎ𝑅(𝑙ℎ)

−𝑐𝑜𝑚(𝑢, ℎ)]

=
∑

𝑠∈𝑉1
𝐸𝑇𝑋𝑠𝑅(𝑙𝑠) +

∑
𝑣∈𝑉2

𝐸𝑇𝑋𝑣𝑅(𝑙𝑣)

−{∑(𝑢,ℎ)∈𝑀 [𝐸𝑇𝑋𝑣𝑢𝑅(𝑙𝑢) + 𝐸𝑇𝑋𝑣ℎ𝑅(𝑙ℎ)

−𝑐𝑜𝑚(𝑢, ℎ)]

+
∑

𝑣∈𝑉2
𝐸𝑇𝑋𝑣𝑅(𝑙𝑣)}

=
∑

𝑣∈𝑉𝐼
𝐸𝑇𝑋𝑣𝑅(𝑙𝑣)

−{∑(𝑢,ℎ)∈𝑀 [𝐸𝑇𝑋𝑣𝑢𝑅(𝑙𝑢) + 𝐸𝑇𝑋𝑣ℎ𝑅(𝑙ℎ)

−𝑐𝑜𝑚(𝑢, ℎ)] +
∑

𝑣∈𝑉2
𝐸𝑇𝑋𝑣𝑅(𝑙𝑣)}

(20)

Note that
∑

𝑣∈𝑉𝐼
𝐸𝑇𝑋𝑣𝑅(𝑙𝑣) is a fixed value, and

∑
(𝑢,ℎ)∈𝑀 [𝐸𝑇𝑋𝑣𝑢𝑅(𝑙𝑢)+𝐸𝑇𝑋𝑣ℎ𝑅(𝑙ℎ)−

𝑐𝑜𝑚(𝑢, ℎ)] +
∑

𝑣∈𝑉2
𝐸𝑇𝑋𝑣𝑅(𝑙𝑣) is the total number of transmissions, denoted by 𝐸𝑇𝑋𝑡𝑜𝑡𝑎𝑙,

incurred in the packing scheme generated by Algorithm 1. Therefore, 𝐸𝑇𝑋𝑡𝑜𝑡𝑎𝑙 is minimized

if and only if 𝑊𝑀 is maximized, which means that solving the maximum weighted matching

problem can give us an optimal solution to the original packet packing problem.

Let 𝑛 denote the total number of information elements in this problem. The whole algorithm

consists of three parts. The first one is to define an interval graph and assign weights to each

node and edge in the graph, whose time complexity is 𝑂(𝑛2). The second part is to solve

the maximum weighted matching problem, whose time complexity is 𝑂(𝑛3) by Edmonds’

Algorithm [14]. And the third part is to convert the optimal matching problem to the optimal
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packing scheme, whose time complexity is 𝑂(𝑛). Therefore, the time complexity of the whole

algorithm is 𝑂(𝑛2) +𝑂(𝑛3) +𝑂(𝑛) = 𝑂(𝑛3).

By the definition of the weight 𝑐𝑜𝑚(𝑢, ℎ) for elements 𝑢 and ℎ in Algorithm , the solution

generated by the maximum weighted matching tends to greedily pack elements as soon as pos-

sible after they are generated. This observation motivates us to design a local, greedy online

algorithm tPack in Chapter for the general joint optimization problems, and the effectiveness

of this approach will be demonstrated through competitive analysis and testbed-based measure-

ment study in Chapter and . Note that, incidentally, Theorem 7 also answers the open question

on the complexity of scheduling batch-processes with release times in interval graphs [13].
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CHAPTER 5

A UTILITY-BASED ONLINE ALGORITHM

We see from Chapter that problem ℙ and its special cases in sensornets are strong NP-

hard in most system settings, and there is no polynomial-time approximation scheme (PTAS)

for these problems. Instead of trying to find global optimal solution, therefore, we focus on

designing a distributed, approximation algorithm tPack that optimizes the local utility of packet

packing at each node. Given that packet arrival processes are usually unknown a priori, we

consider the online version of the optimization problem.

Based on the definition of ℙ, its optimization objective is to minimize

𝐴𝐶 =
𝑇𝑋𝑛𝑒𝑡∑
𝑥∈𝑋 𝑙𝑥

(21)

where 𝑇𝑋𝑛𝑒𝑡 is the total number of transmissions taken to deliver each information element

𝑥 ∈ 𝑋 to the sink before its deadline. For convenience, we call 𝐴𝐶 the amortized cost of

delivering
∑

𝑥∈𝑋 𝑙𝑥 amount of data. In what follows, we design an online algorithm tPack

based on this concept of amortized cost of data transmission. Accordingly, a local optimization

objective at a node 𝑗 is to minimize

𝐴𝐶𝑗 =
𝑇𝑋𝑗

𝑑𝑎𝑡𝑎𝑗
(22)

where 𝑇𝑋𝑗 is the total number of transmissions taken to deliver 𝑑𝑎𝑡𝑎𝑗 amount of data from 𝑗

to the sink 𝑅 before their deadline. Then an online algorithm, which we denote as tPack, is to

minimize 𝐴𝐶𝑗 for the timely delivery of the data that node 𝑗 currently holds.

When node 𝑗 has a packet 𝑝𝑘𝑡 in its data buffer, 𝑗 can decide to transmit 𝑝𝑘𝑡 immediately

or to hold it. If 𝑗 transmits 𝑝𝑘𝑡 immediately, information elements carried in 𝑝𝑘𝑡 may be

packed with packets at 𝑗’s ancestors to reduce the amortized cost of data transmissions from

those nodes; if 𝑗 holds 𝑝𝑘𝑡, more information elements may be packed with 𝑝𝑘𝑡 so that the

amortized cost of transmission from 𝑗 can be reduced. Therefore, we can define the utility of

transmitting or holding 𝑝𝑘𝑡 as the expected reduction in amortized data transmission cost as a
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result of the corresponding action, and then the decision on whether to transmit or to hold 𝑝𝑘𝑡

depends on the utilities of the two actions. For simplicity and for low control overhead, we only

consider the immediate parent of node 𝑗 when computing the utility of transmitting 𝑝𝑘𝑡. We

will show the goodness of this local approach through competitive analysis later in this chapter

and through testbed-based measurement in Chapter .

In what follows, we first derive the utilities of holding and transmitting a packet, then we

present a scheduling rule that improves the overall utility.

Utility Calculation

For convenience, we define the following notations:

𝐿 : maximum payload length per packet;

𝐸𝑇𝑋𝑗𝑝(𝑙) : expected number of transmissions taken to transport a

packet of length 𝑙 from node 𝑗 to its ancestor 𝑝;

𝑝𝑗 : the parent of node 𝑣𝑗 in the routing tree.

The utilities of holding and transmitting a packet 𝑝𝑘𝑡 at a node 𝑣𝑗 depend on the following

parameters related to traffic pattern:

∙ With respect to 𝑣𝑗 itself and its children:

𝑟𝑙 : expected rate in receiving another packet 𝑝𝑘𝑡′ from a child or locally from an

upper layer;

𝑠𝑙 : expected payload size of 𝑝𝑘𝑡′.

∙ With respect to the parent of 𝑣𝑗:

𝑟𝑝 : expected rate for the parent to transmit another packet 𝑝𝑘𝑡′′ that does not contain

information elements generated or forwarded by 𝑣𝑗 itself;

𝑠𝑝 : expected payload size of 𝑝𝑘𝑡′′.

The utilities of holding and transmitting a packet 𝑝𝑘𝑡 also depend on the following con-

straints posed by timeliness requirement for data delivery as well as limited packet size:

∙ Grace period 𝑡′𝑓 for delivering 𝑝𝑘𝑡: the maximum allowable latency in delivering 𝑝𝑘𝑡

minus the maximum time taken to transport 𝑝𝑘𝑡 from 𝑣𝑗 to the sink without being held at

any intermediate node along the route.
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If 𝑡′𝑓 ≤ 0, 𝑝𝑘𝑡 should be transmitted immediately to minimize the extra delivery latency.

∙ Spare packet space 𝑠′𝑓 of 𝑝𝑘𝑡: the maximum allowable payload length per packet minus

the current payload length of 𝑝𝑘𝑡.

Parameter 𝑠′𝑓 and the size of the packets coming next from an upper layer at 𝑣𝑗 or from

𝑣𝑗’s children determine how much 𝑝𝑘𝑡 will be packed and thus the potential utility of

locally holding 𝑝𝑘𝑡.

In the design and analysis of this chapter, we assume that packet arrival process (i.e.,, 𝑟𝑙, 𝑟𝑝),

packet payload size and spare space (i.e., 𝑠𝑙, 𝑠𝑝, 𝑠′𝑓 ), and grace period (i.e., 𝑡′𝑓 ) are independent

of one another. Then, the utilities of holding and transmitting a packet are calculated as follows.

Utility of holding a packet. When a node 𝑣𝑗 holds a packet 𝑝𝑘𝑡, 𝑝𝑘𝑡 can be packed with

incoming packets from 𝑣𝑗’s children or from an upper layer at 𝑣𝑗 . Therefore, the utility of hold-

ing 𝑝𝑘𝑡 at 𝑣𝑗 is the expected reduction in the amortized cost of transmitting 𝑝𝑘𝑡 after packing

𝑝𝑘𝑡. The utility depends on (a) the expected number of packets that 𝑣𝑗 will receive within 𝑡′𝑓

time (either from a child or locally from an upper layer), and (b) the expected payload size 𝑠𝑙 of

these packets. Given that the expected packet arrival rate is 𝑟𝑙, the expected number of packets

to be received at 𝑣𝑗 within 𝑡′𝑓 time is 𝑡′𝑓𝑟𝑙. Thus, the expected overall size 𝒮 ′
𝑙 of the payload to

be received within 𝑡′𝑓 time is

𝒮 ′
𝑙 =

𝑡′𝑓
𝑡𝑙
𝑠𝑙

Given the spare space 𝑠′𝑓 in the packet 𝑝𝑘𝑡, the expected size 𝒮𝑙 of the payload that can be

packed into 𝑝𝑘𝑡 can be approximated2 as

𝒮𝑙 = min{𝒮 ′
𝑙 , 𝑠

′
𝑓} = min{𝑡

′
𝑓

𝑡𝑙
𝑠𝑙, 𝑠

′
𝑓}

2We use this approximation because it is usually difficult to estimate and store the complete distributions of
random variables in resource-constrained sensor nodes.
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Therefore, the expected amortized cost 𝐴𝐶𝑙 of transporting the packet to the sink 𝑅 after

the anticipated packing can be approximated as2

𝐴𝐶𝑙 =
1

𝐿− 𝑠′𝑓 + 𝒮𝑙

𝐸𝑇𝑋𝑗𝑅(𝐿− 𝑠′𝑓 + 𝒮𝑙)

where (𝐿− 𝑠′𝑓 ) is the payload length of 𝑝𝑘𝑡 before packing.

Since the amortized cost 𝐴𝐶 ′
𝑙 of transporting 𝑝𝑘𝑡 without the anticipated packing is

𝐴𝐶 ′
𝑙 =

1

𝐿− 𝑠′𝑓
𝐸𝑇𝑋𝑗𝑅(𝐿− 𝑠′𝑓 )

the utility 𝑈𝑙 of holding 𝑝𝑘𝑡 is

𝑈𝑙 = 𝐴𝐶 ′
𝑙 − 𝐴𝐶𝑙 (23)

Utility of immediately transmitting a packet. If node 𝑣𝑗 transmits the packet 𝑝𝑘𝑡 imme-

diately to its parent 𝑝𝑗 , the utility comes from the expected reduction in the amortized cost of

packet transmissions at 𝑝𝑗 as a result of receiving the payload carried by 𝑝𝑘𝑡. When 𝑣𝑗 transmits

𝑝𝑘𝑡 to 𝑝𝑗 , the grace period of 𝑝𝑘𝑡 at 𝑝𝑗 is still 𝑡′𝑓 , thus the expected number of packets that do

not contain information elements from 𝑣𝑗 and can be packed with 𝑝𝑘𝑡 at 𝑝𝑗 is 𝑡′𝑓𝑟𝑝, and we use

𝑃𝑝𝑘𝑡 to denote this set of packets. Given the limited payload that 𝑝𝑘𝑡 carries, it may happen that

not every packet in 𝑃𝑝𝑘𝑡 gets packed (to full) via the payload from 𝑝𝑘𝑡. Accordingly, the utility

𝑈𝑝 of immediately transmitting 𝑝𝑘𝑡 is calculated as follows:

∙ If every packet in 𝑃𝑝𝑘𝑡 gets packed to full with payload from 𝑝𝑘𝑡, i.e., 𝑡′𝑓𝑟𝑝(𝐿 − 𝑠𝑝) ≤
𝐿− 𝑠′𝑓 :

Then, the overall utility 𝑈 ′
𝑝 can be approximated as 2

𝑈 ′
𝑝 =

𝑡′𝑓
𝑡𝑝

𝐸𝑇𝑋𝑝𝑗𝑅
(𝑠𝑝)

𝑡′
𝑓
𝑡𝑝

𝑠𝑝

−
𝑡′𝑓
𝑡𝑝

𝐸𝑇𝑋𝑝𝑗𝑅
(𝐿)

𝑡′
𝑓
𝑡𝑝

𝐿

=
𝐸𝑇𝑋𝑝𝑗𝑅

(𝑠𝑝)

𝑠𝑝
− 𝐸𝑇𝑋𝑝𝑗𝑅

(𝐿)

𝐿

(24)

∙ If not every packet in 𝑃𝑝𝑘𝑡 gets packed to full with payload from 𝑝𝑘𝑡, i.e., 𝑡′𝑓𝑟𝑝(𝐿− 𝑠𝑝) >
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𝐿− 𝑠′𝑓 :

In this case, ⌊𝐿−𝑠′𝑓
𝐿−𝑠𝑝

⌋ number of packets are packed to full; if mod(𝐿 − 𝑠′𝑓 , 𝐿 − 𝑠𝑝) > 0,

there is also a packet that gets partially packed with mod(𝐿−𝑠′𝑓 , 𝐿−𝑠𝑝) length of payload

from 𝑝𝑘𝑡. Thus the total number of packets that benefit from the packet transmission is

⌈𝐿−𝑠′𝑓
𝐿−𝑠𝑝

⌉. Denoting mod(𝐿 − 𝑠′𝑓 , 𝐿 − 𝑠𝑝) by 𝑙𝑚𝑜𝑑 and letting 𝐼𝑚𝑜𝑑 be 1 if 𝑙𝑚𝑜𝑑 > 0 and 0

otherwise, then the overall utility 𝑈 ′′
𝑝 can be approximated as2

𝑈 ′′
𝑝 =

⌈𝐿−𝑠′𝑓
𝐿−𝑠𝑝

⌉𝐸𝑇𝑋𝑝𝑗𝑅
(𝑠𝑝)

⌈
𝐿−𝑠′

𝑓
𝐿−𝑠𝑝

⌉𝑠𝑝
−

⌊𝐿−𝑠′𝑓
𝐿−𝑠𝑝

⌋𝐸𝑇𝑋𝑝𝑗𝑅
(𝐿)+𝐼𝑚𝑜𝑑𝐸𝑇𝑋𝑝𝑗𝑅

(𝑠𝑝+𝑙𝑚𝑜𝑑)

⌈
𝐿−𝑠′

𝑓
𝐿−𝑠𝑝

⌉𝑠𝑝+𝐿−𝑠′𝑓

(25)

Therefore, the utility 𝑈𝑝 of immediately transmitting 𝑝𝑘𝑡 to 𝑝𝑗 can be computed as

𝑈𝑝 =

⎧⎨⎩
𝑈 ′
𝑝 if 𝑡′𝑓𝑟𝑝(𝐿− 𝑠𝑝) ≤ 𝐿− 𝑠′𝑓

𝑈 ′′
𝑝 otherwise

(26)

where 𝑈 ′
𝑝 and 𝑈 ′′

𝑝 are defined in Equations (24) and (25) respectively.

Scheduling Rule

Given a packet to be scheduled for transmission, if the probability that the packet is imme-

diately transmitted is 𝑃𝑡 (0 ≤ 𝑃𝑡 ≤ 1), then the expected utility 𝑈𝑡(𝑃𝑡) is

𝑈𝑡(𝑃𝑡) = 𝑃𝑡 × 𝑈𝑝 + (1− 𝑃𝑡)𝑈𝑙

= 𝑈𝑙 + 𝑃𝑡(𝑈𝑝 − 𝑈𝑙)

(27)

where 𝑈𝑝 and 𝑈𝑙 are the utilities of immediately transmitting and locally holding the packet

respectively. To maximize 𝑈𝑡, 𝑃𝑡 should be set according to the following rule:

𝑃𝑡 =

⎧⎨⎩
1 if 𝑈𝑝 > 𝑈𝑙

0 otherwise
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That is, the packet should be immediately transmitted if the utility of immediate transmission is

greater than that of locally holding the packet. For convenience, we call this local, distributed

decision rule tPack (for time-sensitive packing). Interested readers can find the discussion on

how to implement tPack in TinyOS in [39].

Competitive analysis. To understand the performance of tPack as compared with an optimal

online algorithm, we analyze the competitive ratio of tPack. Since it is difficult to analyze the

competitive ratio of non-oblivious online algorithms for arbitrary network and traffic pattern in

the joint optimization and tPack is a non-oblivious algorithm, we only study the competitive

ratio of tPack for complete binary trees where all the leaf nodes generate information elements

according to a common data generation process, and we do not consider the impact of packet

length on link ETX. We denote these special cases of problem ℙ as problem ℙ′. The theoretical

analysis here is to get an intuitive understanding of the performance of tPack; we experimen-

tally analyze the behaviors of tPack with different networks, traffic patterns, and application

requirements through testbed-based measurement in Chapter . We relegate the study on the

competitive ratio of tPack as well as the lower bound on the competitive ratio of non-oblivious

online algorithms for the general problem ℙ as a part of our future work. (Note that the best

results so far on the lower bound of the competitive ratio of joint INP- and latency- optimiza-

tion also only considered the cases where only leaf nodes generate information elements [34],

and these results are for oblivious algorithms and for cases where no aggregation constraint is

considered [34].)

Theorem 8 For problem ℙ′, tPack is min{𝐾,max𝑣𝑗∈𝑉>1

2𝐸𝑇𝑋𝑣𝑗𝑅

2𝐸𝑇𝑋𝑣𝑗𝑅
−𝐸𝑇𝑋𝑝𝑗𝑅

}-competitive, where

𝐾 is the maximum number of information elements that can be packed into a single packet, 𝑉>1

is the set of nodes that are at least two hops away from the sink 𝑅.

Proof For convenience, we denote the optimal packing scheme as 𝑂𝑃𝑇 . By definition, tPack

is at least K-competitive since, considering the packets transmitted by a given node 𝑣𝑖 in the

routing tree, the length of the packet containing an information element 𝑥 in OPT is no more

than 𝐾 times the length of the packet containing 𝑥 in tPack.
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To get a tighter performance bound for tPack, we first analyze the packet length for the

packets transmitted by a leaf node 𝑣𝑗 . Suppose that 𝑣𝑗 transmits a packet 𝑝𝑘𝑡 with length 𝑙𝑝𝑘𝑡

when the latency requirement could have allowed packing another 𝑙′ amount of data with the

packet. In this case, the utility of holding 𝑝𝑘𝑡 is

𝑈𝑙 =
𝐸𝑇𝑋𝑣𝑗𝑅

𝑙𝑝𝑘𝑡
− 𝐸𝑇𝑋𝑣𝑗𝑅

𝑙𝑝𝑘𝑡 + 𝑙′
= 𝐸𝑇𝑋𝑣𝑗𝑅

𝑙′

𝑙𝑝𝑘𝑡(𝑙𝑝𝑘𝑡 + 𝑙′)
(28)

By definition, the utility of immediately transmitting 𝑝𝑘𝑡 is no more than the transmission

utility that would be generated if the information elements of 𝑝𝑘𝑡 are all packed into another

packet 𝑝𝑘𝑡∗ at 𝑝𝑗 , the parent of 𝑣𝑗 , that was transmitted to 𝑝𝑗 from its the child other than 𝑣𝑗 .

Given that the routing tree is a complete binary tree and that the leaf nodes generate informa-

tion elements according to a common data generation process, the lengths of packets that are

transmitted along links at the same tree level are expected to be the same. Thus we can assume

that the payload length of 𝑝𝑘𝑡∗ is also 𝑙𝑝𝑘𝑡. Therefore, the utility of immediately forwarding 𝑝𝑘𝑡

at 𝑣𝑗 satisfy the following inequality

𝑈𝑝 ≤
𝐸𝑇𝑋𝑝𝑗𝑅

𝑙𝑝𝑘𝑡
− 𝐸𝑇𝑋𝑝𝑗𝑅

𝑙𝑝𝑘𝑡 + 𝑙𝑝𝑘𝑡
=

𝐸𝑇𝑋𝑝𝑗𝑅

2𝑙𝑝𝑘𝑡
(29)

By the design of tPack, we know that 𝑈𝑙 < 𝑈𝑝. From (28) and (29), thus we have

𝐸𝑇𝑋𝑣𝑗𝑅
𝑙′

𝑙𝑝𝑘𝑡(𝑙𝑝𝑘𝑡 + 𝑙′)
<

𝐸𝑇𝑋𝑝𝑗𝑅

2𝑙𝑝𝑘𝑡

Thus

𝑙′ <
𝑎

2− 𝑎
𝑙𝑝𝑘𝑡 (30)

where 𝑎 =
𝐸𝑇𝑋𝑝𝑗𝑅

𝐸𝑇𝑋𝑣𝑗𝑅
.

Due to the constraint imposed by application’s requirement on the timeliness of data de-

livery, we know that the length of the packet, denoted by 𝑙𝑜𝑝𝑡, that contains the information
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elements of 𝑝𝑘𝑡 in OPT is no more than 𝑙𝑝𝑘𝑡 + 𝑙′. Then from (30), we know that

𝑙𝑜𝑝𝑡 ≤ 𝑙𝑝𝑘𝑡 + 𝑙′ <
2

2− 𝑎
𝑙𝑝𝑘𝑡 =

2𝐸𝑇𝑋𝑣𝑗𝑅

2𝐸𝑇𝑋𝑣𝑗𝑅 − 𝐸𝑇𝑋𝑝𝑗𝑅

𝑙𝑝𝑘𝑡

That is,
𝑙𝑜𝑝𝑡
𝑙𝑝𝑘𝑡

<
2𝐸𝑇𝑋𝑣𝑗𝑅

2𝐸𝑇𝑋𝑣𝑗𝑅 − 𝐸𝑇𝑋𝑝𝑗𝑅

(31)

For a node 𝑣𝑖 that is not a leaf node, the same analysis applies. Given a packet 𝑝𝑘𝑡′ of length

𝑙𝑝𝑘𝑡′ that is transmitted by 𝑣𝑖 when the latency requirement could have allowed packing another

𝑙′′ amount of data with 𝑝𝑘𝑡′, we have

𝑙′′ <
𝑎′

2− 𝑎′
𝑙𝑝𝑘𝑡′ (32)

where 𝑎′ =
𝐸𝑇𝑋𝑝𝑖𝑅

𝐸𝑇𝑋𝑣𝑖𝑅
. Moreover, the length of the packet, denoted by 𝑙𝑜𝑝𝑡′ , that contains the

information elements of 𝑝𝑘𝑡′ in OPT is no more than 𝑙𝑝𝑘𝑡′ + 𝑙′′; this is due to the following

reasons:

∙ If a packet 𝑝𝑘𝑡𝑚𝑎𝑥 contains 𝑙𝑝𝑘𝑡′ + 𝑙′′ amount of data payload without constrained by

packet size limit, then the spare time of 𝑝𝑘𝑡𝑚𝑎𝑥 is 0.

∙ Consider a packet 𝑝𝑘𝑡′′ transmitted by 𝑣𝑖 in OPT whose length is 𝑙𝑜𝑝𝑡′ . If 𝑣𝑖 holds 𝑝𝑘𝑡′′

until its spare time is 0 (instead of transmitting 𝑝𝑘𝑡′′) in OPT, the resulting length of the

new packet 𝑝𝑘𝑡′′0 is no more than 𝑙𝑝𝑘𝑡′ + 𝑙′′. This is because data flows faster toward the

sink in tPack as compared with OPT, and 𝑝𝑘𝑡′ reaches 𝑣𝑖 earlier than 𝑝𝑘𝑡′′ does.

∙ Therefore, 𝑙𝑜𝑝𝑡′ is no more than the length of 𝑝𝑘𝑡′′0, which is no more than 𝑙𝑝𝑘𝑡′ + 𝑙′′. Thus,

𝑙𝑜𝑝𝑡′ ≤ 𝑙𝑝𝑘𝑡′ + 𝑙′′

Therefore, we have
𝑙𝑜𝑝𝑡′

𝑙𝑝𝑘𝑡′
<

2𝐸𝑇𝑋𝑣𝑖𝑅

2𝐸𝑇𝑋𝑣𝑖𝑅 − 𝐸𝑇𝑋𝑝𝑖𝑅

(33)

From (31) and (33), we know that tPack is at least 𝑂(max𝑣𝑗∈𝑉>1

2𝐸𝑇𝑋𝑣𝑗𝑅

2𝐸𝑇𝑋𝑣𝑗𝑅
−𝐸𝑇𝑋𝑝𝑗𝑅

)-competitive.

Therefore, tPack is min{𝐾,max𝑣𝑗∈𝑉>1

2𝐸𝑇𝑋𝑣𝑗𝑅

2𝐸𝑇𝑋𝑣𝑗𝑅
−𝐸𝑇𝑋𝑝𝑗𝑅

}-competitive for problem ℙ′.
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From Theorem 8, we see that tPack is 2-competitive if every link in the network is of equal

ETX value.

Implementation

From the discussion in Chapter , a node 𝑣𝑗 needs to obtain the following parameters when

calculating the utilities of holding and transmitting a packet:

∙ On routing tree: 𝐸𝑇𝑋𝑗𝑅(𝑙), 𝑝𝑗 , and 𝐸𝑇𝑋𝑝𝑗𝑅(𝑙);

∙ On traffic pattern: 𝑟𝑙, 𝑠𝑙, 𝑟𝑝, 𝑠𝑝, and 𝐾.

Parameters related to routing tree can be provided by the routing component in a given

system platform. Given a link ⟨𝑗, 𝑝⟩, 𝐸𝑇𝑋𝑗𝑝(𝑙) as a function of packet length 𝑙 can be estimated

using 𝐸𝑇𝑋𝑗𝑝(1), the ETX value of transmitting a packet of one unit length, as follows:

𝐸𝑇𝑋𝑗𝑝(𝑙) = 1/(
1

𝐸𝑇𝑋𝑗𝑝(1)
)𝑙 = 𝐸𝑇𝑋𝑗𝑝(1)

𝑙

Accordingly, the routing component only needs to estimate 𝐸𝑇𝑋𝑗𝑝(1) instead of the ETX

values for packets of arbitrary length.

For parameters related to traffic pattern, 𝑣𝑗 can estimate by itself the parameters 𝑟𝑙 and 𝑠𝑙,

and 𝐾 is readily available and fixed for each specific platform. To enable each node 𝑣𝑗 to obtain

parameters 𝑟𝑝 and 𝑠𝑝, every node 𝑖 in the network estimates the expected rate 𝑟𝑖 to transmit two

consecutive packets at 𝑖 itself and the expected size 𝑠𝑖 of these packets. Then, every node 𝑖

shares with its neighbors the parameters 𝑟𝑖 and 𝑠𝑖 by piggybacking these information onto data

packets or other control packets in the network. When a node 𝑣𝑗 overhears parameter 𝑟𝑝𝑗 and

𝑠𝑝𝑗 from its parent 𝑝𝑗 , 𝑣𝑗 can approximate 𝑟𝑝 and 𝑠𝑝 with 𝑟𝑝𝑗 − 𝑟𝑗
𝑠𝑗
𝑠𝑝𝑗

and 𝑠𝑝𝑗 respectively. The

derivation is as follows.

Approximation of 𝑟𝑝 and 𝑠𝑝: Since information elements generated or forwarded by the chil-

dren of node 𝑝𝑗 are treated in the same manner (without considering where they are from), the

expected size of the packet being transmitted by 𝑝𝑗 does not depend on whether the packet

contains information elements generated or forwarded by 𝑣𝑗 . Thus, 𝑣𝑗 can simply regard 𝑠𝑝𝑗 as
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𝑠𝑝, the expected size of the packet transmitted by 𝑝𝑗 that does not contain information elements

coming from 𝑣𝑗 .

Now we derive 𝑟𝑝 as follows. Since the amount of payload transmitted by 𝑝𝑗 per unit time is

𝑟𝑝𝑗𝑠𝑝𝑗 and the amount of payload transmitted by 𝑣𝑗 is 𝑟𝑗𝑠𝑗 per unit time, the amount of payload

𝑙𝑝 that are transmitted by 𝑝𝑗 but are not from 𝑣𝑗 per unit time is calculated as: 𝑙𝑝 = 𝑟𝑝𝑗𝑠𝑝𝑗 −𝑟𝑗𝑠𝑗 .

Thus, the expected rate 𝑟𝑝 that 𝑝𝑗 transmits packets that do not contain information elements

from 𝑣𝑗 is calculated as: 𝑟𝑝 = 𝑙𝑝/𝑠𝑝𝑗 = 𝑟𝑝𝑗 − 𝑟𝑗
𝑠𝑗
𝑠𝑝𝑗

. Therefore, the expected interval 𝑡𝑝 between

𝑝𝑗 transmitting two consecutive packets that do not contain information elements from 𝑣𝑗 is as

follows: 𝑡𝑝 = 1
𝑟𝑝

=
𝑡𝑝𝑗×𝑡𝑗×𝑠𝑝𝑗

𝑡𝑗×𝑠𝑝𝑗−𝑡𝑝𝑗×𝑠𝑗
.
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CHAPTER 6

PERFORMANCE EVALUATION

To characterize the impact of packet packing and its joint optimization with data deliv-

ery timeliness, we experimentally evaluate the performance of tPack in this chapter. We first

present the experimentation methodology and then the measurement results.

Methodology

Testbed. We use the NetEye wireless sensor network testbed at Wayne State University

[3]. NetEye is deployed in an indoor office as shown in Figure 11. We use a 10 × 13 grid

Figure 11: NetEye wireless sensor network testbed

of TelosB motes in NetEye, where every two closest neighboring motes are separated by 2

feet. Out of the 130 motes in NetEye, we randomly select 120 motes (with each mote being

selected with equal probability) to form a random network for our experimentation. Each of

these TelosB motes is equipped with a 3dB signal attenuator and a 2.45GHz monopole antenna.

In our measurement study, we set the radio transmission power to be -25dBm (i.e., power

level 3 in TinyOS) such that multihop networks can be created. We also use channel 26 of the

CC2420 radio to avoid external interference from sources such as the campus WLANs. We

use the TinyOS collection-tree-protocol (CTP) [16] as the routing protocol to form the routing

structure, and we use the Iowa’s Timesync protocol [2] for network wide time synchronization.

Protocols studied. To understand the impact of packet packing and its joint optimization

with data delivery timeliness, we comparatively study the following protocols:3

∙ noPack: information elements are delivered without being packed in the network.

3We use the terms protocols, algorithms, and decision rules interchangeably in this paper.
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∙ simplePack: information elements are packed if they happen to be buffered in the same

queue, but there is not packing-oriented scheduling.

∙ SL: the spread latency algorithm proposed in [8], where the spare time of an informa-

tion element is evenly spent at each hop from its source to the sink without considering

specific network conditions (e.g., network-wide traffic pattern). SL was proposed with

total aggregation in mind without considering aggregation constraints such as maximum

packet size.

∙ CC: the common clock algorithm proposed in [8], where the spare time of an information

element is only partly spent at the node where it is generated. Same as SL, CC was

proposed with total aggregation in mind.

∙ tPack: the packing- and timeliness-oriented scheduling algorithm that maximizes the

local utility at each node, as we discussed in Chapter . (We have also evaluated another

version of tPack, denoted by tPack-2hop, where the forwarding utility 𝑈𝑝 considers both

the parent node and the parent’s parent; we find that tPack-2hop does not bring significant

improvement over tPack while introducing higher overhead and complexity, thus our

discussion here only focuses on tPack.)

We have implemented, in TinyOS [5], a system library which includes all the above proto-

cols. The implementation takes 40 bytes of RAM (plus the memory required for regular packet

buffers) and 4,814 bytes of ROM.

Performance metrics. For each protocol we study, we evaluate their behavior based on the

following metrics:

∙ Packing ratio: number of information elements carried in a packet;

∙ Delivery reliability: percentage of information elements correctly received by the sink;

∙ Delivery cost: number of transmissions required for delivering an information element

from its source to the sink;
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∙ Deadline catching ratio: out of all the information elements received by the sink, the

percentage of them that are received before their deadlines;

∙ Latency jitter: variability of the time taken to deliver information elements from the same

source node, measured by the coefficient-of-variation (COV) [22] of information delivery

latency.

Traffic pattern. To experiment with different sensornet scenarios, we use both periodic data

collection traffic and event detection traffic trace as follows:

∙ 𝐷3: each source node periodically generates 50 information elements with an inter-

element interval, denoted by Δ𝑟, uniformly distributed between 500ms and 3s; this is to

represent high traffic load scenarios.

∙ 𝐷6: same as 𝐷3 except that Δ𝑟 is uniformly distributed between 500ms and 6s; this is

to represent relatively low traffic load scenarios.

∙ 𝐷9: same as 𝐷3 except that Δ𝑟 is uniformly distributed between 500ms and 9s.

∙ 𝐸𝑙𝑖𝑡𝑒𝑠: an event traffic where a source node generates one packet based on the Lites [1]

sensornet event traffic trace.

To understand the impact of the timeliness requirement of data delivery, we experiment with

different latency requirements. For periodic traffic, we consider maximum allowable latency in

delivering information elements that is 1, 3, and 5 times the average element generation period,

and we denote them by 𝐿1, 𝐿3, and 𝐿5 respectively; for event traffic, we consider maximum

allowable latency that is 2s, 4s, or 6s, and we denote them by 𝐿2′, 𝐿4′, and 𝐿6′ respectively. Out

of the 120 motes selected for experimentation, we let the mote closest to a corner of NetEye

be the sink node, and the other mote serves as a traffic source if its node ID is even. For

convenience, we regard a specific combination of source traffic model and latency requirement

a traffic pattern. Thus we have 8 traffic patterns in total. To gain statistical insight, we repeat

each traffic pattern 20 times. Note that, in each traffic pattern, all the information elements
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Figure 12: Packing ratio: 𝐷3

have the same maximum allowable latency. In our implementation, each information element

is 16-byte long, and the TelosB motes allow for aggregating up to 7 information elements into

a single packet (i.e., 𝐾 = 7).

Measurement Results

In what follows, we first present the measurement results for periodic traffic patterns 𝐷3, 𝐷6,

and 𝐷9, then we discuss the case of event traffic pattern 𝐸𝑙𝑖𝑡𝑒𝑠. In most figures of this chapter,

we present the means/medians and their 95% confidence intervals for the corresponding metrics

such as the packing ratio, delivery reliability, delivery cost, deadline catching ratio, and the

latency jitter.4

Periodic Data Traffic

For the periodic traffic pattern 𝐷3, Figures 12-16 show the packing ratio, delivery relia-

bility, delivery cost, deadline catching ratio, and latency jitter in different protocols. tPack

tends to enable higher degree of packet packing (i.e., larger packing ratio) than other protocols
4The distributions for delivery reliability and latency jitter are not symmetric, thus we use medians instead of

means to summarize their properties [22].



49

Figure 13: Delivery reliability: 𝐷3

Figure 14: Delivery cost: 𝐷3



50

Figure 15: Deadline catching ratio: 𝐷3

Figure 16: Latency jitter: 𝐷3
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except the CC protocol. The increased packing in 𝑡𝑃𝑎𝑐𝑘 reduces channel contention and thus

reduces the probability of packet transmission collision, which improves data delivery reliabil-

ity. The reduced probability of transmission collision and the increased number of information

elements carried per packet in 𝑡𝑃𝑎𝑐𝑘 in turn reduces delivery cost, since there are fewer num-

ber of packet retransmissions as well as fewer number of packets generated. Note that the low

delivery reliability in simplePack is due to intense channel contention.

Exceptions to the above general observation happen in the case of maximum allowable

latency 𝐿1 or when comparing tPack with CC. In the first case, the packing ratio in tPack is

lower than that in SL, but tPack still achieves much higher delivery reliability (i.e., by more

than 40%) and much lower delivery cost (i.e., by a factor of more than 3). This is because the

packing ratio in SL is too high such that, in the presence of high wireless channel contention

due to the high traffic load of 𝐷3 and the stringent real-time requirement of 𝐿1, the resulting

long packet length leads to higher packet error rate and lower packet delivery reliability (as

shown in Figure 13). The routing protocol CTP adapts to the higher packet error rate in SL,

and this leads to longer routes and larger routing hops in SL. This can be seen from Figure 17

which shows the histogram of routing hop counts in different protocols. The maximum hop

count in tPack is 4, whereas the hop count can be up to 9 in SL. Together, the higher packet

error rate and the longer routes in SL lead to larger delivery cost in SL as compared with tPack.

Similar arguments apply to the case when comparing tPack with CC. From these data on the

benefits of tPack in comparison with SL and CC, we can see the importance of adapting to

network conditions and data aggregation constraints in in-network processing. Note that similar

arguments also explain the phenomenon where SL has higher packing ratio than simplePack

but lower delivery reliability and higher delivery cost under all latency settings of 𝐷3 traffic.

Figure 13 also shows that tPack improves data delivery reliability even when the allowable

latency in data delivery is small (e..g, in the case of 𝐿1) where the inherent probability for

packets to be packed tends to be small. Therefore, tPack can be used for real-time applications

where high data delivery reliability is desirable. Figure 12 shows that the packing ratio in tPack

is close to 4 except for the case of 𝐿1 where 1) too much packing is undesirable as discussed



52

Figure 17: Histogram of routing hop count: 𝐷3 with maximum allowable latency 𝐿1

earlier and 2) the packing probability is significantly reduced by the limited probability for

a node to wait due to stringent timeliness requirement. Our offline analysis shows that the

optimal packing ratio is ∼5 for the traffic patterns 𝐷3-𝐿3 and 𝐷3-𝐿5; thus tPack achieves a

packing ratio very close to the optimal, which corroborates our analytical result in Theorem 8.

Figure 15 shows the deadline catching ratio in deadline-aware data aggregation schemes

tPack, SL, and CC. Though the deadline catching ratio of all the three protocols are close to

1, the catching ratio of tPack is the highest and is greater than 0.99 in all cases. The slightly

higher deadline catching ratio in tPack is a result of its online adaptation of packet holding

time at each hop according to in-situ channel and traffic conditions along the path. As a re-

sult of the properly controlled packet packing, the reduced channel contention and improved

packet delivery reliability in tPack also help enable lower performance variability. For instance,

Figure 16 shows the latency jitter in different protocols, and we see that the jitter tends to be

the lowest in tPack, especially when the real-time requirement is stringent (e.g., in 𝐿1 and

𝐿3). These properties are desirable in cyber-physical-system (CPS) sensornets where real-time
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Figure 18: Packing ratio: 𝐷6

sensing and control require predictable data delivery performance (e.g., in terms of low latency

jitter), especially in the presence of potentially unpredictable, transient perturbations.

Figures 18-22 and Figures 23-27 show the measurement results for periodic traffic patterns

𝐷6 and 𝐷9 respectively. We see that, in terms of relative protocol performance, the overall

trends in 𝐷6 and 𝐷9 are similar to those in 𝐷3. For instance, with stringent real-time require-

ment in 𝐿1, SL achieves a lower delivery reliability and a higher delivery cost than tPack even

though the packing ratio tends to be higher in SL. Due to the reduced traffic load and thus the

reduced wireless channel contention and collision, however, the delivery reliability of noPack,

simplePack, and SL is also relatively high compared with their delivery reliability in 𝐷3.

Note that, in [8], CC is shown to have a much higher competitive ratio than SL through

theoretical analysis. From our measurement study, however, we see that the performance of

𝐶𝐶 is not always better than SL. For instance, CC has a lower delivery reliability and a higher

delivery cost than SL in 𝐷6 − 𝐿5. This seemingly discrepancy is due to the fact that the

theoretical analysis of [8] does not consider the limit of data aggregation capacity, nor does it



54

Figure 19: Delivery reliability: 𝐷6

Figure 20: Delivery cost: 𝐷6
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Figure 21: Deadline catching ratio: 𝐷6

Figure 22: Latency jitter: 𝐷6
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Figure 23: Packing ratio: 𝐷9

Figure 24: Delivery reliability: 𝐷9
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Figure 25: Delivery cost: 𝐷9

Figure 26: Deadline catching ratio: 𝐷9
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Figure 27: Latency jitter: 𝐷9

consider wireless link unreliability and interference in scheduling.

Surprisingly, Figures 18-20 show that, for the traffic pattern 𝐷6, simplePack introduces

higher delivery cost than noPack does even though the packing ratio and the end-to-end de-

livery reliability are higher in simplePack. One reason for this is that, partially due to the

increased packet length in simplePack, the link reliability in simplePack is lower than that in

noPack as shown in Figure 28.5 The routing protocol CTP adapts to the lower link reliability in

simplePack and introduces longer routing hop length, which can be seen from Figure 29 which

shows the histogram of routing hop counts for noPack and simplePack in traffic pattern 𝐷6-𝐿1.

Together, the lower link reliability and the longer routes in simplePack introduce larger infor-

mation delivery cost when compared with noPack in 𝐷6. This observation is also corroborated

by the detailed analysis of the cost (e.g., mean number of transmissions) taken to deliver an

information element. For instance, Figure 30 shows the mean cost of delivering an information

5The reason why simplePack still has higher end-to-end information element delivery reliability despite its
lower link reliability is because each packet delivered in simplePack carries more information elements due to the
higher packing ratio.
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Figure 28: Link reliability: 𝐷6

Figure 29: Histogram of routing hop count: 𝐷6 with maximum allowable latency 𝐿1
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Figure 30: Per-element delivery cost vs. geographic distance: 𝐷6 with maximum allowable
latency 𝐿1

element from a node at different geographic distances (in terms of the number of grid hops)

from the base station for the traffic pattern 𝐷6-𝐿1. (Similar phenomena are observed for other

traffic patterns.) We see that, for most of the cases, the per-element delivery cost is higher in

simplePack. Note that similar arguments explain why simplePack has higher delivery cost

than noPack in traffic pattern 𝐷9 and why SL also has higher delivery cost than noPack in sev-

eral cases (e.g., for traffic pattern 𝐷6-𝐿1). In view with the consistently better performance in

tPack, these observations demonstrate again the importance of considering network conditions

and data aggregation constraints in in-network processing.

Event Traffic

Figures 31-35 show the measurement results for event traffic pattern 𝐸𝑙𝑖𝑡𝑒𝑠. The overall

trend on the relative protocol performance is similar to that in the periodic traffic patterns 𝐷3,

𝐷6, and 𝐷9. Even though the delivery reliability tends to be high for all protocols, tPack still

achieves lower delivery cost and latency jitter, as well as 100% deadline catching ratio.
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Figure 31: Packing ratio: 𝐸𝑙𝑖𝑡𝑒𝑠

Figure 32: Delivery reliability: 𝐸𝑙𝑖𝑡𝑒𝑠
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Figure 33: Delivery cost: 𝐸𝑙𝑖𝑡𝑒𝑠

Figure 34: Deadline catching ratio: 𝐸𝑙𝑖𝑡𝑒𝑠
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Figure 35: Latency jitter: 𝐸𝑙𝑖𝑡𝑒𝑠
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CHAPTER 7

RELATED WORK

In-network processing (INP) has been well studied in sensornets, and many INP methods

have been proposed for query processing [31, 40, 32, 33, 10, 9, 28, 18] and general data col-

lection [11, 12, 25, 29, 35, 42]. When controlling spatial and temporal data flow to enhance

INP, however, these methods did not consider application requirements on the timeliness of

data delivery. As a first step toward understanding the interaction between INP and applica-

tion QoS requirements, our study has shown the benefits as well as the challenges of jointly

optimizing INP and QoS from the perspective of packet packing. As sensornets are increas-

ingly being deployed for mission-critical tasks, it becomes important to address the impact of

QoS requirements on general INP methods other than packet packing, which opens interesting

avenues for further research.

As a special INP method, packet packing has also been studied for sensornets as well as

general wireless and wired networks, where mechanisms have been proposed to adjust the de-

gree of packet packing according to network congestion level [17, 21], to address MAC/link

issues related to packet packing [27, 30, 26], to enable IP level packet packing [24], and to

pack periodic data frames in automotive applications [36]. These works have focused on is-

sues in local, one-hop networks without considering requirements on maximum end-to-end

packet delivery latency in multi-hop networks. With the exception of [36], these works did not

focus on scheduling packet transmissions to improve the degree of packet packing, and they

have not studied the impact of finite packet size either. Saket et al. [36] studied packet pack-

ing in single-hop controller-area-networks (CAN) with finite packet size. Our work addresses

the open questions on the complexity and protocol design issues for jointly optimizing packet

packing and data delivery timeliness in multi-hop wireless sensornets.

Most closely related to our work are [8] where the authors studied the issue of optimizing

INP under the constraint of end-to-end data delivery latency. But these studies did not consider

aggregation constraints and instead assumed total aggregation where any arbitrary number of

information elements can be aggregated into one single packet. These studies did not eval-
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uate the impact of joint optimization on data delivery performance either. Our work focuses

on settings where packet size is finite, and we show that aggregation constraints (in particular,

maximum packet size and re-aggregation tolerance) significantly affect the problem complexity

and protocol design. Using a high-fidelity sensornet testbed, we also systematically examine

the impact of joint optimization on packet delivery performance in multi-hop wireless net-

works. By showing that tPack performs better than the algorithm SL and CC [8], our testbed

based measurement results also demonstrate the benefits of considering realistic aggregation

constraints in the joint optimization.

Solis et al. [37] also considered the impact that the timing of packet transmission has on data

aggregation, and the problem of minimizing the sum of data transmission cost and delay cost

has been considered in [34] and [23]. These studies also assumed total aggregation, and they

did not consider hard real-time requirements on maximum end-to-end data delivery latency.

Ye et al. [41] considered the local optimal stopping rule for data sampling and transmission in

distributed data aggregation. It did not consider hard real-time requirement either, and it did not

study network-wide coordination and the limit of data aggregation. Yu et al. [43] studied the

latency-energy tradeoff in sensornet data gathering by adapting radio transmission rate; it did

not study the issue of scheduling data transmission to improve the degree of data aggregation.
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CHAPTER 8

CONCLUDING REMARKS

Through both theoretical and experimental analysis, we examine the complexity and impact

of jointly optimizing packet packing and the timeliness of data delivery. We find that aggre-

gation constraints (in particular, maximum packet size and re-aggregation tolerance) affect the

problem complexity more than network and traffic properties do, which suggest the importance

of considering aggregation constraints in the joint optimization. We identify conditions for the

joint optimization to be strong NP-hard and conditions for it to be solvable in polynomial time.

For cases when it is polynomial-time solvable, we solve the problem by transforming it to the

maximum weighted matching problem in interval graphs; for cases when it is strong NP-hard,

we prove that there is no polynomial-time approximation scheme (PTAS) for the problem. We

also develop a local, distributed online protocol tPack for maximizing the local utility of each

node, and we prove the competitiveness of the protocol with respect to optimal solutions. Our

testbed-based measurement study also corroborates the importance of QoS- and aggregation-

constraint aware optimization of packet packing.

While this paper has extensively studied the complexity, algorithm design, and impact of

jointly optimizing packet packing and data delivery timeliness, there are still a rich set of open

problems. Even though we have analyzed the competitiveness of tPack for non-trivial scenarios

and this has given us insight into the behavior of tPack, it remains an open question on how to

characterize in a closed form the competitiveness of tPack and non-oblivious online algorithms

in broader contexts. The analytical and algorithmic design mechanisms developed for packet

packing may well be extensible to address other in-network processing methods such as data

fusion, and a detailed study of this will help us better understand the structure of the joint

optimization problem and will be interesting future work to pursue. We have focused on the

scheduling aspect of the joint optimization, and we are able to use mathematical tools such as

interval graphs to model the problem; on the other hand, how to mathematically model and

analyze the impact of the joint optimization on spatial data flow is still an open question and

is beyond the scope of most existing network flow theory, thus it will be interesting to explore
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new approaches to modeling and solving the joint optimization problem.
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Towards understanding the complexity of joint QoS and in-network processing (INP) op-

timization in sensornets, we study the problem of jointly optimizing packet packing and the

timeliness of data delivery. We identify the conditions under which the problem is strong

NP-hard, and we find that the problem complexity heavily depends on aggregation constraints

instead of network and traffic properties. For cases when the problem is NP-hard, we show that

there is no polynomial-time approximation scheme (PTAS); for cases when the problem can

be solved in polynomial time, we design polynomial time, offline algorithms for finding the

optimal packet packing schemes. We design a distributed, online protocol tPack that schedules

packet transmissions to maximize the local utility of packet packing at each node. We eval-

uate the properties of tPack in NetEye testbed. We find that jointly optimizing data delivery

timeliness and packet packing and considering real-world aggregation constraints significantly

improve network performance.
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