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Abstract—As sensornets are increasingly being deployed in
mission-critical applications, it becomes imperative that we
consider application QoS requirements in in-network processing
(INP). Towards understanding the complexity of joint QoS and
INP optimization, we study the problem of jointly optimizin g
packet packing (i.e., aggregating shorter packets into longer ones)
and the timeliness of data delivery. We identify the conditions
under which the problem is strong NP-hard, and we �nd that the
problem complexity heavily depends on aggregation constraints
(in particular, maximum packet size and re-aggregation toler-
ance) instead of network and traf�c properties. For cases when
the problem is NP-hard, we show that there is no polynomial-time
approximation scheme (PTAS); for cases when the problem can
be solved in polynomial time, we design polynomial time, of�ine
algorithms for �nding the optimal packet packing schemes. To
understand the impact of joint QoS and INP optimization on
sensornet performance, we design a distributed, online protocol
tPack that schedules packet transmissions to maximize the local
utility of packet packing at each node. Using a testbed of
130 TelosB motes, we experimentally evaluate the properties of
tPack. We �nd that jointly optimizing data delivery timelin ess
and packet packing and considering real-world aggregationcon-
straints signi�cantly improve network performance. Our �n dings
shed light on the challenges, bene�ts, and solutions of joint QoS
and INP optimization, and they also suggest open problems for
future research.

Index Terms—Wireless network, sensor network, real-time,
packet packing, in-network processing

I. I NTRODUCTION

After the past decade of active research and �eld trials,
wireless sensor networks (which we callsensornets here-
after) have started penetrating into many areas of science,
engineering, and our daily life. They are also envisioned
to be an integral part of cyber-physical systems such as
those for alternative energy, transportation, and healthcare.
In supporting mission-critical, real-time, closed loop sensing
and control, CPS sensornets represent a signi�cant departure
from traditional sensornets which usually focus on open-loop
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sensing, and it is critical to ensure messaging quality (e.g.,
timeliness of data delivery) in CPS sensornets. The stringent
application requirements in CPS make it necessary to rethink
about sensornet design, and one such problem is in-network
processing.

For resource constrained sensornets, in-network processing
(INP) improves energy ef�ciency and data delivery perfor-
mance by reducing network traf�c load and thus channel
contention. Over the past years, many INP methods have been
proposed for query processing [1], [2], [3], [4] and general
data collection [5], [6], [7], [8], [9], [10]. Not focusing on
mission-critical sensornets, however, these works have mostly
ignored the timeliness of data delivery when designing INP
mechanisms. Recently, Becchettiet al: [11] and Oswaldet al:
[12] examined the issue of data delivery latency in in-network
processing. Theoretical in nature, these studies assumedtotal
aggregationwhere any arbitrary number of information ele-
ments (e.g., reports after an event detection) can be aggregated
into one single packet, which may well be infeasible in many
practical settings. Thus, the interaction between speci�c, real-
world INP methods and data delivery timeliness remains a
largely unexplored issue in sensornet systems. This is an
important issue because 1) it affects the ef�ciency and quality
of real-time embedded sensing and control, and 2) as we will
show later in the paper, data aggregation constraints (e.g.,
aggregation capacity limit and re-aggregation tolerance)affect,
to a greater extent than network and traf�c properties, the
complexity and the protocol design in jointly optimizing INP
and the timeliness of data delivery.

Towards understanding the interaction between INP and
data delivery latency in foreseeable real-world sensornet
deployments, we focus on a widely used, application-
independent INP method —packet packingwhere multiple
short packets are aggregated into a single long packet [13],
[14]. In sensornets (especially those for real-time sensing and
control), an information element from each sensor is usually
short, for instance, less than 10 bytes [15], [1]. Yet the header
overhead of each packet is relatively high in most sensornet
platforms, for instance, up to 31 bytes at the MAC layer alone
in IEEE 802.15.4 based networks. It is also expected that
more header overhead will be introduced at other layers (e.g.,
routing layer) as we standardize sensornet protocols such as
in the effort of the IETF working groups 6LowPAN [16] and
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ROLL [17]. Besides header overhead, MAC coordination also
introduces non-negligible overhead in wireless networks [14].
If we only transmit one short information element in each
packet transmission, the high overhead in packet transmission
will signi�cantly reduce the network throughput; this is es-
pecially the case for high speed wireless networks such as
IEEE 802.15.4a ultrawideband (UWB) networks. Fortunately,
the maximum size of packet payload is usually much longer
than that of each information element, for instance, 128 bytes
per MAC frame in 802.15.4. Therefore, we can aggregate
multiple information elements into a single packet to reduce
the amortized overhead of transmitting each element. Packet
packing also reduces the number of packets contending for
channel access, hence it reduces the probability of packet
collision and improves information delivery reliability,as we
will show in Section VI. The bene�ts of packet packing have
also been recognized by the IETF working groups 6LowPAN
and ROLL.

Unlike total aggregation assumed in [11] and [12], the
number of information elements that can be aggregated into a
single packet is constrained by the maximum packet size, thus
we have to carefully schedule information element transmis-
sions so that the degree of packet packing (i.e., the amount of
sensing data contained in packets) can be maximized without
violating application requirement on the timeliness of data
delivery. As a �rst step toward understanding the complexity of
jointly optimizing INP and QoS with aggregation constraints,
we analyze the impact that aggregation constraints have on the
computational complexity of the problem, and we prove the
following:

² When a packet can aggregate three or more information
elements, the problem is strong NP-hard, and there is no
polynomial-time approximation scheme (PTAS).

² When a packet can only aggregate two information ele-
ments, the complexity depends on whether two elements
in a packet can be separated and re-packed with other
elements on their way to the sink: if the elements in a
packet can be separated, the problem is strong NP-hard
and there is no PTAS for the problem; otherwise it can
be solved in polynomial time by modeling the problem
as a maximum weighted matching problem in an interval
graph.

² The above conclusions hold whether or not the routing
structure is a tree or a linear chain, and whether or not
the information elements are of equal length.

Besides shedding light on the complexity and protocol design
of jointly optimizing data delivery timeliness and packet pack-
ing (as well as other INP methods), these �ndings incidentally
answer several open questions on the complexity of batch-
process scheduling in interval graphs [18].

To understand the impact of jointly optimizing packet
packing and data delivery timeliness, we design a distributed,
online protocoltPack that schedules packet transmissions to
maximize the local utility of packet packing at each node
while taking into account the aggregation constraint imposed
by the maximum packet size. Using a testbed of 130 TelosB
motes, we experimentally evaluate the properties of tPack.We

TABLE I
NOTATIONS USED INSECTIONSII & III

Common notations
K maximum number of information elements allowed

in a packet
ET X v i v j (l ) expected number of transmissions taken to success-

fully deliver a packet of lengthl along link (vi ; vj )
tv i vk (l ) maximum time taken to deliver a packet of lengthl

from vi to vk in the absence of packet packing and
packing-oriented scheduling
Notations used in Section II only

R root of a directed collection tree
x an information element
vx the node wherex is generated
lx length of x
r x time whenx is generated
dx deadline of deliveringx to R
sx spare time in deliveringx

[r x ; dx ] lifetime of x
Notations used in Section III only

n number of variables in a SAT instance
m number of clauses in a SAT instance
X j j th variable of a SAT instance
Ci i th clause of a SAT instance
x j

i information element corresponding to the variable
X j in a clauseCi

[r j
i ; dj

i ] lifetime of x j
i

ax j
k kth auxiliary information element for variableX j

[r j
ax k ; dj

ax k ] lifetime of ax j
k

zi information element generated by nodevc
i

[r i ; di ] lifetime of zi
t1 transmission time from any leaf node to its parent
t2 transmission time from any nodevj to nodev
t3 transmission time from nodev to nodes
t4 transmission time from any nodevc

i to nodev

�nd that jointly optimizing data delivery timeliness and packet
packing and considering real-world aggregation constraints
signi�cantly improve network performance (e.g. in terms of
high reliability, high energy ef�ciency, and low delay jitter).

The rest of the paper is organized as follows. We analyze
the bene�ts of packet packing in lossy wireless networks in
Section II. We discuss the system model and precisely de�ne
the joint optimization problem in Section III. Then we analyze
the complexity of the problem in Section IV, and present the
tPack protocol in Section V. We experimentally evaluate the
performance of tPack and study the impact of packet packing
as well as joint optimization in Section VI. We discuss related
work in Section VII, and conclude the paper in Section VIII.
For convenience, we summarize in Table I the notations used
in Sections III and IV.

II. W HY PACKET PACKING?

While aggregating short information elements reduces the
overhead of transmitting each information element, it increases
the length of packets being transmitted. Given that packet
delivery rate of a wireless link decreases as packet length in-
creases, a longer packet with aggregated information elements
may be retransmitted more often, for reliable data delivery,
than the shorter packets without aggregation. To understand
whether packet packing is still bene�cial in the presence of
lossy wireless links, therefore, we need to understand whether



3

the increased packet loss rate overshadows the bene�ts of
packet packing. To this end, we mathematically analyze the
issue as follows.

For simplicity, we assume in this section that the status
(i.e., success or failure) of different packet transmissions are
independent, and we corroborate the analytical results through
testbed based measurement in Section VI where temporal link
correlation exists. For convenience, we de�ne the following
notations:

l1 : payload length of an unpacked packet,
i.e., the length of a single information element;

p1 : delivery rate of an unpacked packet;
k : packing ratio, i.e., the ratio of the payload

length of a packed packet to that of an
unpacked packet;

h : the ratio of header length to payload length
in an unpacked packet.

Then, for a packed packet with packing ratiok, the ratio of
the overall length of the packed packet to that of an unpacked
packet is kl 1 + hl 1

l 1 + hl 1
. Thus, the delivery ratepk of the packed

packet can be calculated as follows:

pk = p
kl 1 + hl 1
l 1 + hl 1

1 = p
k + h
1+ h
1

To re�ect the overhead of transmitting a packetpkt over a
wireless link, we de�ne theamortized cost(AC) of transmit-
ting pkt as follows:

ACpkt =
ET X pkt

lenpkt
(1)

wherelenpkt is the payload length ofpkt, andET X pkt is the
expected number of transmissions taken to successfully deliver
pkt over the wireless link. Given that the expected number of
transmissions to successfully deliver a packet with packing
ratio k is 1

pk
, the amortized cost of transmitting a packet with

packing ratiok, denoted byACk , can be calculated as follows:

ACk =
1=pk

kl1
=

1
kl1pk

(2)

Since an unpacked packet has a packing ratio of 1, the
amortized cost of transmitting an unpacked packet isAC1,
that is, 1

l 1 p1
.

For a given packing ratiok, the ratioRk of AC1 to ACk

re�ects whether packet packing is bene�cial, that is, packet
packing is bene�cial ifRk > 1. Precisely,Rk is calculated as
follows:

Rk =
AC1

ACk
= kp

k ¡ 1
1+ h
1

In a typical sensornet system [15], [19], the ratioh of header
length to that of a single information element is around 3,
and the packing ratio can be up to12. For h = 3 , Figure 1
showsRk as a function ofp1 and k, whenh = 3 . From the
�gure, we can see that packet packing reduces the amortized
cost of packet transmission as long as the link reliability is
no less than 40%, which is usually the case in practice (e.g.,
link reliability was » 75% even in heavily loaded sensornet
systems [15], [19]). We also see that, if link reliability is
greater than 67%, the amortized cost of packet transmission
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Fig. 1. Rk = AC 1
AC k

always decreases as the packing ratio increases. Since link
reliability is usually greater than 67% in practice, we can
always try to maximize the packing ratio so that the amortized
cost of packet transmission is reduced.

Denotingk¤ as the optimal packing ratio that minimize the
amortized cost for transmitting a packet, we then study the
relationship betweenk¤ andp1. From (2), we have:

ACk =
1

kl1pk
=

1

kl1p
k + h
1+ h
1

(3)

To minimizeACk , we need to maximizef (k) = kl1p
k + h
1+ h
1 .

Whenk 2 R+ , f (k) is a convex function. Letf 0(k) = 0 . we
havek¤

R = 1+ h
ln p¡ 1

1
. Therefore, whenk 2 N + , k¤ is calculated

as follows:

k¤ = arg min k2f 1;dk ¤
R e;bk ¤

R cg f ACk g (4)

In Figure 2(b),k¤ increases as the link reliability increases.
Whenp1 is greater than75%, k¤ increase faster, which implies
that packet packing can bring more bene�t on amortized cost
when link reliability is high. Figure 2(b) shows the relationship
betweenACk andk whenp1 = 0 :9. From the �gure we can
�nd that it is not always bene�cial to pack as many small
packets as possible. There exists a threshold on the packing
ratio. Whenk exceeds this threshold, the amortized cost will
increase. This motivates us to explore how to perform packing
at each node in the network.

Remarks. The above analysis focuses on a single link, but
the observations easily carry over to multi-hop networks since
link reliability p1 re�ects the impact of channel fading and
collision even in the case of multi-hop networks.1 The analysis
has not considered the bene�ts (e.g., fewer number of packet
collisions) of reduced channel contention as a result of packet
packing (which reduces the number of packets contending for
channel access). We will study the impact of these factors
through testbed based measurement in Section VI.

1Note that the increased per-packet transmission time as a result of
increased packet length will not cause more collision, since the time taken
to transmit a packet (e.g.,» 4 milliseconds) is usually much less than the
inter-packet interval (e.g., usually at least a few seconds).
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Fig. 2. K ¤ and AC K when l1 = 12 , h = 0 :375, andK max = 100 .

III. SYSTEM MODEL AND PROBLEM DEFINITION

Having veri�ed the bene�ts of packet packing in lossy
wireless networks in Section II, we now discuss the system
model and de�ne the joint optimization problems we will focus
on in this paper.

A. System model

We consider a directed collection treeT = ( V; E), whereV
andE are the set of nodes and edges in the tree.V = f vi : i =
1 : : : N g [ f Rg whereR is the root of the tree and represents
the data sink of a sensornet, andf vi : i = 1 : : : N g are the
set of N sensor nodes in the network. An edgehvi ; vj i 2 E
if vj is the parent ofvi in the collection tree. The parent of a
nodevi in T is denoted aspi . We useET X v i v j (l ) to denote
the expected number of transmissions required for delivering
a packet of lengthl from a nodevi to its ancestorvj , and
we usetv i vk (l ) to denote the maximum time taken to deliver
a packet of lengthl from vi to vk in the absence of packet
packing and packing-oriented scheduling.

Each information elementx generated in the tree is iden-
ti�ed by a 4-tuple (vx ; lx ; r x ; dx ) wherevx is the node that
generatesx, lx is the length ofx, r x is the time whenx
is generated, anddx is the deadline by whichx needs to be
delivered to the sink nodeR. We usesx = dx ¡ (r x + tvx R (lx ))
to denote thespare timefor x, and we de�ne thelifetime of
x as [r x ; dx ].

B. Problem de�nition

Given a collection treeT and a set of information elements
X = f xg generated in the tree, we de�ne the problem of

jointly optimizing packet packing and the timeliness of data
delivery as follows:

Problem P: given T and X , schedule the transmission of
each element inX to minimize the total number of packet
transmissions required for deliveringX to the sinkR while
ensuring that each element be delivered toR before its
deadline.

In an application-speci�c sensornet, the information ele-
ments generated by different nodes depend on the application
but may well be of equal length [15]. Depending on whether
the sensornet is designed for event detection or data collection,
moreover, the information elementsX may follow certain
arrival processes. Based on the speci�c arrival process ofX ,
the following special cases of problemP tend to be of practical
relevance in particular:

Problem P0: same asP except that 1) the elements ofX are
of equal length, and 2)X includes at most one element from
each node; this problem can represent sensornets that detect
rare events.

Problem P1: same asP except that 1) the elements ofX
are of equal length, and 2) every two consecutive elements
generated by the same nodevi are separated by a time interval
whose length is randomly distributed in[a; b]; this problem
can represent periodic data collection sensornets (with possible
random perturbation to the period).

Problem P2: same asP except that the elements ofX are
of equal length; this problem represents general application-
speci�c sensornets.

IV. COMPLEXITY OF JOINT OPTIMIZATION

The complexity of problemP depends on aggregation con-
straints such as maximum packet size and whether information
elements in a packet can be separated and repacked with other
elements. For convenience, we useK to denote the maximum
number of information elements that can be packed into a
single packet. (Note thatK depends on the maximum packet
size and the lengths of information elements in problemP.)
In what follows, we �rst analyze the case whenK ¸ 3 and
then the case whenK = 2 , and we discuss how aggregation
constraints affect the problem complexity.

A. Complexity whenK ¸ 3

We �rst analyze the complexity and the hardness of approx-
imation for problemP0, then we derive the complexity ofP1,
P2, andP accordingly. The analysis is based on reducing the
Boolean-satis�ability-problem (SAT) [20] toP0 as we show
below.

Theorem 1:When K ¸ 3, problemP0 is strong NP-hard
whether or not the routing structure is a tree or a linear chain.

Proof: To prove thatP0 is strong NP-hard, we �rst present
a polynomial transformationf from the SAT problem toP0,
then we prove that an instance¦ of SAT is satis�able if
and only if the optimal solution of¦ 0 = f (¦) has certain
minimum number of transmissions.

Given an instance¦ of the SAT problem which hasn
Boolean variablesX 1; : : : ; X n andm clausesC1; : : : ; Cm , we
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derive a polynomial time transformation from¦ to an instance
¦ 0 of P0 with K ¸ 3 as follows. Firstly, we construct a tree
with n+2 nodes shown in Figure 3. In this tree, each nodevj ,

Fig. 3. A tree withn + 2 nodes

wherej = 1 ; : : : ; n corresponds to the variableX j . Nodev is
an intermediate node and nodeS is the base station.ET X v j v

is D , whereD À 1, andET X vs is 1. (For now, we do not
consider the impact of packet length on link reliability and
thus ETX.) The transmission timetv j v = t2 and tvs = t3.
This operation takesO(n) time.

Secondly, assume that variableX j appearskj times in total
in the m clauses. Then we add2kj + 3 children to nodevj ,
labeled asvj

0; : : : ; vj
2k j +2 , andm children to nodev, labeled as

vc
1; : : : ; vc

m . Each new edge has aET X of 1. The transmission
time from each child ofvj to vj is t1, and the transmission
time fromvc

i to v is t4. This operation takesO(nm) time and
the whole tree is shown in Figure 4.

Fig. 4. Reduction from SAT toP0 whenK ¸ 3

After constructing the tree, we de�ne the information ele-
ments and their lifetimes as follows. For each subtree rooted
at nodevj , we �rst de�ne 2kj + 1 information elements and

then assign them one by one to the leaf nodesvj
1; : : : ; vj

2k j +1
of this subtree. If variableX j occurs unnegated in clauseCi ,
we create an information elementx j

i with lifetime [r j
i ; dj

i ] =
[(3i + 1)( n + 1) + j; (3i + 2)( n + 1) + j + t1 + t2 + t3]. If X j

occurs negated in clauseCi , we create an information element
x j

i : [r j
i ; dj

i ] = [3 i (n +1)+ j; (3i +1)( n +1)+ j + t1+ t2 + t3].
Let i j

1 < : : : < i j
k j

denote the indices of the clauses
in which variableX j occurs. For every two messagesx j

i j
t

and x j
i j
t +1

; t = 1 ; : : : ; kj ¡ 1, de�ne an information element

axj
i j
t

: [r j
a t

; dj
a t

] = [ dj
i j
t

¡ t1 ¡ t2 ¡ t3; r j
i j
t +1

+ t1 + t2 + t3].

We also de�neaxj
0 : [r j

a0
; dj

a0
] = [ j; r j

i j
1

+ t1 + t2 + t3], and

axj
k j

: [r j
ak j

; dj
ak j

] = [ dj
i j
k j

¡ t1 ¡ t2 ¡ t3; 3(m +1)( n +1)+ j +

t1 + t2 + t3]. In this way, every two consecutive information
elements in this sequence overlap in their lifetimes, and the
size of the overlap ist1 + t2 + t3. After de�ning these2kj +1
information elements, we set the source of each element one
by one from nodevj

1 to nodevj
2k j +1 . For each nodevj

0, we

de�ne an elementzj
0 : [j; j + t1 + t2 + t3]. For each node

vj
2k j +2 , we de�ne an elementzj

2k j +2 : [3(m + 1)( n + 1) +
j; 3(m + 1)( n + 1) + j + t1 + t2 + t3]. Figure 5 demonstrates

Fig. 5. Lifetimes of information elements

how the lifetimes of these2kj + 3 information elements are
de�ned.

Similarly, we de�ne m information elements generated by
nodesvc

1; : : : ; vc
m , with elementzi : [r i ; di ] = [(3 i + 1)( n +

1) + t1 + t2 ¡ t4; (3i + 2)( n + 1) + t1 + t2 + t3], i = 1 ; : : : ; m,
being generated by nodevc

i . Then, for nodesv1 to vn , we
de�ne an information element for each of them with lifetime
[4(m+1)( n+1)+ i; 4(m+1)( n+1)+ i + t2+ t3], i = 1 ; : : : ; n.
For nodev, de�ne an information element with lifetime[4(m+
1)2(n + 1) + i; 4(m + 1) 2(n + 1) + i + t3].

The whole process to assign an information element for each
sensor will takeO(nm) time. Therefore, the time complexity
of the whole transformation isO(n) + O(nm) + O(nm) =
O(nm), which is polynomial inn andm.

Given the instance¦ 0 of P0 formulated as above, the
following claims hold for the optimal packing scheme:

Claim 1: If nodes vc
1; : : : ; vc

m are ignored, the minimum
total number of transmission in¦ 0 is Ct 0 =

P n
j =1 (2kj +

1) +
P n

j =1 [(kj + 1)( D + 1)] + 2 n(D + 1) + 2 n + 1 .
Claim 2: If nodes vc

1; : : : ; vc
m are ignored, in the optimal

packing scheme in¦ 0, every information elementq generated
by a leaf node of nodevj ; j = 1 ; : : : ; n, is forwarded to the
source's parent at timerq, and then leaves the parent to next
hop either at timerq + t1 or at timedq ¡ (t2 + t3).
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Claim 3: If nodesvc
1; : : : ; vc

m are ignored, in the optimal
packing scheme in¦ 0, for eachj = 1 ; : : : ; n, all the informa-
tion elementsx j

i leaves nodevj for v either at timer j
i + t1,

or at the timedj
i ¡ (t2 + t3).

Then, we have
Claim 4: The minimum number of transmissions required

in ¦ 0, denoted byCt 1, is Ct 0 + m if and only if the SAT
problem¦ is satis�able.
(We relegate the proofs of these claims to the appendix.)

Then, Claim 4 and the fact that the reduction shown in
Figure 4 is a polynomial reduction from SAT toP0 imply that
P0 is strong NP-hard whenK ¸ 3.

Note that the above proof did not consider the impact
of packet length on link reliability and thus ETX. As long
as we construct the reduction so that the ETX along links
hvj ; vi ; j = 1 ; : : : ; n is signi�cantly greater than that along
link hv; si , however, the above analysis can be easily extended
to and still hold for cases where ETX is a function of packet
length.

We have also proved thatP0 is NP-hard when the routing
structure is a linear chain. For conciseness, we relegate the
detailed discussion to the appendix.

Having proved the strong NP-hardness ofP0 whenK ¸ 3,
we analyze the hardness of approximation forP0 using a gap-
preserving reduction from MAX-3SAT toP0 [21], and we
have

Theorem 2:WhenK ¸ 3, there exists² ¸ 1 such that it is
NP-hard to achieve an approximation ratio of1 + 1

200N (1 ¡
1
² ) for problem P0, where N is the number of information
elements inP0.

Proof: We �rst show that the reduction presented in
Figure 4 is a gap-preserving reduction [21] from MAX-3SAT
to problemP0. It is easy to verify that the proof of Theorem 1
holds if the discussion of the proof is based on 3SAT instead of
the general SAT problem, in which case

P n
j =1 kj = 3 m and

we denote the reduction asf . Therefore, if a 3SAT problem¦
is satis�able, the minimum cost of theP0 problem¦ 0 = f (¦)
is

Ct 1 = Ct 0 + m
= (

P n
j =1 (2kj + 1) +

P n
j =1 (kj + 1)( D + 1)+

2n(D + 1) + 2 n + 1) + m
= m(3D + 10) + n(3D + 6) + 1

(5)
Sincen < 4m, (5) implies that

Ct 1 < m (3D + 10) + n(3D + 10)
< 5m(3D + 10)

(6)

Note that the proof of Theorem 1 holds ifD = n +P n
j =1 (2kj +3) = 6 m+ n, which is the number of information

elements generated by the descendants of nodev. Thus, (6)
implies that

Ct 1 < 5m(3(6m + n) + 10)
= 5 m(18m + 3 n + 10)
< 5m(18m + 3 £ 4m + 10)
= 5 m(30m + 10)
< 5m(30m + 10m)
= 200m2

(7)

If only m0 of the m clauses in¦ are satis�able, then the
minimum cost in¦ 0 = f (¦) (with K ¸ 3 is Ct 1 + m ¡ m0.
This is because(m ¡ m0) number ofzi 's cannot be packed
with any other packet and have to be sent from nodev to s
alone, which incurs an extra cost of1 each. Accordingly, if
less thanm0 of the m clauses in¦ are satis�able, then the
minimum costC0 in ¦ 0 = f (¦) is greater thanCt 1 + m ¡ m0.
Letting ² = m

m 0
, (7) implies that

C 0

C t 1
> C t 1 + m ¡ m 0

C t 1

= C t 1 + ²m 0 ¡ m 0
C t 1

= 1 + ( ² ¡ 1)m 0

C t 1

> 1 + ( ² ¡ 1)m 0

200m 2

= 1 + ² ¡ 1
200m

1
²

= 1 + 1
200m (1 ¡ 1

² )
¸ 1 + 1

200N (1 ¡ 1
² )

(8)

whereN is the number of non-sink nodes in the network and
N ¸ m.

Let OP T(¦) andOP T(¦ 0) be the optima of a MAX-3SAT
problem ¦ and the correspondingP0 problem ¦ 0 = f (¦) .
Then the polynomial-time reductionf from MAX-3SAT to
P0 satisfy the following properties:

OP T(¦) = 1 = ) OP T(¦ 0) = Ct 1

OP T(¦) < 1
² =) OP T(¦ 0) > C t 1(1 + 1

200N (1 ¡ 1
² ))

(9)
From [21], we know that there exists a polynomial-time
reductionf 1 from SAT to MAX-3SAT such that, for some
�xed ² > 1, reductionf 1 satis�es

I 2 SAT =) MAX-3SAT(f 1(I )) = 1
I =2 SAT =) MAX-3SAT(f 1(I )) < 1

²
(10)

Then, (9) and (10) imply the following:

I 2 SAT =) OP T(f (f 1(I ))) = Ct 1

I =2 SAT =) OP T(f (f 1(I ))) > C t 1(1 + 1
200N (1 ¡ 1

² ))
(11)

Therefore, it is NP-hard to achieve an approximation ratio of
1 + 1

200N (1 ¡ 1
² ) for problemP0.

Based on the de�nition of polynomial time approximation
scheme (PTAS) and Theorem 2, we then have

Corollary 1: There is no polynomial time approximation
scheme (PTAS) for problemP0 whenK ¸ 3.

Based on the �ndings forP0, we have
Theorem 3:When K ¸ 3, problemsP1, P2, and P are

strong NP-hard whether or not the routing structure is a treeor
a linear chain, and there is no polynomial-time approximation
scheme (PTAS) for solving them.

Proof: To prove the hardness results forP1, let's consider
a special case¦ 1 of P1 where 1) every node is generating
information elements using the same periodp0 and the same
spare times0 for information elements, 2)p0 is signi�cantly
larger thans0, and 3)p0 is signi�cantly larger than the latest
time r0 when a node generates its �rst information element
such that the following holds: in the optimal packing scheme
for ¦ 1, no two elements from the same node can be aggregated
into the same packet, and thei -th information element from
one node cannot be packed with thej -th element from another
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node unlessi = j . It is easy to see that the special case¦ 1

does exist by properly choosing the parametersp0, s0, and
r0. Therefore, solving¦ 1 becomes the same as solving an
instance¦ 0 of P0 where the information elements consist of
the �rst element from every node of¦ 1. Therefore,P1 is at
least as hard asP0. SinceP0 is strong NP-hard,P1 is strong
NP-hard, and the there is no PTAS for the problem.

SinceP1 is a special case ofP2, andP2 is a special case
of P, both P2 and P are strong NP-hard too, and there is no
PTAS for them.

Theorems 1 and 3 show that the joint optimization problems
are strong NP-hard and there is no PTAS, whether or not the
routing structure is a tree or a linear chain and whether or
not the information elements are of equal length. In contrast,
Becchettiet al: [11] showed that, for total aggregation, the
joint optimization problems are solvable in polynomial time
via dynamic programming on chain networks. Therefore,
we see that aggregation constraints make the difference on
whether a problem is tractable for certain networks, and thus
it is important to consider them in the joint optimization.
Incidentally, we note that Theorem 3 also answers the open
question on the complexity of Problem (P4) of batch-process
scheduling in interval graphs [18].

B. Complexity whenK = 2

We showed in Section IV-A that the problemsPi ; i = 0 ; 1; 2,
andP are all strong NP-hard and there is no PTAS for these
problems whenK ¸ 3. We prove in this section that, when
K = 2 , the complexity of these problems depends on whether
information elements in a packet can be separated and re-
packed with other elements (which we callre-aggregation
hereafter) on their way to the sink. When re-aggregation is
disallowed, these problems are solvable in polynomial time;
otherwise they are strong NP-hard. Note that, whenK ¸ 3,
these problems are all strong NP-hard even if re-aggregation
is disallowed, which can be seen from the proof of Theo-
rem 1. Note also that, even though re-aggregation may well
be allowed in most sensornet systems when the in-network
processing (INP) method is packet packing, re-aggregation
may not be possible or allowed when INP is data fusion
such as lossy data compression [22]. Via the study on the
impact of re-aggregation, therefore, we hope to shed light on
the structure of the joint optimization problems when general
INP methods are considered.

In what follows, we �rst analyze the case when re-
aggregation is allowed, then we analyze the case when re-
aggregation is disallowed.

1) When re-aggregation is allowed:Use a method similar
to that of Theorem1, we prove

Theorem 4:When K = 2 and re-aggregation is allowed,
problemP0 is strong NP-hard, and this result holds whether
or not the routing structure is a tree or a linear chain.

Proof: Given an instance¦ of SAT problem with n
Boolean variablesX 1; : : : ; X n andm clausesC1; : : : ; Cm , we
derive a polynomial time transformation from¦ to an instance
¦ 00of problemP0 with K = 2 as follows. The transformation

is the same as what we present through Figure 4 except for
the following changes:

² De�ne a node p between nodev and nodes, and
m children p1; : : : ; pm of node p. Additionally, de�ne
ET X vp = ET X ps = ET X pi p = 1 , andtvp = t3; tps =
t5, andtpi p = t6.

² De�ne m information elementsgi 's generated by nodes
p1; ; pm : gi : [r p

i ; dp
i ] = [(3 i + 1)( n + 1) + n + 0 :1 + t1 +

t2+ t3 ¡ t6; (3i +1)( n+1)+ n+0 :1+ t1+ t2+ t3+ t5], and
for node p, de�ne an information elementg with lifetime
[5(m + 1) 2(n + 1) + i; 5(m + 1) 2(n + 1) + i + t5].

² For all parameters de�ned during the transformation in
Figure 4, replacet3 by t3 + t5.

Therefore, the time complexity of the new transformation is
still O(nm), and the new reduction is shown in Figure 6.

Fig. 6. Reduction from SAT toP0 whenK = 2

Then, the following claims hold for¦ 00:
Claim 5: If nodes vc

1; : : : ; vc
m , and nodesp1; : : : ; pm are

ignored, the minimum number of transmissions in¦ 00is C0
t 0 =P n

j =1 (2kj +1)+
P n

j =1 [(kj +1)( D +2)]+2 n(D +2)+2 n+3 .
Claim 6: If nodesvc

1; : : : ; vc
m , and nodesp1; : : : ; pm are ig-

nored, in the optimal packing scheme of¦ 00, every information
elementq generated by a leaf node of nodevj ,j = 1 ; : : : ; n,
is forwarded to the source's parent at timerq, and then leaves
the parent to next hop either at timerq + t1, or at time
dq ¡ (t2 + t3 + t5).

Claim 7: If nodes vc
1; : : : ; vc

m , and nodesp1; : : : ; pm are
ignored, in the optimal packing scheme of¦ 00, for eachj =
1; : : : ; n, all the information elementsx j

i leave nodevj for v
either at timer j

i + t1, or at timedj
i ¡ (t2 + t3 + t5).

These claims can be proved in the same way as how Claims 1,
2, and 3 are proved respectively, and we skip the details here.
Then, we have

Claim 8: The minimal number of transmissions required in
¦ 00, denoted byC0

t 1, is C0
t 0 + 4 m if and only if the SAT

problem¦ is satis�able.
(We relegate the proof to the appendix.)
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Then, Claim 8 and the fact that the reduction shown in
Figure 6 is polynomial imply thatP0 is strong NP-hard when
K = 2 .

Note that the above proof did not consider the impact of
packet length on link reliability and thus ETX. As long as we
construct the reduction so that the ETX along linkshvj ; vi ; j =
1; : : : ; n is signi�cantly greater than that along linkshv; pi and
hp; si , however, the above analysis can be easily extended to
and still hold for cases where ETX is a function of packet
length.

Note also that the above proof can be extended to the case
when all the information elements are generated at the same
time, as well as the case when the routing structure is a linear
chain (with information elements having different generation
time).

Then, we prove the hardness of approximation using a gap-
preserving reduction from MAX-3SAT, and we have

Theorem 5:When K = 2 and re-aggregation is allowed,
there exists² ¸ 1 such that it is NP-hard to achieve an
approximation ratio of1+ 1

120N (1¡ 1
² ) for problemP0, where

N is the number of information elements inP0.
Proof: The proof is similar to that of Theorem 2. We

relegate the details to the appendix.
Based on the de�nition of polynomial time approximation

scheme (PTAS) and Theorem 5, we then have
Corollary 2: There is no polynomial time approximation

scheme (PTAS) for problemP0 when K = 2 and re-
aggregation is allowed.

Based on the relations amongP0, P1, P2, andP, we have
Theorem 6:When K = 2 and re-aggregation is allowed,

problemsP1, P2, and P are strong NP-hard whether or not
the routing structure is a tree or a linear chain, and there is
no polynomial-time approximation scheme (PTAS) for solving
them.

Proof: The proof is similar to that of Theorem 3.
Theorems 4 and 6 show that, whenK = 2 and re-

aggregation is allowed, the joint optimization problems are
strong NP-hard whether or not the routing structure is a treeor
a linear chain, and whether or not the information elements are
of the same length. That is, the complexity of these problems
when K = 2 and re-aggregation is allowed is very much
similar to the case whenK ¸ 3.

2) When re-aggregation is prohibited:WhenK = 2 and re-
aggregation is prohibited, we can solve problemP (and thus
its special versionsP0, P1, and P2) in polynomial time by
transforming it into a maximum weighted matching problem
in an interval graph. An interval graphGI is a graph de�ned
on a setI of intervals on the real line such that 1)GI has one
and only one vertex for each interval in the set, and 2) there
is an edge between two vertices if the corresponding intervals
intersect with each other. Given an instance of problemP, we
solve it using Algorithm 1 as follows:

For Algorithm 1, we have
Theorem 7:WhenK = 2 and re-aggregation is prohibited,

Algorithm 1 solves problemP in O(n3) time, wheren is
the number of information elements considered in the prob-
lem.This holds whether or not the routing structure is a tree

Algorithm 1 Algorithm for solving P when K = 2 and re-
aggregation is prohibited

1: Generate an interval graphGI (VI ; E I ) for problemP as
follows:

² Select an arbitrary information elementq generated
by nodevq at timerq and with spare timesq, de�ne
an interval[rq; rq + sq] for q on the real line.

² For each remaining information elementp generated
by nodevp at time rp and with spare timesp, let
node vpq be the common ancestor ofvp and vq

that is the farthest away fromR among all com-
mon ancestors ofvp and vq, then de�ne an interval
[rq ¡ tvq vpq + tvp vpq ; rq ¡ tvq vpq + tvp vpq + sq] for
information elementp.

² Let VI = ; . Then, for each information elements,
de�ne a vertexs and add it toVI .

² Let E I = ; . If the two intervals that represent
any two information elementsu and h overlap with
each other, de�ne an edge(u; h) and add it toE I ;
then assign edge(u; h) with a weightcom(u; h) =
ET X vuh R (lu )+ ET X vuh R (lh ) ¡ ET X vuh R (lu + lh ),
wherelu andlh are the length ofu andh respectively.

2: Solve the maximum weighted matching problem forGI

using Edmonds' Algorithm [23].
3: For each edge(u; h) in the matching, information ele-

mentsu and h are packed together at nodevuv . For all
other vertices not in the matching, their corresponding
information elements are sent to the sink alone without
being packed with any other information element.

or a linear chain, and whether or not the information elements
are of equal length.

Proof: It is easy to see that if information elementsu
andh are packed together, the total number of transmissions
taken to deliveru and h is ET X vu R (lu ) + ET X vh R (lh ) ¡
ET X vuh R (lu ) ¡ ET X vuh R (lh ) + ET X vuh R (lu + lh ) =
ET X vu R (lu )+ ET X vh R (lh ) ¡ com(u; h). Let VI be the set of
vertices in the interval graphGI , M be a matching inGI , V1

be the set of nodes inM , andV2 = VI =V1. Then the weight
of M , denoted byWM , is as follows:

WM =
P

(u;h )2 M com(u; h)
=

P
(u;h )2 M [ET X vu R (lu ) + ET X vh R (lh )

¡ (ET X vu R (lu ) + ET X vh R (lh )
¡ com(u; h))]

=
P

(u;h )2 M (ET X vu R (lu ) + ET X vh R (lh ))
¡

P
(u;h )2 M [ET X vu R (lu ) + ET X vh R (lh )

¡ com(u; h)]
=

P
s2 V1

ET X sR (ls) +
P

v2 V2
ET X vR (lv )

¡f
P

(u;h )2 M [ET X vu R (lu ) + ET X vh R (lh )
¡ com(u; h)]
+

P
v2 V2

ET X vR (lv )g
=

P
v2 VI

ET X vR (lv )
¡f

P
(u;h )2 M [ET X vu R (lu ) + ET X vh R (lh )

¡ com(u; h)] +
P

v2 V2
ET X vR (lv )g

(12)
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Note that
P

v2 VI
ET X vR (lv ) is a �xed value, andP

(u;h )2 M [ET X vu R (lu ) + ET X vh R (lh ) ¡ com(u; h)] +P
v2 V2

ET X vR (lv ) is the total number of transmissions, de-
noted byET X total , incurred in the packing scheme generated
by Algorithm 1. Therefore,ET X total is minimized if and only
if WM is maximized, which means that solving the maximum
weighted matching problem can give us an optimal solution
to the original packet packing problem.

Let n denote the total number of information elements in
this problem. The whole algorithm consists of three parts. The
�rst one is to de�ne an interval graph and assign weights to
each node and edge in the graph, whose time complexity is
O(n2). The second part is to solve the maximum weighted
matching problem, whose time complexity isO(n3) by Ed-
monds' Algorithm [23]. And the third part is to convert the op-
timal matching problem to the optimal packing scheme, whose
time complexity isO(n). Therefore, the time complexity of
the whole algorithm isO(n2) + O(n3) + O(n) = O(n3).

By the de�nition of the weightcom(u; h) for elements
u and h in Algorithm 1, the solution generated by the
maximum weighted matching tends to greedily pack elements
as soon as possible after they are generated. This observation
motivates us to design a local, greedy online algorithmtPack
in Section V for the general joint optimization problems, and
the effectiveness of this approach will be demonstrated through
competitive analysis and testbed-based measurement studyin
Sections V and VI. Note that, incidentally, Theorem 7 also
answers the open question on the complexity of scheduling
batch-processes with release times in interval graphs [18].

V. A UTILITY -BASED ONLINE ALGORITHM

We see from Section IV that problemP and its special cases
in sensornets are strong NP-hard in most system settings, and
there is no polynomial-time approximation scheme (PTAS)
for these problems. Instead of trying to �nd global optimal
solution, therefore, we focus on designing a distributed, ap-
proximation algorithmtPack that optimizes the local utility
of packet packing at each node. Given that packet arrival
processes are usually unknown a priori, we consider the online
version of the optimization problem.

Based on the de�nition ofP, its optimization objective is
to minimize

AC =
T X netP

x 2 X lx
(13)

where T X net is the total number of transmissions taken to
deliver each information elementx 2 X to the sink before
its deadline. For convenience, we callAC the amortized cost
of delivering

P
x 2 X lx amount of data. In what follows, we

design an online algorithm tPack based on this concept of
amortized cost of data transmission.

When nodej has a packetpkt in its data buffer,j can
decide to transmitpkt immediately or to hold it. Ifj transmits
pkt immediately, information elements carried inpkt may be
packed with packets atj 's ancestors to reduce the amortized
cost of data transmissions from those nodes; ifj holds pkt,
more information elements may be packed withpkt so that

the amortized cost of transmission fromj can be reduced.
Therefore, we can de�ne theutility of transmitting or holding
pkt as the expected reduction in amortized data transmission
cost as a result of the corresponding action, and then the
decision on whether to transmit or to holdpkt depends on
the utilities of the two actions. For simplicity and for low
control overhead, we only consider the immediate parent
of node j when computing the utility of transmittingpkt.
We will show the goodness of this local approach through
competitive analysis later in this section and through testbed-
based measurement in Section VI.

In what follows, we �rst derive the utilities of holding and
transmitting a packet, then we present a scheduling rule that
improves the overall utility.

A. Utility calculation

For convenience, we de�ne the following notations:

L : maximum payload length per packet;
ET X jp (l ) : expected number of transmissions taken to

transport a packet of lengthl from node
j to its ancestorp;

pj : the parent of nodevj in the routing tree.

The utilities of holding and transmitting a packetpkt at a
nodevj depend on the following parameters related to traf�c
pattern:

² With respect tovj itself and its children:

r l : expected rate in receiving another packetpkt0

from a child or locally from an upper layer;
sl : expected payload size ofpkt0.

² With respect to the parent ofvj :

rp : expected rate for the parent to transmit another
packetpkt00 that does not contain information
elements generated or forwarded byvj itself;

sp : expected payload size ofpkt00.

The utilities of holding and transmitting a packetpkt
also depend on the following constraints posed by timeliness
requirement for data delivery as well as limited packet size:

² Grace periodt0
f for deliveringpkt: the maximum allow-

able latency in deliveringpkt minus the maximum time
taken to transportpkt from vj to the sink without being
held at any intermediate node along the route.
If t0

f · 0, pkt should be transmitted immediately to
minimize the extra delivery latency.

² Spare packet spaces0
f of pkt: the maximum allowable

payload length per packet minus the current payload
length ofpkt.
Parameters0

f and the size of the packets coming next
from an upper layer atvj or from vj 's children determine
how muchpkt will be packed and thus the potential utility
of locally holdingpkt.

In the design and analysis of this section, we assume that
packet arrival process (i.e.,,r l , rp), packet payload size and
spare space (i.e.,sl , sp, s0

f ), and grace period (i.e.,t0
f ) are
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independent of one another. Then, the utilities of holding and
transmitting a packet are calculated as follows.

Utility of holding a packet. When a nodevj holds a
packetpkt, pkt can be packed with incoming packets from
vj 's children or from an upper layer atvj . Therefore, the utility
of holdingpkt at vj is the expected reduction in the amortized
cost of transmittingpkt after packingpkt. The utility depends
on (a) the expected number of packets thatvj will receive
within t0

f time (either from a child or locally from an upper
layer), and (b) the expected payload sizesl of these packets.
Given that the expected packet arrival rate isr l , the expected
number of packets to be received atvj within t0

f time is t0
f r l .

Thus, the expected overall sizeS0
l of the payload to be received

within t0
f time is

S0
l =

t0
f

t l
sl

Given the spare spaces0
f in the packetpkt, the expected

size Sl of the payload that can be packed intopkt can be
approximated2 as

Sl = min fS 0
l ; s0

f g = min f
t0
f

t l
sl ; s0

f g

Therefore, the expected amortized costAC l of transporting
the packet to the sinkR after the anticipated packing can be
approximated as2

AC l =
1

L ¡ s0
f + Sl

ET X jR (L ¡ s0
f + Sl )

where(L ¡ s0
f ) is the payload length ofpkt before packing.

Since the amortized costAC 0
l of transportingpkt without

the anticipated packing is

AC 0
l =

1
L ¡ s0

f
ET X jR (L ¡ s0

f )

the utility Ul of holding pkt is

Ul = AC 0
l ¡ AC l (14)

Utility of immediately transmitting a packet. If node vj

transmits the packetpkt immediately to its parentpj , the
utility comes from the expected reduction in the amortized
cost of packet transmissions atpj as a result of receiving the
payload carried bypkt. Whenvj transmitspkt to pj , the grace
period of pkt at pj is still t0

f , thus the expected number of
packets that do not contain information elements fromvj and
can be packed withpkt atpj is t0

f rp, and we usePpkt to denote
this set of packets. Given the limited payload thatpkt carries,
it may happen that not every packet inPpkt gets packed (to
full) via the payload frompkt. Accordingly, the utilityUp of
immediately transmittingpkt is calculated as follows:

² If every packet inPpkt gets packed to fullwith payload
from pkt, i.e., t0

f rp(L ¡ sp) · L ¡ s0
f :

2We use this approximation because it is usually dif�cult to estimate and
store the complete distributions of random variables in resource-constrained
sensor nodes.

Then, the overall utilityU0
p can be approximated as2

U0
p =

t 0
f

t p
ET X p j R (sp )

t 0
f

t p
sp

¡
t 0
f

t p
ET X p j R (L )

t 0
f

t p
L

=
ET X p j R (sp )

sp
¡

ET X p j R (L )

L

(15)

² If not every packet inPpkt gets packed to fullwith
payload frompkt, i.e., t0

f rp(L ¡ sp) > L ¡ s0
f :

In this case,b
L ¡ s0

f

L ¡ sp
c number of packets are packed to full;

if mod(L ¡ s0
f ; L ¡ sp) > 0, there is also a packet that

gets partially packed with mod(L ¡ s0
f ; L ¡ sp) length of

payload frompkt. Thus the total number of packets that
bene�t from the packet transmission isd

L ¡ s0
f

L ¡ sp
e. Denoting

mod(L ¡ s0
f ; L ¡ sp) by lmod and lettingI mod be 1 if

lmod > 0 and 0 otherwise, then the overall utilityU00
p can

be approximated as2

U00
p =

d
L ¡ s 0

f
L ¡ s p

eET X p j R (sp )

d
L ¡ s 0

f
L ¡ s p

esp

¡

b
L ¡ s 0

f
L ¡ s p

cET X p j R (L )+ I mod ET X p j R (sp + l mod )

d
L ¡ s 0

f
L ¡ s p

esp + L ¡ s0
f

(16)
Therefore, the utilityUp of immediately transmittingpkt to

pj can be computed as

Up =
½

U0
p if t0

f rp(L ¡ sp) · L ¡ s0
f

U00
p otherwise

(17)

where U0
p and U00

p are de�ned in Equations (15) and (16)
respectively.

B. Scheduling rule

Given a packet to be scheduled for transmission, if the
probability that the packet is immediately transmitted isPt

(0 · Pt · 1), then the expected utilityUt (Pt ) is

Ut (Pt ) = Pt £ Up + (1 ¡ Pt )Ul

= Ul + Pt (Up ¡ Ul )
(18)

whereUp andUl are the utilities of immediately transmitting
and locally holding the packet respectively. To maximizeUt ,
Pt should be set according to the following rule:

Pt =
½

1 if Up > U l

0 otherwise

That is, the packet should be immediately transmitted if
the utility of immediate transmission is greater than that of
locally holding the packet. For convenience, we call this local,
distributed decision ruletPack (for time-sensitive packing).
Interested readers can �nd the discussion on how to implement
tPack in TinyOS in [24].

Competitive analysis. To understand the performance of
tPack as compared with an optimal online algorithm, we
analyze the competitive ratio of tPack. Since it is dif�cult
to analyze the competitive ratio of non-oblivious online al-
gorithms for arbitrary network and traf�c pattern in the joint
optimization and tPack is a non-oblivious algorithm, we only
study the competitive ratio of tPack for complete binary
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trees where all the leaf nodes generate information elements
according to a common data generation process, and we do
not consider the impact of packet length on link ETX. We
denote these special cases of problemP as problemP0. The
theoretical analysis here is to get an intuitive understanding
of the performance of tPack; we experimentally analyze the
behaviors of tPack with different networks, traf�c patterns, and
application requirements through testbed-based measurement
in Section VI. We relegate the study on the competitive ratio
of tPack as well as the lower bound on the competitive ratio
of non-oblivious online algorithms for the general problemP
as a part of our future work. (Note that the best results so
far on the lower bound of the competitive ratio of joint INP-
and latency- optimization also only considered the cases where
only leaf nodes generate information elements [12], and these
results are for oblivious algorithms and for cases where no
aggregation constraint is considered [12].)

Then, we have
Theorem 8:For problem P0, tPack is minf K;

maxv j 2 V> 1

2ET X v j R

2ET X v j R ¡ ET X p j R
g-competitive, where K is

the maximum number of information elements that can be
packed into a single packet,V> 1 is the set of nodes that are
at least two hops away from the sinkR.

Proof: For convenience, we denote the optimal packing
scheme asOP T. By de�nition, tPack is at least K-competitive
since, considering the packets transmitted by a given node
vi in the routing tree, the length of the packet containing an
information elementx in OPT is no more thanK times the
length of the packet containingx in tPack.

To get a tighter performance bound for tPack, we �rst
analyze the packet length for the packets transmitted by a leaf
nodevj . Suppose thatvj transmits a packetpkt with length
lpkt when the latency requirement could have allowed packing
anotherl0 amount of data with the packet. In this case, the
utility of holding pkt is

Ul =
ET X v j R

lpkt
¡

ET X v j R

lpkt + l0 = ET X v j R
l0

lpkt (lpkt + l0)
(19)

By de�nition, the utility of immediately transmittingpkt is
no more than the transmission utility that would be generated
if the information elements ofpkt are all packed into another
packetpkt¤ at pj , the parent ofvj , that was transmitted to
pj from its the child other thanvj . Given that the routing
tree is a complete binary tree and that the leaf nodes generate
information elements according to a common data generation
process, the lengths of packets that are transmitted along links
at the same tree level are expected to be the same. Thus we can
assume that the payload length ofpkt¤ is alsolpkt . Therefore,
the utility of immediately forwardingpkt at vj satisfy the
following inequality

Up ·
ET X pj R

lpkt
¡

ET X pj R

lpkt + lpkt
=

ET X pj R

2lpkt
(20)

By the design of tPack, we know thatUl < U p. From (19)
and (20), thus we have

ET X v j R
l0

lpkt (lpkt + l0)
<

ET X pj R

2lpkt

Thus
l0 <

a
2 ¡ a

lpkt (21)

wherea =
ET X p j R

ET X v j R
.

Due to the constraint imposed by application's requirement
on the timeliness of data delivery, we know that the length
of the packet, denoted bylopt , that contains the information
elements ofpkt in OPT is no more thanlpkt + l0. Then from
(21), we know that

lopt · lpkt + l0 <
2

2 ¡ a
lpkt =

2ET X v j R

2ET X v j R ¡ ET X pj R
lpkt

That is,
lopt

lpkt
<

2ET X v j R

2ET X v j R ¡ ET X pj R
(22)

For a nodevi that is not a leaf node, the same analysis
applies. Given a packetpkt0 of lengthlpkt 0 that is transmitted
by vi when the latency requirement could have allowed
packing anotherl00amount of data withpkt0, we have

l00<
a0

2 ¡ a0lpkt 0 (23)

where a0 = ET X p i R

ET X v i R
. Moreover, the length of the packet,

denoted bylopt 0, that contains the information elements of
pkt0 in OPT is no more thanlpkt 0 + l00; this is due to the
following reasons:

² If a packetpktmax containslpkt 0 + l00 amount of data
payload without constrained by packet size limit, then
the spare time ofpktmax is 0.

² Consider a packetpkt00transmitted byvi in OPT whose
length is lopt 0. If vi holds pkt00until its spare time is 0
(instead of transmittingpkt00) in OPT, the resulting length
of the new packetpkt00

0 is no more thanlpkt 0 + l00. This
is because data �ows faster toward the sink in tPack as
compared with OPT, andpkt0 reachesvi earlier thanpkt00

does.
² Therefore,lopt 0 is no more than the length ofpkt00

0 , which
is no more thanlpkt 0 + l00. Thus,lopt 0 · lpkt 0 + l00

Therefore, we have

lopt 0

lpkt 0
<

2ET X v i R

2ET X v i R ¡ ET X pi R
(24)

From (22) and (24), we know that tPack is at least
O(maxv j 2 V> 1

2ET X v j R

2ET X v j R ¡ ET X p j R
)-competitive. Therefore,

tPack is minf K; maxv j 2 V> 1

2ET X v j R

2ET X v j R ¡ ET X p j R
g-competitive

for problemP0.

From Theorem 8, we see that tPack is 2-competitive if every
link in the network is of equal ETX value.

C. Implementation

From the discussion in Section V-A, a nodevj needs to
obtain the following parameters when calculating the utilities
of holding and transmitting a packet:

² On routing tree:ET X jR (l ), pj , andET X pj R (l );
² On traf�c pattern:r l , sl , rp, sp, andK .
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Parameters related to routing tree can be provided by the
routing component in a given system platform. Given a link
hj; p i , ET X jp (l ) as a function of packet lengthl can be
estimated usingET X jp (1), the ETX value of transmitting a
packet of one unit length, as follows:

ET X jp (l ) = 1 =(
1

ET X jp (1)
) l = ET X jp (1) l

Accordingly, the routing component only needs to estimate
ET X jp (1) instead of the ETX values for packets of arbitrary
length.

For parameters related to traf�c pattern,vj can estimate by
itself the parametersr l andsl , andK is readily available and
�xed for each speci�c platform. To enable each nodevj to
obtain parametersrp and sp, every nodei in the network
estimates the expected rater i to transmit two consecutive
packets ati itself and the expected sizesi of these packets.
Then, every nodei shares with its neighbors the parametersr i

and si by piggybacking these information onto data packets
or other control packets in the network. When a nodevj

overhears parameterrpj and spj from its parentpj , vj can
approximaterp andsp with rpj ¡ r j

sj

sp j
andspj respectively.

The derivation is as follows.
Approximation ofrp and sp: Since information elements
generated or forwarded by the children of nodepj are treated
in the same manner (without considering where they are
from), the expected size of the packet being transmitted bypj

does not depend on whether the packet contains information
elements generated or forwarded byvj . Thus,vj can simply
regardspj as sp, the expected size of the packet transmitted
by pj that does not contain information elements coming from
vj .

Now we deriverp as follows. Since the amount of payload
transmitted bypj per unit time isrpj spj and the amount of
payload transmitted byvj is r j sj per unit time, the amount
of payloadlp that are transmitted bypj but are not fromvj

per unit time is calculated as:lp = rpj spj ¡ r j sj . Thus, the
expected raterp that pj transmits packets that do not contain
information elements fromvj is calculated as:rp = lp=spj =
rpj ¡ r j

sj

sp j
. 2

VI. PERFORMANCE EVALUATION

To characterize the impact of packet packing and its joint
optimization with data delivery timeliness, we experimentally
evaluate the performance of tPack in this section. We �rst
present the experimentation methodology and then the mea-
surement results.

A. Methodology

Testbed. We use theNetEyewireless sensor network testbed
at Wayne State University [25]. NetEye is deployed in an
indoor of�ce as shown in Figure 7. We use a10£ 13 grid of
TelosB motes in NetEye, where every two closest neighboring
motes are separated by 2 feet. Out of the 130 motes in NetEye,
we randomly select 120 motes (with each mote being selected
with equal probability) to form a random network for our

Fig. 7. NetEyewireless sensor network testbed

experimentation. Each of these TelosB motes is equipped with
a 3dB signal attenuator and a 2.45GHz monopole antenna.

In our measurement study, we set the radio transmission
power to be -25dBm (i.e., power level 3 in TinyOS) such that
multihop networks can be created. We also use channel 26 of
the CC2420 radio to avoid external interference from sources
such as the campus WLANs. We use the TinyOS collection-
tree-protocol (CTP) [26] as the routing protocol to form the
routing structure, and we use the Iowa's Timesync protocol
[27] for network wide time synchronization.

Protocols studied. To understand the impact of packet pack-
ing and its joint optimization with data delivery timeliness, we
comparatively study the following protocols:3

² noPack: information elements are delivered without being
packed in the network.

² simplePack: information elements are packed if they
happen to be buffered in the same queue, but there is
not packing-oriented scheduling.

² SL: thespread latencyalgorithm proposed in [11], where
the spare time of an information element is evenly spent
at each hop from its source to the sink without con-
sidering speci�c network conditions (e.g., network-wide
traf�c pattern). SL was proposed with total aggregation
in mind without considering aggregation constraints such
as maximum packet size.

² CC: thecommon clockalgorithm proposed in [11], where
the spare time of an information element is only partly
spent at the node where it is generated. Same as SL, CC
was proposed with total aggregation in mind.

² tPack: the packing- and timeliness-oriented scheduling
algorithm that maximizes the local utility at each node,
as we discussed in Section V. (We have also evaluated
another version of tPack, denoted bytPack-2hop, where
the forwarding utilityUp considers both the parent node
and the parent's parent; we �nd that tPack-2hop does not
bring signi�cant improvement over tPack while introduc-
ing higher overhead and complexity, thus our discussion
here only focuses on tPack.)

We have implemented, in TinyOS [28], a system library which
includes all the above protocols. The implementation takes40
bytes of RAM (plus the memory required for regular packet
buffers) and 4,814 bytes of ROM.

Performance metrics. For each protocol we study, we

3We use the terms protocols, algorithms, and decision rules interchangeably
in this paper.
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evaluate their behavior based on the following metrics:

² Packing ratio: number of information elements carried in
a packet;

² Delivery reliability: percentage of information elements
correctly received by the sink;

² Delivery cost: number of transmissions required for de-
livering an information element from its source to the
sink;

² Deadline catching ratio: out of all the information ele-
ments received by the sink, the percentage of them that
are received before their deadlines;

² Latency jitter: variability of the time taken to deliver in-
formation elements from the same source node, measured
by the coef�cient-of-variation (COV) [29] of information
delivery latency.

Traf�c pattern. To experiment with different sensornet
scenarios, we use both periodic data collection traf�c and event
detection traf�c trace as follows:

² D3: each source node periodically generates 50 informa-
tion elements with an inter-element interval, denoted by
¢ r , uniformly distributed between 500ms and 3s; this is
to represent high traf�c load scenarios.

² D6: same asD3 except that¢ r is uniformly distributed
between 500ms and 6s; this is to represent relatively low
traf�c load scenarios.

² D9: same asD3 except that¢ r is uniformly distributed
between 500ms and 9s.

² E lites : an event traf�c where a source node generates
one packet based on the Lites [30] sensornet event traf�c
trace.

To understand the impact of the timeliness requirement of data
delivery, we experiment with different latency requirements.
For periodic traf�c, we consider maximum allowable latency
in delivering information elements that is 1, 3, and 5 times
the average element generation period, and we denote them
by L1, L3, andL5 respectively; for event traf�c, we consider
maximum allowable latency that is 2s, 4s, or 6s, and we denote
them byL20, L40, andL60 respectively. Out of the 120 motes
selected for experimentation, we let the mote closest to a
corner of NetEye be the sink node, and the other mote serves
as a traf�c source if its node ID is even. For convenience,
we regard a speci�c combination of source traf�c model and
latency requirement atraf�c pattern. Thus we have 8 traf�c
patterns in total. To gain statistical insight, we repeat each
traf�c pattern 20 times. Note that, in each traf�c pattern, all
the information elements have the same maximum allowable
latency. In our implementation, each information element is
16-byte long, and the TelosB motes allow for aggregating up
to 7 information elements into a single packet (i.e.,K = 7 ).

B. Measurement results

In what follows, we �rst present the measurement results
for periodic traf�c patternsD3, D6, andD9, then we discuss
the case of event traf�c patternE lites . In most �gures of
this section, we present the means/medians and their 95%
con�dence intervals for the corresponding metrics such as

Fig. 8. Packing ratio:D 3

Fig. 9. Delivery reliability:D 3

Fig. 10. Delivery cost:D 3

the packing ratio, delivery reliability, delivery cost, deadline
catching ratio, and the latency jitter.4

1) Periodic data traf�c: For the periodic traf�c pattern
D3, Figures 8-12 show the packing ratio, delivery reliability,
delivery cost, deadline catching ratio, and latency jitterin
different protocols. tPack tends to enable higher degree of
packet packing (i.e., larger packing ratio) than other protocols
except the CC protocol. The increased packing intP ack
reduces channel contention and thus reduces the probability
of packet transmission collision, which improves data delivery
reliability. The reduced probability of transmission collision
and the increased number of information elements carried
per packet intP ack in turn reduces delivery cost, since
there are fewer number of packet retransmissions as well as
fewer number of packets generated. Note that the low delivery
reliability in simplePack is due to intense channel contention.

4The distributions for delivery reliability and latency jitter are not sym-
metric, thus we use medians instead of means to summarize their properties
[29].
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Fig. 11. Deadline catching ratio:D 3

Fig. 12. Latency jitter:D 3

Fig. 13. Histogram of routing hop count:D 3 with maximum allowable
latencyL 1

Exceptions to the above general observation happen in the
case of maximum allowable latencyL1 or when comparing
tPack with CC. In the �rst case, the packing ratio in tPack is
lower than that in SL, but tPack still achieves much higher
delivery reliability (i.e., by more than 40%) and much lower
delivery cost (i.e., by a factor of more than 3). This is because
the packing ratio in SL is too high such that, in the presence
of high wireless channel contention due to the high traf�c
load of D3 and the stringent real-time requirement ofL1, the
resulting long packet length leads to higher packet error rate
and lower packet delivery reliability (as shown in Figure 9).
The routing protocol CTP adapts to the higher packet error
rate in SL, and this leads to longer routes and larger routing
hops in SL. This can be seen from Figure 13 which shows the
histogram of routing hop counts in different protocols. The
maximum hop count in tPack is 4, whereas the hop count
can be up to 9 in SL. Together, the higher packet error rate

Fig. 14. Packing ratio:D 6

and the longer routes in SL lead to larger delivery cost in
SL as compared with tPack. Similar arguments apply to the
case when comparing tPack with CC. From these data on the
bene�ts of tPack in comparison with SL and CC, we can see
the importance of adapting to network conditions and data
aggregation constraints in in-network processing. Note that
similar arguments also explain the phenomenon where SL
has higher packing ratio than simplePack but lower delivery
reliability and higher delivery cost under all latency settings
of D3 traf�c.

Figure 9 also shows that tPack improves data delivery
reliability even when the allowable latency in data delivery is
small (e..g, in the case ofL1) where the inherent probability
for packets to be packed tends to be small. Therefore, tPack
can be used for real-time applications where high data delivery
reliability is desirable. Figure 8 shows that the packing ratio in
tPack is close to 4 except for the case ofL1 where 1) too much
packing is undesirable as discussed earlier and 2) the packing
probability is signi�cantly reduced by the limited probability
for a node to wait due to stringent timeliness requirement. Our
of�ine analysis shows that the optimal packing ratio is» 5 for
the traf�c patternsD3-L3 andD3-L5; thus tPack achieves a
packing ratio very close to the optimal, which corroborates
our analytical result in Theorem 8.

Figure 11 shows the deadline catching ratio in deadline-
aware data aggregation schemes tPack, SL, and CC. Though
the deadline catching ratio of all the three protocols are close to
1, the catching ratio of tPack is the highest and is greater than
0.99 in all cases. The slightly higher deadline catching ratio in
tPack is a result of its online adaptation of packet holding time
at each hop according to in-situ channel and traf�c conditions
along the path. As a result of the properly controlled packet
packing, the reduced channel contention and improved packet
delivery reliability in tPack also help enable lower performance
variability. For instance, Figure 12 shows the latency jitter in
different protocols, and we see that the jitter tends to be the
lowest in tPack, especially when the real-time requirementis
stringent (e.g., inL1 andL3). These properties are desirable in
cyber-physical-system (CPS) sensornets where real-time sens-
ing and control require predictable data delivery performance
(e.g., in terms of low latency jitter), especially in the presence
of potentially unpredictable, transient perturbations.

Figures 14-18 and Figures 19-23 show the measurement
results for periodic traf�c patternsD6 andD9 respectively. We
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Fig. 15. Delivery reliability:D 6

Fig. 16. Delivery cost:D 6

Fig. 17. Deadline catching ratio:D 6

Fig. 18. Latency jitter:D 6

Fig. 19. Packing ratio:D 9

Fig. 20. Delivery reliability:D 9

Fig. 21. Delivery cost:D 9

Fig. 22. Deadline catching ratio:D 9
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Fig. 23. Latency jitter:D 9

Fig. 24. Link reliability: D 6

see that, in terms of relative protocol performance, the overall
trends inD6 andD9 are similar to those inD3. For instance,
with stringent real-time requirement inL1, SL achieves a
lower delivery reliability and a higher delivery cost than tPack
even though the packing ratio tends to be higher in SL. Due to
the reduced traf�c load and thus the reduced wireless channel
contention and collision, however, the delivery reliability of
noPack, simplePack, and SL is also relatively high compared
with their delivery reliability inD3.

Note that, in [11], CC is shown to have a much higher
competitive ratio than SL through theoretical analysis. From
our measurement study, however, we see that the performance
of CC is not always better than SL. For instance, CC has a
lower delivery reliability and a higher delivery cost than SL in
D6 ¡ L5. This seemingly discrepancy is due to the fact that
the theoretical analysis of [11] does not consider the limitof
data aggregation capacity, nor does it consider wireless link
unreliability and interference in scheduling.

Surprisingly, Figures 14-16 show that, for the traf�c pattern
D6, simplePack introduces higher delivery cost than noPack
does even though the packing ratio and the end-to-end delivery
reliability are higher in simplePack. One reason for this isthat,
partially due to the increased packet length in simplePack,the
link reliability in simplePack is lower than that in noPack
as shown in Figure 24.5 The routing protocol CTP adapts
to the lower link reliability in simplePack and introduces
longer routing hop length, which can be seen from Figure 25

5The reason why simplePack still has higher end-to-end information el-
ement delivery reliability despite its lower link reliability is because each
packet delivered in simplePack carries more information elements due to the
higher packing ratio.

Fig. 25. Histogram of routing hop count:D 6 with maximum allowable
latencyL 1

Fig. 26. Per-element delivery cost vs: geographic distance:D 6 with
maximum allowable latencyL 1

which shows the histogram of routing hop counts for noPack
and simplePack in traf�c patternD6-L1. Together, the lower
link reliability and the longer routes in simplePack introduce
larger information delivery cost when compared with noPack
in D6. This observation is also corroborated by the detailed
analysis of the cost (e.g., mean number of transmissions) taken
to deliver an information element. For instance, Figure 26
shows the mean cost of delivering an information element
from a node at different geographic distances (in terms of
the number of grid hops) from the base station for the traf�c
patternD6-L1. (Similar phenomena are observed for other
traf�c patterns.) We see that, for most of the cases, the per-
element delivery cost is higher in simplePack. Note that
similar arguments explain why simplePack has higher delivery
cost than noPack in traf�c patternD9 and why SL also has
higher delivery cost than noPack in several cases (e.g., for
traf�c pattern D6-L1). In view with the consistently better
performance in tPack, these observations demonstrate again
the importance of considering network conditions and data
aggregation constraints in in-network processing.

2) Event traf�c: Figures 27-31 show the measurement
results for event traf�c patternE lites . The overall trend on the
relative protocol performance is similar to that in the periodic
traf�c patterns D3, D6, and D9. Even though the delivery
reliability tends to be high for all protocols, tPack still achieves
lower delivery cost and latency jitter, ???as well as 100%
deadline catching ratio.
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Fig. 27. Packing ratio:E lites

Fig. 28. Delivery reliability:E lites

Fig. 29. Delivery cost:E lites

Fig. 30. Deadline catching ratio:E lites

Fig. 31. Latency jitter:E lites

VII. R ELATED WORK

In-network processing (INP) has been well studied in sen-
sornets, and many INP methods have been proposed for query
processing [1], [2], [31], [3], [4], [32], [33], [34] and general
data collection [5], [6], [7], [8], [9], [10]. When controlling
spatial and temporal data �ow to enhance INP, however, these
methods did not consider application requirements on the
timeliness of data delivery. As a �rst step toward understanding
the interaction between INP and application QoS requirements,
our study has shown the bene�ts as well as the challenges
of jointly optimizing INP and QoS from the perspective of
packet packing. As sensornets are increasingly being deployed
for mission-critical tasks, it becomes important to address
the impact of QoS requirements on general INP methods
other than packet packing, which opens interesting avenues
for further research.

As a special INP method, packet packing has also been
studied for sensornets as well as general wireless and wired
networks, where mechanisms have been proposed to adjust
the degree of packet packing according to network congestion
level [13], [35], to address MAC/link issues related to packet
packing [36], [14], [37], to enable IP level packet packing [38],
and to pack periodic data frames in automotive applications
[39]. These works have focused on issues in local, one-hop
networks without considering requirements on maximum end-
to-end packet delivery latency in multi-hop networks. Withthe
exception of [39], these works did not focus on scheduling
packet transmissions to improve the degree of packet packing,
and they have not studied the impact of �nite packet size
either. Saket et al: [39] studied packet packing in single-hop
controller-area-networks (CAN) with �nite packet size. Our
work addresses the open questions on the complexity and
protocol design issues for jointly optimizing packet packing
and data delivery timeliness in multi-hop wireless sensornets.

Most closely related to our work are [11], [40], [41] where
the authors studied the issue of optimizing INP under the
constraint of end-to-end data delivery latency. But these studies
did not consider aggregation constraints and instead assumed
total aggregationwhere any arbitrary number of information
elements can be aggregated into one single packet. These
studies did not evaluate the impact of joint optimization on
data delivery performance either. Our work focuses on settings
where packet size is �nite, and we show that aggregation con-
straints (in particular, maximum packet size and re-aggregation
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tolerance) signi�cantly affect the problem complexity andpro-
tocol design. Using a high-�delity sensornet testbed, we also
systematically examine the impact of joint optimization on
packet delivery performance in multi-hop wireless networks.
By showing that tPack performs better than the algorithm SL
and CC [11], [41], our testbed based measurement results also
demonstrate the bene�ts of considering realistic aggregation
constraints in the joint optimization.

Solis et al: [42] also considered the impact that the timing of
packet transmission has on data aggregation, and the problem
of minimizing the sum of data transmission cost and delay
cost has been considered in [12] and [43]. These studies also
assumed total aggregation, and they did not consider hard
real-time requirements on maximum end-to-end data delivery
latency. Ye et al: [44] considered the local optimal stopping
rule for data sampling and transmission in distributed data
aggregation. It did not consider hard real-time requirement
either, and it did not study network-wide coordination and the
limit of data aggregation. Yu et al: [45] studied the latency-
energy tradeoff in sensornet data gathering by adapting radio
transmission rate; it did not study the issue of scheduling data
transmission to improve the degree of data aggregation.

VIII. C ONCLUDING REMARKS

Through both theoretical and experimental analysis, we
examine the complexity and impact of jointly optimizing
packet packing and the timeliness of data delivery. We �nd that
aggregation constraints (in particular, maximum packet size
and re-aggregation tolerance) affect the problem complexity
more than network and traf�c properties do, which suggest the
importance of considering aggregation constraints in the joint
optimization. We identify conditions for the joint optimization
to be strong NP-hard and conditions for it to be solvable
in polynomial time. For cases when it is polynomial-time
solvable, we solve the problem by transforming it to the
maximum weighted matching problem in interval graphs; for
cases when it is strong NP-hard, we prove that there is
no polynomial-time approximation scheme (PTAS) for the
problem. We also develop a local, distributed online protocol
tPack for maximizing the local utility of each node, and
we prove the competitiveness of the protocol with respect
to optimal solutions. Our testbed-based measurement study
also corroborates the importance of QoS- and aggregation-
constraint aware optimization of packet packing.

While this paper has extensively studied the complexity,
algorithm design, and impact of jointly optimizing packet
packing and data delivery timeliness, there are still a richset
of open problems. Even though we have analyzed the competi-
tiveness of tPack for non-trivial scenarios and this has given us
insight into the behavior of tPack, it remains an open question
on how to characterize in a closed form the competitiveness of
tPack and non-oblivious online algorithms in broader contexts.
The analytical and algorithmic design mechanisms developed
for packet packing may well be extensible to address other in-
network processing methods such as data fusion, and a detailed
study of this will help us better understand the structure ofthe
joint optimization problem and will be interesting future work

to pursue. We have focused on the scheduling aspect of the
joint optimization, and we are able to use mathematical tools
such as interval graphs to model the problem; on the other
hand, how to mathematically model and analyze the impact
of the joint optimization on spatial data �ow is still an open
question and is beyond the scope of most existing network �ow
theory, thus it will be interesting to explore new approaches
to modeling and solving the joint optimization problem.
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APPENDIX

Appendix 1: proofs of Claims 1, 2, 3, and 4

Proof of Claim 1: It is easy to see that the information
elements generated byvi ; i = 1 ; : : : ; n, and v, cannot be
packed with any other information elements. Therefore, the
total number of transmission for these elements isC1

t 0 =
n(D + 1) + 1 .

Since theET X of each link fromvj to v, j = 1 ; : : : ; n
is D and D À 1, and each sensor only generates one piece
of information element, in an optimal packing scheme, every
information element generated by nodevj

t j
, t j = 1 ; ; 2kj + 1 ,

will leave its source immediately it is generated and then
seek the opportunity to pack with other information elements
before it is forwarded fromvj to v. Due to our de�nition
on lifetimes for every2kj + 1 elements generated by nodes
vj

t j
; t j = 1 ; : : : ; 2kj +1 , only at most two consecutive informa-

tion elements in this2kj +1 sequence can be packed together at
nodevj . For any two consecutive information elements that are
packed together, the �rst element, which is generated byvj

t j

leaves nodevj at timedj
t j

¡ (t2 + t3), and the second element,
which is generated byvj

t j +1 leaves nodevj at timer j
t j +1 + t1.

Thus in an optimal packing scheme, for all2kj + 1 incoming
elements, nodevj will pack them into at leastkj + 1 packets,
kj of which contain two element. In each2kj + 1 sequence,
either information elementaxj

o arrives at and leaves nodevj

at time j + t1 alone, or information elementaxj
k j

arrives at
and leaves nodevj at time 3(m + 1)( n + 1) + j + t1 alone.
Thus, the total number of transmission for these elements is
C2

t 0 =
P n

j =1 (2kj + 1) +
P n

j =1 [(kj + 1)( D + 1)] .

Besides, we have2n more information elementszj
0 and

zj
m +1 , j = 1 ; : : : ; n, left. Due to the de�nition of lifetimes

for these information elements, all of them need to leave their
sources as soon as they are generated, and none of them can be
packed with a packet containing two information elements we
packed in the last paragraph. In an optimal packing scheme,
for a �xed j , eitherzj

0 is packed withaxj
0 at nodevj , i.e.,axj

0
arrives at and leaves nodevj at timej + t1, or zj

m +1 is packed
with axj

k j
at nodevj , i.e., axj

k j
arrives at and leaves nodevj

at time3(m +1)( n +1)+ j + t1, which is shown in Figure 32.
Thus, the total number of transmission for these elements is

Fig. 32. Example of optimal packing whenK ¸ 3
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C3
t 0 = 2 n + n(D + 1) . Under this packing scheme, no packet

will contain more than2 elements, which also satis�es the
packing size constraint. Thus, the minimal total number of
transmissions in this tree isC1

t 0 + C2
t 0 + C3

t 0 = n(D +1)+1+P n
j =1 (2kj +1)+

P n
j =1 [(kj +1)( D +1)]+2 n+ n(D +1) = Ct 0.

2
Proof of Claim 2: Correctness of this claim can be easily
veri�ed by the de�nition of the information elements of those
leaf nodes.

2
Proof of Claim 3: Since in an optimal packing scheme, either
elementzj

0 is packed with elementaxj
0, or elementzj

2k j +2

is packed with elementaxj
k j

. If zj
0 is packed withaxj

0, axj
0

leavesvj as soon as it arrives atvj , whenzj
0 arrives atvj , i.e.,

each elementx j
i j
t

leaves fromvj for v at timedj
i j
t

¡ (t2 + t3),

packed with elementaxj
i j
t
, t = 1 ; : : : ; kj . If zj

2k j +2 is packed

with axj
k j

, axj
k j

leavesvj at time3(m + 1)( n + 1) + j + t1,

which equals todj
ak j 0

¡ (t2 + t3), whenzj
2k j +2 arrives atvj ,

i.e., each elementx j
i j
t

leaves fromvj for v at time r j
i j
t

+ t1,

packed with elementaxj
i j
t ¡ 1

, t = 1 ; : : : ; kj .

2
Proof of Claim 4: 1) Given a satisfying assignment for the
SAT problem, an optimal packing scheme of the corresponding
packet packing problem can be derived as follows: If in the
assignment of SAT problem, variableX j is set true, then all
information elementsx j

i are forwarded from their sources to
nodevj at timer j

i , and are forwarded from nodevj to nodev
at timer j

i + t1. If X j is set false, then all information elements
x j

i are forwarded from their sources to nodevj at timer j
i , and

are forwarded from nodevj to nodev at dj
i ¡ t2 ¡ t3. Similarly

with the information elements generated by children nodes of
nodevj , every element generated by nodevc

i , i = 1 ; : : : ; m,
cannot get packed at its source sincevc

i is a leaf node. As
a result, each elementzi is forward by its source and arrives
at nodev at time (3i + 1)( n + 1) + t1 + t2 ¡ t4 + t4 =
(3i +1)( n+1)+ t1 + t2. Then the spare period for information
elementzi to wait at nodev is [(3i +1)( n +1)+ t1 + t2; (3i +
2)(n + 1) + t1 + t2]. If clauseCi is satis�ed by settingX j

to be true, then information elementx j
i arrives at node v at

(3i +1)( n +1)+ t1 + t2 + j 2 [(3i +1)( n +1)+ t1 + t2; (3i +
2)(n + 1) + t1 + t2], which implieszi can be packed with any
packet containing information elementx j

i . Similarly, if clause
Ci is satis�ed by settingX j to be false, then information
elementx j

i arrives at nodev at (3i + 1)( n + 1) + t1 + t2 +
j 2 [(3i + 1)( n + 1) + t1 + t2; (3i + 2)( n + 1) + t1 + t2],
which implies zi can be packed with any packet containing
information elementx j

i . Figure 33 gives an example on how
to get the optimal packing scheme from an assignment of SAT
instance.

Under this scheme, no packet will contain more than3
elements, which also satis�es the packing size constraint.
Every elementzi , i = 1 ; : : : ; m, can be packed at nodev with
a packet containing messagex j

i if clauseCi is satis�ed due to
variableX j . Therefore, the additional number of transmission

Fig. 33. Example of deriving the optimal packing scheme fromthe SAT
assignment whenK ¸ 3

to send each elementzi to nodes is m. As a result, the total
number of transmission for this tree isCt 0 + m = Ct 1.

2) If we may �nd that the optimal packing scheme has a
total number of transmissionCt 1, which implies that every
elementzi joins a packet consisting ofx j

i for somej value. If
x j

i leaves from nodevj at timer j
i + t1, andzi joins the packet

that containsx j
i at nodev, this can only happen whenX j is

unnegated in clauseCi because(3i +1)( n +1)+ t1 + t2 + j 2
[(3i + 1)( n + 1) + t1 + t2; (3i + 2)( n + 1) + t1 + t2] and
3i (n+1)+ j =2 [(3i +1)( n+1)+ t1+ t2; (3i +2)( n+1)+ t1+ t2].
Thus we setX j to be true. Ifx j

i leaves from nodev at time
dj

i ¡ (t2 + t3), and zi joins the packet that containsx j
i at

nodev, this can only happen whenX j is negated in clauseCi

because(3i +1)( n +1)+ t1 + t2 + j 2 [(3i +1)( n +1)+ t1 +
t2; (3i +2)( n +1)+ t1 + t2] and(3i +2)( n +1)+ j + t1 + t2 =2
[(3i +1)( n+1)+ t1 + t2; (3i +2)( n+1)+ t1 + t2]. Thus we set
X j to be false. By this way, if we have an optimal solution
to this instance of packet packing problem, we can have a
satisfying assignment of the original SAT problem. Note that
due to Claim 3, the following case cannot happen: element
zi gets packed withx j

i by letting x j
i leaves nodevj at time

r j
i + t1, and in the meantime, that elementzk gets packed with

x j
k by letting x j

k leaves nodevj at timedj
k ¡ (t2 + t3).

2

Appendix 2: complexity of problemP0 in chain networks

Claim 9: When K ¸ 3, problemP0 is strong NP-hard in
chain networks (when not all elements are generated at the
same time).

Proof: We �rst de�ne a chain composed bym nodes
vc

1; : : : ; vc
m , and m elements generated by nodesvc

1; : : : ; vc
m :

zi : [r i ; di ] = [(3 i + 1)( n + 1) ; (3i + 2)( n + 1) + T c
i ], i =

1; : : : ; m, whereT c
i is the transmission time from nodevc

i to
the base station.

In this section, we introduce a new concept called spare
time interval, which is the interval from the generation time
of an element to the latest possible time that it has to leave
its source.
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For each boolean variableX j , we de�ne a sub-chain of
2kj + n + 1 nodes, wherekj is the number of times that
X j occurs in alln clauses. For the �rst2kj + 1 nodes, we
�rst de�ne a sequence of2kj + 1 elements, and then assign
them one for each node. IfX j appears unnegated in clause
Ci , de�ne an elementx j

i with a spare time interval[r i ; di ] =
[0; n+1] . If X j appears negated in clauseCi , de�ne an element
x j

i with an initial lifetime [r i ; di ] = [ ¡ (n + 1) ; 0]. Let i j
1 <

: : : < i j
k j

denote the indices of the clauses in which variable

X j occurs. Put elementx j
i j
t
; t = 1 ; : : : ; kj in the (3 + 2( kj ¡

t)) th node of this sub-chain, and de�ne the transmission time
from the source node of elementx j

i to the(2kj +2) th node of
this sub-chain to be(3i +1)( n+1)+ j . For every two messages
x j

i j
t

andx j
i j
t +1

; t = 1 ; : : : ; kj ¡ 1, de�ne an information element

axj
i j
t

: [r j
a t

; dj
a t

] = [ dj
i j
t

¡ ¢ T t;t +1

2 + Tj ; r j
i j
t +1

+ ¢ T t;t +1

2 ], and

de�ne the elementaxj
i j
t
's source to be the node between the

source node of elementx j
i j
t

andx j
i j
t +1

. De�ne the transmission

time from this node to its parent node, and from its child
to itself, are both¢ T t;t +1

2 . Here ¢ Tt;t +1 is the transmission
time from the source node of elementx j

i j
t +1

to x j
i j
t
. And we

then de�ne elementaxj
0 : [r j

a0; dj
a0] = [ r j

x 1
+ (3 i j

1 +1)( n +1)+ j
2 ¡

1; r j
x 1

+ (3 i j
1 +1)( n +1)+ j

2 ] with source node to be the(2kj +2) th
node of this sub-chain with transmission time to next hop
(3 i j

1 +1)( n +1)+ j
2 andaxj

k j
: [r j

ak j
; dj

ak j
] = [ dj

i j
k j

¡ 1; dj
i j
k j

] with

source node to be the second node of this sub-chain with a
transmission time of1 to next hop. De�ne theET X for each
link to be k, wherek is a positive real number.

After de�ning element for the �rst2kj + 1 elements, we
de�ne n elements for the remainingn nodes. from the(2kj +
2)th node of this sub chain on, de�ne elementzi : [(3i +
1)(n +1) ; (3i +2)( n +1)] , and the transmission time between
each two consecutive nodes of thesen nodes to be zero, and
the ET X to bek.

After de�ning the sub-chain for eachX j , connect all these
sub-chains one by one, and de�ne the transmission time from
the head of a chain to the end of next chain isB , which
is a large positive number. At last, we add a large positive
numberQ to the endpoints of all spare time intervals so that
the endpoints of all spare time intervals are all positive. The
whole transformation process is still of a polynomial time
O(nm).

Then for this chain network, we can easily take the steps
we used in proving Theore 1 to prove the correctness of this
claim.

Similarly, we can de�ne a polynomial transformation from
any SAT instance to an instance of problemP0 when K =
2 and re-aggregation is allowed. Then, the following claim
holds:

Claim 10: When K = 2 and re-aggregation is allowed,
problemP0 is strong NP-hard in chain networks (when not
all elements are generated at the same time).

Appendix 3: complexity of problemP0 in trees when all the
information elements are generated at the same time

In this section, we will discuss the complexity of solving
the following problem

Problem P0
0: same asP0 except that 1) every elementx in

X is generated at the same time. 2)T is a tree with branches.
From the above problem de�nition, we can �nd thatP0

0
is a special case ofP0. Similar to the approach we used in
Section IV, we prove the NP-hardness ofP0

0 by reducing SAT
problem to it, and we separately analyze the case whenK ¸ 3
and the case whenK = 2 .

Theorem 9:WhenK ¸ 3, problemP0
0 is strong NP-hard.

Proof: To prove this theorem, we �rst show that there
is a polynomial transformationf 0 from the SAT problem to
P0

0. Then we prove that an instance¦ of SAT is satis�able
if and only if the optimal solution of¦ 0 = f 0(¦) has certain
minimum number of transmissions.

The transformationf 0 is similar as the transformationf we
used when proving Theorem 1. Given a instance¦ of the SAT
problem which hasn Boolean variablesX 1; : : : ; X n and m
clausesC1; : : : ; Cm , we �rst de�ne a tree of the same structure
in Figure 4, which takesO(mn) time and the whole tree is
shown in Figure 34.

Fig. 34. Reduction from SAT toP0
0 whenK ¸ 3

Notice that in this tree de�nition, we have not de�ne the
transmission time on each edge and we will de�ne them
during the process we de�ne the information elements and
their lifetimes. To begin with, We still de�ne the transmission
time from nodevj to v to be t2, and the transmission time
from v to s to bet3.

After that, for each subtree rooted at nodevj , we �rst de�ne
2kj +1 information elements and then assign them one by one
to the leaf nodesvj

1; : : : ; vj
2k j +1 of this subtree. If variable

X j occurs unnegated in clauseCi , we create an information
elementx j

i with initial lifetime [r j
i ; dj

i ] = [(3 i + 1)( n + 1) +
j; (3i +2)( n +1)+ j + t2 + t3]. If X j occurs negated in clause
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Ci , we create an information element with initial lifetimex j
i :

[r j
i ; dj

i ] = [3 i (n + 1) + j; (3i + 1)( n + 1) + j + t2 + t3].
Let i j

1 < : : : < i j
k j

denote the indices of the clauses in which

variableX j occurs. For every two messagesx j
i j
t

andx j
i j
t +1

; t =

1; : : : ; kj ¡ 1, de�ne an information elementaxj
i j
t

with initial

lifetime: [r j
a t

; dj
a t

] = [ dj
i j
t

¡ t2 ¡ t3; r j
i j
t +1

+ t2 + t3]. We also

de�ne the initial lifetime ofaxj
0 : [r j

a0
; dj

a0
] = [ j; r j

i j
1
+ t2 + t3],

and the initial lifetime ofaxj
k j

: [r j
ak j

; dj
ak j

] = [ dj
i j
k j

¡ t2 ¡

t3; 3(m +1)( n +1)+ j + t2 + t3]. After de�ning these2kj +1
information elements' initial lifetime, we set the source of
each element one by one from nodevj

1 to nodevj
2k j +1 . For

each elemente with an initial lifetime [re; de], de�ne the real
lifetime of e to be [0; de] and the transmission time from the
source ofe to nodev as re. For each nodevj

0, we de�ne an
elementzj

0: [0; j + t2 + t3] and the transmission time from
vj

0 to v to be j . For each nodevj
2k j +2 , we de�ne an element

zj
2k j +2 : [0; 3(m +1)( n +1)+ j + t2+ t3] and the transmission

time from vj
2k j +2 to v to be3(m + 1)( n + 1) + j .

Similarly, we de�ne m information elements generated by
nodesvc

1; : : : ; vc
m , with elementzi : [r i ; di ] = [0 ; (3i + 2)( n +

1) + t2 + t3], i = 1 ; : : : ; m, being generated by nodevc
i , and

the transmission time fromvc
i to v to be(3i + 1)( n + 1) + t2.

Then, for nodesv1 to vn , we de�ne an information element
for each of them with lifetime[0; t2 + t3], i = 1 ; : : : ; n. For
nodev, de�ne an information element with lifetime[0; t3].

The whole process to assign an information element for each
sensor will takeO(nm) time. Therefore, the time complexity
of the whole transformation isO(n) + O(nm) + O(nm) =
O(nm), which is polynomial inn andm.

After we construct an instance¦ 0 of P0
0 from an instance¦

of the SAT problem, we can easily follow the steps in proving
Theorem 1 to prove this theorem.

Theorem 10:When K = 2 and re-aggregation is allowed,
problemP0

0 is strong NP-hard.
Proof: Given an instance¦ of SAT problem with n

Boolean variablesX 1; : : : ; X n andm clausesC1; : : : ; Cm , we
derive a polynomial time transformation from¦ to an instance
¦ 0 of problemP0

0 with K = 2 as follows. The transformation
is the same as what we present through Figure 34 except for
the following changes:

² De�ne a node p between nodev and nodes, and
m children p1; : : : ; pm of node p. Additionally, de�ne
ET X vp = ET X ps = ET X pi p = 1 , and tvp = t3, and
tps = t5.

² De�ne m information elementsgi 's generated by nodes
p1; : : : ; pm : gi : [r p

i ; dp
i ] = [0 ; (3i + 1)( n + 1) + n + 0 :1 +

t2 + t3 + t5] and the transmission time frompi to p is
(3i + 1)( n + 1) + n + 0 :1 + t2 + t3. For node p, de�ne
an information elementg with lifetime [0; t5].

² For all parameters de�ned during the transformation in
Figure 4, replacet3 by t3 + t5.

Therefore, the time complexity of the new transformation is
still O(nm).

After constructing this tree, we can follow the same steps in
proving Theorem 4 to prove the correctness of this theorem.

Appendix 4: proof of Claim 8

Proof of Claim 8: 1) Given a satisfying assignment for the
SAT problem, an optimal packing scheme of the corresponding
packet packing problem can be derived as follows: If in the
assignment of SAT problem, variableX j is set true, then all
information elementsx j

i are forwarded from their sources to
nodevj at timer j

i , and are forwarded from nodevj to nodev
at timer j

i + t1. If X j is set false, then all information elements
x j

i are forwarded from their sources to nodevj at timer j
i , and

are forwarded from nodevj to nodev at dj
i ¡ (t2 + t3 + t5).

Similarly with the information elements generated by children
nodes of nodevj , every information element generated by
nodevc

i ; i = 1 ; : : : ; m, cannot get packed at its source since
vc

i is a leaf node. As a result, each information elementzi

is forward by its source and arrives at node v at time(3i +
1)(n + 1) + t1 + t2 ¡ t4 + t4 = (3 i + 1)( n + 1) + t1 + t2. Then
the spare period for information elementzi to wait at nodev
is [(3i + 1)( n + 1) + t1 + t2; (3i + 2)( n + 1) + t1 + t2]. If
clauseCi is satis�ed by settingX j to be true, then information
elementx j

i arrives at nodev at (3i + 1)( n + 1) + t1 + t2 + j 2
[(3i +1)( n+1)+ t1+ t2; (3i +2)( n+1)+ t1+ t2], which implies
that zi can be packed with the packet containing information
elementx j

i . Similarly, if clauseCi is satis�ed by settingX j

to be false, then information elementx j
i arrives at nodev at

(3i +1)( n +1)+ t1 + t2 + j 2 [(3i +1)( n +1)+ t1 + t2; (3i +
2)(n + 1) + t1 + t2], which implieszi can be packed with the
packet containing information elementx j

i . However, due to the
packet size constraint, one packet cannot contain more than
2 information elements. In the meantime, every information
element generated by nodepi cannot get packed at its source
since nodepi is a leaf node. Thus each information element
gi is forwarded by its source and arrives at nodep at time
(3i + 1)( n + 1) + n + 0 :1 + t1 + t2 + t3. Then the spare
period for elementgi to wait at nodep is 0. In this case,
to minimize the total number of transmission, if clauseCi

is satis�ed by settingX j to be true, information elementx j
i

arrives at nodev with information elementaxj
i ¡ 1 at time(3i +

1)(n +1)+ t1 + t2 + j in one packet. When this packet arrives
at v, information elementaxj

i ¡ 1 and information elementzi

form a new packet while information elementx j
i waits atv

until (3i +1)( n +1)+ t1 + t2 + n +0 :1. x j
i arrives at nodeg at

time (3i + 1)( n + 1) + n + 0 :1 + t1 + t2 + t3 and forms a new
packet with information elementgi . In this scheme,axj

i ¡ 1 �rst
packedx j

i at nodevj , then leavesx j
i at nodev so thatx j

i can
pack another information elementgi some time later at node
p, which implies that a carry-over operation is used to achieve
the optimal packing scheme. Similarly, if clauseCi is satis�ed
by settingX j to be false, elementx j

i is arrives at nodev with
elementaxj

i at time(3i +1)( n +1)+ t1 + t2 + j in one packet.
When this packet arrives atv, information elementx j

i and
information elementzi form a new packet while information
elementaxj

i waits atv until (3i +1)( n +1)+ t1 + t2 + n +0 :1.
axj

i arrives at nodep at time(3i + 1)( n + 1) + n + 0 :1 + t1 +
t2 + t3 and forms a new packet with information elementgi .
In this scheme,x j

i �rst packedaxj
i at nodevj , then leavesaxj

i
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at nodev so thataxj
i can pack another information element

gi some time later at nodep, which implies that a carry-over
operation is used to achieve the optimal packing scheme. An
demonstration on how the optimal packing scheme is derived
is given in Figure 35.

Fig. 35. Example of deriving optimal packing scheme from SATassignment
whenK = 2

In the optimal packing scheme, every information element
zi can be packed at nodev with an information element
x j

i or axj
i ¡ 1 if clause Ci is satis�ed due to variableX j .

Therefore, the additional number of transmission to send each
information elementzi to nodes is m, and the additional
number of transmission to send each information elementgi

to nodes is m, and the additional number of transmission to
break up m packet at nodev and send them to nodes is 2m.
As a result, the total number of transmission for this tree is
C0

t 0 + 4 m = C0
t 1.

2) If we may �nd that the optimal packing scheme has a
total number of transmissionC0

t 1, which implies that every
information elementzi pack with one information element in
a packet consisting ofx j

i for some j value, and the other
information element in the old packet packs with information
elementgi . If x j

i leaves from nodevj at timer j
i + t1, andzi

packs with one information element in the packet that contains
x j

i at nodev, this can only happen whenX j is unnegated in
clauseCi because(3i +1)( n +1)+ t1 + t2 + j 2 [(3i +1)( n +
1) + t1 + t2; (3i + 2)( n + 1) + t1 + t2] and3i (n + 1) + j =2
[(3i+1)( n+1)+ t1+ t2; (3i+2)( n+1)+ t1+ t2]. Thus we setX j

to be true. Ifx j
i leaves from nodev at timedj

i ¡ (t2 + t3 + t5),
andzi packs with one information element in the packet that
containsx j

i at nodev, this can only happen whenX j is negated
in clauseCi because(3i +1)( n+1)+ t1+ t2+ j 2 [(3i +1)( n+
1)+ t1 + t2; (3i +2)( n +1)+ t1 + t2] and(3i +2)( n +1)+ j +
t1 + t2 =2 [(3i + 1)( n + 1) + t1 + t2; (3i + 2)( n + 1) + t1 + t2].
Thus we setX j to be false. By this way, if we have an optimal
solution to this instance of packet packing problem, we can
have a satisfying assignment of the original SAT problem.
Note that due to Claim 7, the following case cannot happen:

elementzi gets packed withx j
i by lettingx j

i leaves nodevj at
time r j

i + t1, and in the meantime, that elementzk gets packed
with x j

k by lettingx j
k leaves nodevj at timedj

k ¡ (t2 + t3 + t5).

2

Appendix 5: proofs of Theorem 5

We �rst show that the reduction presented in Figure 6 is
a gap-preserving reduction [21] from MAX-3SAT to problem
P0

0. It is easy to verify that the proof of Theorem 4 holds
if the discussion of the proof is based 3SAT instead of the
general SAT problem, in which case

P n
j =1 kj = 3 m and we

denote the reduction asf . Therefore, if a 3SAT problem¦ is
satis�able, the minimum cost of theP0

0 problem¦ 0 = f (¦)
is

C0
t 1 = C0

t 0 + 4 m
= (

P n
j =1 (2kj + 1) +

P n
j =1 (kj + 1)( D + 2)+

2n(D + 2) + 2 n + 3) + 4 m
= m(3D + 16) + n(3D + 9) + 3

(25)
Sincen < 4m, (25) implies that

C0
t 1 < m (3D + 16) + n(3D + 16)

< 5m(3D + 16)
(26)

Note that the proof of Theorem 4 holds ifD = n +P n
j =1 (2kj +3) = 6 m+ n, which is the number of information

elements generated by the descendants of nodev. Thus, (26)
implies that

C0
t 1 < 5m(3(6m + n) + 16)

= 5 m(18m + 3 n + 16)
< 5m(18m + 3 £ 4m + 16)
= 5 m(30m + 16)
< 5m(30m + 16m)
= 240m2

(27)

If only m0 of the m clauses in¦ are satis�able, then the
minimum cost in¦ 0 = f (¦) (with K = 3 is C0

t 1 + ( m ¡ m0).
This is because(m ¡ m0) number ofzi 's cannot be packed
with any other packet and have to be sent from nodev to s
alone, which incurs an extra cost of2 each. Accordingly, if
less thanm0 of the m clauses in¦ are satis�able, then the
minimum costC0 in ¦ 0 = f (¦) is greater thanC0

t 1 + 2( m ¡
m0). Letting ² = m

m 0
, (27) implies that

C 0

C 0
t 1

> C 0
t 1 +2( m ¡ m 0 )

C 0
t 1

= C 0
t 1 +2( ²m 0 ¡ m 0 )

C 0
t 1

= 1 + 2 ( ² ¡ 1)m 0

C 0
t 1

> 1 + 2 ( ² ¡ 1)m 0

240m 2

= 1 + ² ¡ 1
120m

1
²

= 1 + 1
120m (1 ¡ 1

² )
¸ 1 + 1

120N (1 ¡ 1
² )

(28)

whereN is the number of non-sink nodes in the network and
N ¸ m.

Let OP T(¦) andOP T(¦ 0) be the optima of a MAX-3SAT
problem ¦ and the correspondingP0

0 problem ¦ 0 = f (¦) .
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Then the polynomial-time reductionf from MAX-3SAT to
P0

0 satisfy the following properties:

OP T(¦) = 1 = ) OP T(¦ 0) = C0
t 1

OP T(¦) < 1
² =) OP T(¦ 0) > C 0

t 1(1 + 1
120N (1 ¡ 1

² ))
(29)

From [21], we know that there exists a polynomial-time
reductionf 1 from SAT to MAX-3SAT such that, for some
�xed ² > 1, reductionf 1 satis�es

I 2 SAT =) MAX-3SAT(f 1(I )) = 1
I =2 SAT =) MAX-3SAT(f 1(I )) < 1

²
(30)

Then, (29) and (30) imply the following:

I 2 SAT =) OP T(f (f 1(I ))) = C0
t 1

I =2 SAT =) OP T(f (f 1(I ))) > C 0
t 1(1 + 1

120N (1 ¡ 1
² ))

(31)
Therefore, it is NP-hard to achieve an approximation ratio of
1 + 1

120N (1 ¡ 1
² ) for problemP0.

Appendix 6: Utility calculation in tPack-2hop

In Section V we proposed a utility based online algorithm
called tPack for packet packing problem. WhiletPack calcu-
lates the utility of immediately transmitting a packet based
on only next one hop, it is trying to use the greedy approach
to help node make a local decision, which may affect the
performance of the whole network. To explore the effects
brought by this 1-hop greedy decision making policy, we will
derive the utility of transmitting a packet by looking at next
2 hops, which is calledtPack-2hop.

Except the notations used in Section V, we de�ne some
additional notations in the following:

With respect to the grandparent ofvj :

tg : expected time till the parent transmits another
packetpkt000that does not contain information
elements generated or forwarded byvj itself
or its parent;

sg : expected payload size ofpkt000.

Utility of holding a packet. In tPack-2hop, the holding utility
is the same as it was in the oldtPack, which is calculated as:

Ul = AC 0
l ¡ AC l

= 1
L ¡ s0

f
ET X jR (L ¡ s0

f )

¡ 1
L ¡ s0

f + Sl
ET X jR (L ¡ s0

f + Sl )
(32)

Utility of immediately transmitting a packet. Different
from the old tPack, the utility of immediately transmitting a
packet intPack-2hopdepends on the utility to transmitting a
packet to the next hop or to the next 2 hops. Similar with the
de�nition of Ppkt , the expected number of packets that do not
contain information elements fromvj and can be packed with

pkt at vj 's grandparentgj is
t 0

f

t g
, and we de�neP0

pkt to be
the set of these packets. The utility to immediately transmit a
packet topj , vj 's parent, is computed as follows:

² If every packet inPpkt and P0
pkt gets packed to fullwith

payload frompkt and every packet, i.e.,
t 0

f

t p
(L ¡ sp) ·

L ¡ s0
f and

t 0
f

t g
(L ¡ sg) · L ¡ s0

f ¡
t 0

f

t p
(L ¡ sp):

Then, the overall utilityU0
p is

U0
p =

t 0
f

t p
ET X p j R (sp )

t 0
f

t p
sp

¡
t 0
f

t p
ET X p j R (L )

t 0
f

t p
L

+
t 0
f

t g
ET X g j R (sg )

t 0
f

t g
sg

¡
t 0
f

t g
ET X g j R (L )

t 0
f

t g
L

=
ET X p j R (sp )

sp
¡

ET X p j R (L )

L

+
ET X g j R (sg )

sg
¡

ET X g j R (L )

L

(33)

² If every packet inPpkt gets packed to fullwith payload
from pkt but not all packets inP0

pkt can get fully packed,

i.e.,
t 0

f

t p
(L ¡ sp) · L ¡ s0

f and
t 0

f

t g
(L ¡ sg) > L ¡ s0

f ¡
t 0

f

t p
(L ¡ sp):

Denoting mod(L ¡ s0
f ¡

t 0
f

t p
(L ¡ sp); L ¡ sg) by gmod

and lettingGmod be 1 if gmod > 0 and 0 otherwise. Let
G = Gmod ET X gj R (sg + gmod ), the overall utilityU00

p is

U00
p =

t 0
f

t p
ET X p j R (sp )

t 0
f

t p
sp

¡
t 0
f

t p
ET X p j R (L )

t 0
f

t p
L

+
d

L ¡ s 0
f

L ¡ s g
¡

t 0
f

t p
(L ¡ sp )eET X g j R (sg )

d
L ¡ s 0

f
L ¡ s g

¡
t 0
f

t p
(L ¡ sp )esg

¡
b

L ¡ s 0
f

L ¡ s g
¡

t 0
f

t p
(L ¡ sp )cET X g j R (L )+ G

d
L ¡ s 0

f
L ¡ s g

¡
t 0
f

t p
(L ¡ sp )esg + L ¡ s0

f

=
ET X p j R (sp )

sp
¡

ET X p j R (L )

L

+
d

L ¡ s 0
f

L ¡ s g
¡

t 0
f

t p
(L ¡ sp )eET X g j R (sg )

d
L ¡ s 0

f
L ¡ s g

¡
t 0
f

t p
(L ¡ sp )esg

¡
b

L ¡ s 0
f

L ¡ s g
¡

t 0
f

t p
(L ¡ sp )cET X g j R (L )+ G

d
L ¡ s 0

f
L ¡ s g

¡
t 0
f

t p
(L ¡ sp )esg + L ¡ s0

f

(34)

² If not every packet inPpkt gets packed to fullwith

payload frompkt, i.e.,
t 0

f

t p
(L ¡ sp) > L ¡ s0

f : The utility
is computed as it was in the oldtPack:

U000
p =

d
L ¡ s 0

f
L ¡ s p

eET X p j R (sp )

d
L ¡ s 0

f
L ¡ s p

esp

¡

b
L ¡ s 0

f
L ¡ s p

cET X p j R (L )+ I mod ET X p j R (sp + l mod )

d
L ¡ s 0

f
L ¡ s p

esp + L ¡ s0
f

(35)

Therefore, the utilityUp of immediately transmittingpkt to
pj in tPack-2hopis

Up =

8
>>>>>>><

>>>>>>>:

U0
p if

t 0
f

t p
(L ¡ sp) · L ¡ s0

f

and
t 0

f

t g
(L ¡ sg) · L ¡ s0

f ¡
t 0

f

t p
(L ¡ sp)

U00
p if

t 0
f

t p
(L ¡ sp) · L ¡ s0

f

and
t 0

f

t g
(L ¡ sg) > L ¡ s0

f ¡
t 0

f

t p
(L ¡ sp)

U000
p otherwise

(36)
whereU0

p, U00
p and U000

p are de�ned in Equations (33) , (34)
and (35) respectively.
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After computingUp, we need calculate another utility, the
utility to immediate forwardingpkt to gj , vj 's grandparent.
We can compute this utility as same as we did to getUp.

² If every packet inP0
pkt and Ppkt gets packed to fullwith

payload frompkt and every packet, i.e.,
t 0

f

t g
(L ¡ sg) ·

L ¡ s0
f and

t 0
f

t p
(L ¡ sp) · L ¡ s0

f ¡
t 0

f

t g
(L ¡ sg):

Then, the overall utilityU0
g is

U0
g =

t 0
f

t g
ET X g j R (sg )

t 0
f

t g
sg

¡
t 0
f

t g
ET X g j R (L )

t 0
f

t g
L

+
t 0
f

t p
ET X p j R (sp )

t 0
f

t p
sp

¡
t 0
f

t p
ET X p j R (L )

t 0
f

t p
L

=
ET X g j R (sg )

sg
¡

ET X g j R (L )

L

+
ET X p j R (sp )

sp
¡

ET X p j R (L )

L

(37)

² If every packet inP0
pkt gets packed to fullwith payload

from pkt but not all packets inPpkt can get fully packed,

i.e.,
t 0

f

t g
(L ¡ sg) · L ¡ s0

f and
t 0

f

t p
(L ¡ sp) > L ¡ s0

f ¡
t 0

f

t g
(L ¡ sg):

Denoting mod(L ¡ s0
f ¡

t 0
f

t g
(L ¡ sg); L ¡ sp) by pmod

and lettingPmod be 1 if pmod > 0 and 0 otherwise. Let
P = Pmod ET X pj R (sp + pmod ) the overall utilityU00

g is

U00
g =

t 0
f

t g
ET X g j R (sg )

t 0
f

t g
sg

¡
t 0
f

t g
ET X g j R (L )

t 0
f

t g
L

+
d

L ¡ s 0
f

L ¡ s p
¡

t 0
f

t g
(L ¡ sg )eET X p j R (sp )

d
L ¡ s 0

f
L ¡ s p

¡
t 0
f

t g
(L ¡ sg )esp

¡
b

L ¡ s 0
f

L ¡ s p
¡

t 0
f

t g
(L ¡ sg )cET X p j R (L )+ P

d
L ¡ s 0

f
L ¡ s p

¡
t 0
f

t g
(L ¡ sg )esp + L ¡ s0

f

=
ET X g j R (sg )

sg
¡

ET X g j R (L )

L

+
d

L ¡ s 0
f

L ¡ s p
¡

t 0
f

t g
(L ¡ sg )eET X p j R (sp )

d
L ¡ s 0

f
L ¡ s p

¡
t 0
f

t g
(L ¡ sg )esp

¡
b

L ¡ s 0
f

L ¡ s p
¡

t 0
f

t g
(L ¡ sg )cET X p j R (L )+ P

d
L ¡ s 0

f
L ¡ s p

¡
t 0
f

t g
(L ¡ sg )esp + L ¡ s0

f

(38)

² If not every packet inP0
pkt gets packed to fullwith

payload frompkt, i.e.,
t 0

f

t g
(L ¡ sg) > L ¡ s0

f : Denoting
mod(L ¡ s0

f ; L ¡ sg) by grmod and lettingGRmod be 1
if grmod > 0 and 0 otherwise,, the overall utilityU000

g is

U000
g =

d
L ¡ s 0

f
L ¡ s g

eET X g j R (sg )

d
L ¡ s 0

f
L ¡ s g

esg

¡

b
L ¡ s 0

f
L ¡ s g

cET X g j R (L )+ GR mod ET X g j R (sg + gr mod )

d
L ¡ s 0

f
L ¡ s g

esg + L ¡ s0
f

(39)

Therefore, the utilityUp of immediately transmittingpkt to

pj in tPack-2hopis

Ug =

8
>>>>>>><

>>>>>>>:

U0
g if

t 0
f

t g
(L ¡ sg) · L ¡ s0

f

and
t 0

f

t p
(L ¡ sp) · L ¡ s0

f ¡
t 0

f

t g
(L ¡ sg)

U00
g if

t 0
f

t p
(L ¡ sp) · L ¡ s0

f

and
t 0

f

t p
(L ¡ sp) > L ¡ s0

f ¡
t 0

f

t g
(L ¡ sg)

U000
g otherwise

(40)
whereU0

g, U00
g and U000

g are de�ned in Equations (37) , (38)
and (39) respectively.

Therefore, the utilityUp of immediately transmittingpkt to
pj in tPack-2hopis

Uim = max(Up; Ug) (41)

Therefore, the scheduling rule intPack-2hopis that the
packet should be immediately transmitted ifUl < U im ,
otherwise the packet should wait at nodevj .

Approximation of sg and tg: parametersg and tg are
approximated as same assp andtp was approximated.

sg = sgj (42)

tg =
1
rg

=
tgj £ tpj £ sgj

tpj £ sgj ¡ tgj £ spj

(43)

Appendix 7: Complexity ofP0 when ETX is a convex function
of packet length

In this section, we will analyze the computation complexity
of P0 when ETX is a convex function of packet length. To
start with, we �rst de�ne the following two problems.

Problem PCC
0 : The same asP0 except that 1) the network

is a chain network. 2) ETX is a convex function of packet
length.

Problem PEC
0 : The same asP0 except that 1) the network is

a chain network. 2) ETX is an exponential function of packet
length.

We �rst prove PEC
0 is NP-hard. Then the NP-hardness of

PCC
0 is easily proved.
Theorem 11:PEC

0 is NP-hard regardless of re-aggregation.
Proof:

We �rst study the case where re-aggregation is prohibited.
Lemma 1:PEC

0 is NP-hard when re-aggregation is prohib-
ited.

Proof: We �rst de�ne a new problem as follows:

Problem Psubg
0 : there aren elements generated at different

time at nodeA, each of which has an individual deadline
and an arbitrary integer length. A packet can hold at most K
elements and ETX is an exponential function of packet length.
Find a packing scheme to send alln elements from nodeA
to its parent nodeB such that the sum of ETX of all packets
are minimized.

Lemma 2:Psubg
0 is NP-hard.
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Proof: We prove this lemma by a reduction from the
PARTITION problem.

PARTITION Problem: Given a �nite set A and a size
s(a) 2 Z + for eacha 2 A, �nd a subsetA0 µ A such thatP

a2 A 0 s(a) =
P

a2 A ¡ A 0 s(a).
Given any instance X of PARTITION problem, we can

reduce it to an instance Y of problemPsubg
0 :

Given a �nite setA of elements and a sizes(a) 2 Z + for
eacha 2 A, any two elements inA can be packed together
and a packet can at most elements with length

P
a2 A s(a).

ETX is an exponential function of packet length with basep,
wherep > 1. �nd a subsetA0 µ A such thatp

P
a 2 A 0 s(a) +

p
P

a 2 A ¡ A 0 s(a) is no greater than2p
P

a 2 A s ( a )
2 .

We can easily �nd that there exists a solution to X if
and only if there exists a solution to Y sincep

P
a 2 A 0 s(a) +

p
P

a 2 A ¡ A 0 s(a) ¸ 2p
P

a 2 A s ( a )
2 and the equal sign holds if and

only if
P

a2 A 0 s(a) =
P

a2 A ¡ A 0 s(a). Therefore, problem
P0

0 ¡ sub ¡ general is at least as hard as the PARTITION
problem, which means it is NP-hard.

Since problemPsubg
0 is NP-hard, solving the following

problem is also NP-hard.

multiple-Psubg
0 : Solve n instances ofPsubg

0 with total set
sizejA(i )j = i; i = 1 ; :::; n, andA(i ) equal to the partition of
A(i ¡ 1) plus an element with unit length.

The NP-hardness of this problem is out of question since
we already proved Lemma 2. Given an instance X of multiple-
Psubg

0 , we can transform it to an instance Y ofPEC
0 as follows.

De�ne a chain withn + 1 nodes, labeled as1; 2; :::; n; n + 1 .
Noden + 1 is the sink and node1 is the leaf node. De�ne the
link reliability of link (i; i +1) , pi;i +1 is far less thanpi +1 ;i +2 .
And put thei th Psubg

0 on the nodei . And de�ne the latency
requirement of each element to be very large so that each two
unit element can get packed.

Now we proved that solving Y is equivalent to solve X.
Sincepi;i +1 ¿ pi +1 ;i +2 , to get the optimal solution to Y, we
need solve the �rstPsubg

0 problem, then the second, and so on,
which is exactly the same way to solve X. Therefore,PEC

0 is
NP-hard when reaggregation is prohibited.

Next, we study the complexity ofPEC
0 when re-aggregation

is not prohibited.
Lemma 3:PEC

0 is NP-hard when re-aggregation is not
prohibited.

Proof: We de�ne another new problem as follows:

Problem Psub
0 : there aren elements generated at different

time at nodeA, each of which has an individual deadline and
the same integer length. A packet can hold at most K elements
and ETX is an exponential function of packet length. Find a
packing scheme to send alln elements from nodeA to its
parent nodeB such that the sum of ETX of all packets are
minimized.

Lemma 4:P0sub
0 is NP-hard.

Proof: We can modelPsub
0 on a multiple-interval graph

model. The transformation from interval graph to multiple-
interval graph is straightforward. For each nodev, we de�ne
a setSv of intervals. Any two nodesv andu are adjacent if
and only if Sv

S
Su 6= ; . We provePsub

0 by a reduction from
PARTITION INTO TRIANGLES problem.

The NP-hardness of the PARTITION INTO TRIANGLES
problem is proved by Schaefer in 1974 by a reduction from
X3C problem. There is another proof by Mirko Morandini in
[46]. In this paper, PARTITION INTO TRIANGLES problem
is proved to be NP-hard via a simpler reduction from 3DM
problem. The author proved that PARTITION INTO TRIAN-
GLES problem is NP-hard even in 3-partite graph.

In [47], the authors showed that any r-partite graph can
be modeled as a multiple-interval graph. Therefore, the PAR-
TITION INTO TRIANGLES problem is also NP-hard in
multiple-interval graph.

We can then easily make a reduction from any instance of
PARTITION INTO TRIANGLES toPsub

0 since every instance
of PARTITION INTO TRIANGLES is an instance ofPsub

0
with packet size equal to 3 and a link reliability ensuring3 is
the optimal packet size. Therefore, the problemPsub

0 is NP-
hard.

Combining the proof when re-aggregation is prohibited and
the previous lemma, we can easily prove thatPEC

0 is NP-hard
when re-aggregation is not prohibited..
Therefore,PEC

0 is NP-hard regardless of re-aggregation.
SincePEC

0 is also a special case ofPCC
0 , PCC

0 is also NP-
hard.
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