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ABSTRACT

Centralized data plane verification (DPV) faces significant scalabil-
ity issues in large networks (i.e., the verifier being a performance
bottleneck and single point of failure and requiring a reliable man-
agement network). We tackle this scalability challenge by intro-
ducing Tulkun, a distributed, on-device DPV framework. Our key
insight is that DPV can be transformed into a counting problem
on a directed acyclic graph, which can be naturally decomposed
into lightweight tasks executed at network devices, enabling fast
data plane checking in networks of various scales and types. With
this insight, Tulkun consists of (1) a declarative invariant speci-
fication language, (2) a planner that employs a novel data struc-
ture DPVNet to systematically decompose global verification into
on-device counting tasks, (3) a distributed verification messaging
(DVM) protocol that specifies how on-device verifiers efficiently
communicate task results to jointly verify the invariants, and (4)
a mechanism to verify invariant fault-tolerance with minimal in-
volvement of the planner. Extensive experiments with real-world
datasets (WAN/LAN/DC) show that Tulkun verifies a real, large DC
in 41 seconds while others tools need minutes or up to tens of hours,
and shows an up to 2355X speed up on 80% quantile of incremental
verification with small overhead on commodity network devices.
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1 INTRODUCTION

There has been a long line of research on data plane verification [3,
4,7,34, 37, 41, 43-45, 53, 55, 61, 74, 82, 83, 85, 86, 90, 92, 93]. Earlier
tools analyzed a snapshot of the complete data plane of the network
to identify network errors (e.g., blackholes, waypoint violation and
forwarding loops) [3, 4, 34, 44, 53, 55, 61, 74, 75, 82, 83, 85, 86, 90, 92];
and recent solutions focus on incremental verification (i.e., verifying
forwarding rule updates) [7, 37, 41, 43, 45, 92, 93]. State-of-the-art
DPV tools (e.g., [93]) can achieve an incremental verification time
of tens of microseconds per rule update.

Centralized DPVs do not scale. Despite the substantial progress
in accelerating DPV, existing tools employ a centralized architecture,
lacking the scalability needed for deployment in large networks.
Specifically, they use a centralized verifier to collect the data plane
from each network device and verify the invariants. This verifier
becomes the performance bottleneck and the single point of failure
(PoF) of DPV tools, e.g., our test shows that it takes APKeep [93] ~1
hour to verify a 48-ary fattree (§9.3). More importantly, this design
requires a management network to provide reliable, low-latency
connections between the server and network devices, which itself
is hard to build for large-scale networks [22].

Some studies [7, 34, 41, 90] have attempted to tackle these limi-
tations of centralized DPV. Libra [90] partitions the IP-prefix based
data plane into disjoint packet spaces to achieve parallel verification
in a cluster, but it cannot efficiently partition a data plane that for-
wards on an arbitrary mix of headers. Azure RCDC [41] partitions
the data plane by device and verify the availability of all shortest
paths in parallel in a cluster, but it can only verify this specific
invariant. Flash [34] proposes to process massive data plane rules
in batch to accelerate the computation of equivalence classes, but
it is slow in incremental verification. To relax the need of a reliable,
low-latency management network, Flash [34] proposes an early
detection mechanism to detect data plane violations with incom-
plete information. However, our test using its open-sourced proto-
type [33] shows that even if the verifier misses the updated rules
of only three randomly chosen devices, in 9 out of 11 LAN/WAN
datasets, Flash detects zero errors in 80% of the experiment cases.

In this paper, we systematically tackle the important problem of
how to scale DPV to be applicable in large networks. Not only can a
scalable DPV tool quickly find errors in large networks, it can also
support novel routing services (e.g., convergence-free routing [48,
69], real-time control plane repair [27], fast switching among mul-
tiple data planes [16, 49, 72], and interdomain DPV [17, 84]) to
respond to network errors quickly to improve network availability.
Proposal: Offload DPV to distributed computations on net-
work devices. Instead of continuing to squeeze incremental per-
formance improvements out of centralized DPV, we embrace a
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distributed design to circumvent the inherent scalability bottleneck
of centralized design. Azure RCDC [41] takes the first step in this
direction by partitioning verification into local contracts of devices.
It gives an interesting analogy between local contracts and program
verification using annotation with inductive loop invariants, but
stops at communication-free local contracts for the particular all-
shortest-path availability invariant and validating them in parallel
on a centralized cluster. In contrast, we go beyond and show that for
a wide range of invariants (e.g., reachability, multicast and anycast),
with lightweight tasks running on commodity network devices and
limited communication among them, we can verify these invariants
in a compositional way, achieving scalable DPV in generic settings.
Key insight: Transform DPV to distributed counting. The
fundamental challenge in realizing distributed verification is how
to allocate lightweight tasks running on commodity network de-
vices because they have little spare computation power. While our
position paper suggested the promise of distributed DPV [81], it
fell short in answering several important questions, including (1)
how to specify and verify generic, common invariants efficiently,
(2) how to verify data planes with packet transformations, (3) how
to minimize the information exchange between devices to reduce
the overhead, and (4) how to efficiently verify the fault-tolerance
of invariants. To this end, we design Tulkun, a generic, distributed,
on-device DPV framework, with a key insight: the problem of DPV
can be transformed into a counting problem in a directed acyclic
graph (DAG) representing all valid paths in the network; the latter
can be decomposed into lightweight tasks at nodes on the DAG that
are distributively executed at corresponding devices, enabling fast
DPV in networks of various scales with scalability approximately
linear to the network diameter. As depicted in Figure 1, Tulkun has
four key designs (D1-D4):

D1: A declarative invariant specification language (§3). This
language abstracts an invariant as a tuple of packet space, ingress
devices and behavior, where a behavior is a predicate on whether the
paths of packets match a pattern specified in a regular expression.
It allows operators to flexibly specify common invariants studied
by existing DPV tools (e.g., reachability, blackhole-freeness, and
waypoint), and more advanced, yet understudied invariants (e.g.,
multicast, anycast, no-redundant-delivery, and all-shortest-path
availability).

D2: A verification planner to allocate tasks to devices (§4).
Given an invariant, the planner leverages the automata theory [50]
to multiply its path pattern regular expressions and the network
topology to compute DPVNet, a DAG compactly representing all
paths in the network that satisfies the path patterns in the invari-
ant, and transforms the DPV problem into a counting problem on
DPVNet. The latter can be solved by a reverse topological traversal
along DPVNet. In its turn, each node in DPVNet takes as input the
data plane of its corresponding device and the counting results
of its downstream nodes to compute for different packets, how
many copies of them can be delivered to the intended destinations
along downstream paths in DPVNet. This traversal can be naturally
decomposed into on-device counting tasks, one for each node in
DPVNet, and distributed to the corresponding network devices. We
design optimizations to compute the minimal counting information
of each node in DPVNet to send to its upstream neighbors, and prove
that for invariants like all-shortest-path availability, their minimal
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Figure 1: The architecture and workflow of Tulkun.

counting information is an empty set, i.e., the local contracts in
Azure RCDC [41] is a special case of Tulkun.

D3: On-device verifiers equipped with a DVM protocol (§5).
On-device verifiers execute the counting tasks specified by the
planner and share their results with neighbor devices to collabora-
tively verify the invariants. We are inspired by vector-based routing
protocols [56, 64] to design a DVM protocol that specifies how
neighboring on-device verifiers communicate counting results in
an efficient, correct way.

D4: Minimizing planner-verifiers communication (§6). To
avoid the planner becoming the scalability bottleneck, we design a
mechanism to let on-device verifiers check the fault-tolerance of
invariants with minimal involvement of the planner. Specifically,
the planner precomputes a fault-tolerant DPVNet representing the
union of all valid paths in all operator-specified failure scenes and
sends tasks to verifiers. When failures happen, verifiers adaptively
adjust their tasks to count along paths in the DPVNet corresponding
to the updated topology, without contacting the planner.
Implementation (§8). We implement a prototype of Tulkun and
release it as an open source project [79] with a set of demos [78].
Tulkun is being evaluated by a couple of major vendors to integrate
into their commodity switches. Our proposal to integrate Tulkun
as a feature of SONIC is also under review by the community [65].
Evaluation results (§9). We evaluate Tulkun extensively using
real-world datasets, in hardware testbed and simulations. Tulkun
consistently outperforms centralized DPV tools under various net-
works (WAN/LAN/DC) and DPV scenarios: (1) Verifying a real, large
DC in less than 41 seconds while the state-of-the-art DPV tools
take minutes and the classic ones take tens of hours; (2) Achieving
an up to 2355X speedup on 80% quantile of incremental verification,
with little resource overhead.

2 OVERVIEW

This section introduces some key concepts in Tulkun, and illustrates
its workflow using an example.

2.1 Basic Concepts

Data plane model. For ease of exposition, given a network device,
we model its data plane as a match-action table, where the entries
are ordered in descending priority. Each entry has a match field to
match packets on packet headers (e.g., TCP/IP 5-tuple) and an action
field to perform packet actions. Possible actions include modifying
the headers of the packet and forwarding the packet to a group of
the next-hops [25, 41]. An empty group means the action is to drop
the packet. If an action forwards the packet to all next-hops in a
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Match Action Match Action
A dstIP = 10.0.0.0/24 fwd(ALL, {B,W}) | B [dstIP = 10.0.0.0/24 drop
dstIP = 10.0.1.0/24 , dstPort = 80| fwd(ANY, {B,W}) dstIP = 10.0.1.0/24 | fwd(ALL, {D})

dstIP = 10.0.1.0/24 , dstPort # 80 fwd(ALL, {W})

p: dstIP =10.0.0.0 S
q: dstlP = 10.0.1.0,

dstPort = 80

S [ Match [ Action | Match [ Action |
[dstiP = 10.0.0.0/23[ fwd(ALL, {A}) | W [dstIP = 10.0.0.0/23] fwd(ALL, {D}) |

(a) An example network. p has 1 universe of 2 traces: {[S, A, B], [S,A, W,D]}.

q has 2 universes of 1 trace each: {[S,A,B,D]} and {[S,A, W,D]}.

Invariant: all packets entering the network from S with a destination IP in

10.0.0.0/23 must be delivered to D in a simple path waypointing W.

10.0.0.0/23

| (dstIP = 10.0.0.0/23, [S], S .* W .* D and loop_free, "exist >=1")

(b) An example invariant.
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[(Py, 0)] [Py 1] @
(P;UP,, 1), \7

(P,0]

[(P,UP,, 1),
(P, [0, 1])]

[(Py, 1)1

[(P3UP,, 1),

[(P,UP,, 1), [(Py, 1)] (P, 0)]

(P3, [0, 1])]

iP,: dstIP=10.0.0.0/23
!P,: dstIP=10.0.0.0/24
1P5: dstlP=10.0.1.0/24, dstPort=80

[(Py, 1)]
: Updated couting when B updates its DP to forward P3 UP4 to W.
(c) The DPVNet and the counting process.

Figure 2: An illustration example to demonstrate the workflow of Tulkun.

non-empty group, we call it an ALL-type action. If it forwards the
packet to one of the next-hops in a non-empty group, we call it an
ANY-type action. Given an ANY-type action, we do not assume
any knowledge on how the device selects one next-hop from the
group. It is because this selection algorithm is vendor-specific, and
sometimes a blackbox [25].

Packet traces and universes. Inspired by NetKAT [4], we intro-
duce the concept of packet trace to record the state of a packet as
it travels from device to device, and use it to define the network
behavior of packet forwarding. When p enters a network from an
ingress device S, a packet trace of p is defined as a non-empty se-
quence of devices visited by p until it is delivered to the destination
device or dropped.

However, due to ALL-type actions, a packet may not be limited
to one packet trace each time it enters a network. For example, in
Figure 2a, the network forwards a packet p with a destination IP
10.0.0.0 along a set of two traces {[S, A, B], [S, A, W, D]} because A
forwards it to both B and W. We denote this set to be a universe of
packet p from ingress S. In addition, with the existence of ANY-type
actions, a packet may traverse one of a number of different sets
of packet traces (universes) each time it enters a network. In the
same example, consider a packet g with a destination IP 10.0.1.0
and a destination port 80. When it enters the network in different
instances, the network may forward q according to the universe
{[S, A, B, D]} or the universe {[S, A, W, D]} because A forwards ¢q
to either B or W. These universes (each being a set of traces) can be
thought of as a "multiverse" - should the packet enter the network
multiple times, it may experience different fates each time.

The notion of universes is a foundation of Tulkun. We are in-
spired by multipath consistency [24], where a packet is either ac-
cepted on all paths or none at all, but go beyond. For each invariant,
we verify whether it holds in all universes.

2.2 Workflow

We demonstrate Tulkun’s workflow with the network in Figure 2a
and an invariant: for all packets destined to 10.0.0.0/23, when enter-
ing the network at S, they must reach D via a simple path passing
W. Tulkun verifies it in three phases.

2.2.1 Invariant Specification. In Tulkun, operators specify veri-
fication invariants using a declarative language. An invariant is
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specified as a (packet_space, ingress_set, behavior) tuple. The se-
mantic means: for each packet p in packet_space entering the
network from any device in ingress_set, the traces of p in all its
universes must satisfy the constraint specified in behavior, which is
specified as a tuple of a regular expression of valid paths path_exp
and a match operator. Figure 2b gives the program of the example
invariant, where loop_free is a shortcut in the language for a reg-
ular expression that accepts no path with a loop. It specifies that
when any p destined to 10.0.0.0/23 enters from S, at least 1 copy of
it will be delivered to D along a simple path waypointing W.

2.2.2  Verification Decomposition and Distribution. Given an in-
variant, Tulkun uses a planner to decide the tasks to be executed
distributively on devices to verify it. The core challenge is how to
make these on-device tasks lightweight, because a network device
typically runs multiple protocols (e.g., SNMP, OSPF and BGP) on
a low-end CPU, with little computation power to spare. To this
end, the Tulkun planner employs a data structure called DPVNet to
decompose the DPV problem into small on-device verification tasks,
and distribute them to on-device verifiers for distributed execution.
From invariant and topology to DPVNet. The planner lever-
ages the automata theory [50] to multiply the regular expression
path_exp and the topology and get a DAG called DPVNet. Similar
to the product graph [11, 39, 66], a DPVNet compactly represents
all paths in the topology that match path_exp. It is decided only by
path_exp and the topology, and is independent of the actual data
plane of the network.

Figure 2c gives the DPVNet in our example. Devices in the net-

work and nodes in DPVNet have a 1-to-many mapping. Each node
u in DPVNet has a concatenation of u.dev and an integer as its
identifier. For example, device B in the network is mapped to Bl
and B2 in DPVNet, because the regular expression allows packets
to reach D via [B,W, D] or [W, B, D].
Backward counting along DPVNet. With DPVNet, a DPV problem
is transformed into a counting problem on DPVNet: given a packet
p, can the network deliver a satisfactory number of copies of p to the
destination node along paths in the DVNet in each universe? In our
example, the problem of verifying whether the data plane of the
network (Figure 2b) satisfies the invariant is transformed into the
problem of counting whether at least 1 copy of each p destined to
10.0.0.0/23 is delivered to D1 in Figure 2c in all of p’s universes.
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This counting problem can be solved by traversing DPVNet in
reverse topological order. In its turn, each node u takes as input (1)
the data plane of u.dev and (2) for different p in packet_space, the
number of copies that can be delivered from each of u’s downstream
neighbors to the destination, along DPVNet, by the network data
plane, to compute the number of copies that can be delivered from
u to the destination along DPVNet by the network data plane. In
the end, the source node of DPVNet computes the final result.

Figure 2c illustrates this process. We use Py, Py, P3, P4 to repre-
sent the packet spaces {dstIP = 10.0.0.0/23}, {dstIP = 10.0.0.0/24},
{dstIP = 10.0.1.0/24,dstPort = 80}, and {dstIP= 10.0.1.0/24,
dstPort # 80}, respectively. Py, P3 and P4 are disjoint and P; =
Py U P3 U Py4. Each u in DPVNet initializes a (packet space, count)
mapping (P1, 0), except for D1 that initializes the mapping as (P1, 1)
(i.e., one copy of any packet in P; will be sent to the correct external
ports). We traverse all the nodes in DPVNet in reverse topological
order to update their mappings. Each node u checks the data plane
of u.dev to find the set of next-hop devices u.dev will forward P;
to. If the action of forwarding to this next-hop set is of ALL-type,
the mapping at u can be updated by adding up the count of all
downstream neighbors of u whose corresponding device belongs
to the set of next-hops of u.dev for forwarding P;. For example,
node W1 updates its mapping to (P;, 1) because W forwards P; to
D. B2 updates to [(Pa,0), (P3 U P4, 1)] because B forwards Pz U Py
to D, but drops P2. However, B1 does not update its mapping be-
cause B does not forward to W. Similarly, although W2 has two
downstream neighbors B2 an D1, each with an updated mapping
(P1,1), in its turn, W2 updates its mapping to (P, 1) instead of
[(P2, 1), (P3 U P4, 2)], because W only forwards P; to D, not B.

Given a node u in DPVNet, if the action of forwarding is of
ANY-type, the count may vary at different universes. As such,
we update the mapping at u to record these distinct counts. For
example, A would forward Ps to either B or W. As such, in one
universe where A forwards Ps to B, the mapping of P3 at Al is
(P3,0), because B1’s updated mapping is (P, 0) and P3 C P;. In the
other universe where A forwards P3 to W, the mapping of P3 at Al
is (P3, 1) because W3’s updated mapping is (P, 1). Therefore, the
updated mapping of P3 at Al is (Ps, [0, 1]), indicating the different
counts at different universes. In the end, the updated mapping of S1
[(P2UP4, 1), (P3, [0, 1])] is the final counting results, indicating that
Figure 2a does not satisfy the invariant in Figure 2b in all universes,
i.e., the network data plane is erroneous.

Counting decomposition and distribution. This counting al-
gorithm allows a natural decomposition into on-device counting
tasks to be executed distributively on network devices. For each
node u in DPVNet, an on-device counting task: (1) takes as input
the data plane of u.dev and the results of on-device counting tasks
of all downstream neighbors of u whose corresponding devices
belong to the set of next-hop devices u.dev forwards packets to;
(2) computes the number of copies that can be delivered from u to
the destination along DPVNet, by the network data plane in each
universe; and (3) sends the computed result to devices where its
upstream neighbors in DPVNet reside in. After the decomposition,
the planner sends the counting task of each u and the lists of u’s
downstream and upstream neighbors to device u.dev.

Minimizing planner-verifiers communication. One hurdle that
may make the planner the scalability bottleneck is fault tolerance,
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invs inv*
inv (packet_space, ingress_set, behavior,
[fault_scenes])
behavior == (match_op, path_exp) | not behavior
| behavior or behavior
| behavior and behavior
path_exp == (regular expression over the set of devices,
[length_filters])
match_op == exist count_exp | equal
exist_exp == ==N|>=N|>N|<=N|<N

Figure 3: The basic abstract syntax of the Tulkun invariant
specification language.

because an invariant may have different sets of valid paths under
different failure scenarios (e.g., shortest-path reachability under k-
link-failure). To this end, we design a mechanism consisting of fault-
tolerant DPVNet precomputation and online recounting to allow
on-device verifiers to verify the fault-tolerance of invariants with
minimal involvement of the planner. The communication between
the planner-verifiers is restricted to the cases when (1) the operator
makes planned topology changes or specifies new invariants; (2) a
data plane error is found by on-device verifiers; and (3) on-device
verifiers find failure scenes that are not pre-specified by operators.

2.2.3 Distributed, Event-Driven Verification using DVM Protocol.
On-device verifiers execute the tasks sent from the plannner in a
distributed, event-driven way. When events (e.g., rule update and
the arrival of neighbors’ updated results) happen, on-device veri-
fiers update the results of their tasks, and send them to neighbors
if needed. We design a DVM protocol that specifies how verifiers
incrementally update and communicate their task results efficiently
and correctly.

Consider a scenario in Figure 2, where B updates its action to
forward P3 U P4 to W, instead of D. The changed mappings of differ-
ent nodes are circled with boxes in Figure 2c. B locally updates the
results of B1 and B2 to [(P»,0), (P3UPy4,1)] and [(P1, 0)], and sends
the updates to A along (B1, A1) and W along (B2, W2), respectively.
Upon receiving the update, W does not update the mapping of W2
because W does not forward any packet to B. As such, W sends no
update to A along (W3, Al). In contrast, A updates its task result
of node A1l to [(Py,1)] because (1) the count of P2 and P4 at Al
does not change; (2) no matter whether A forwards Ps to B or W,
1 copy of each packet will be sent to D, and (3) P, U P3 U P4 = P;.
Finally, S updates its local result for S1 to [(Py, 1)], i.e., the invariant
is satisfied after the update.

3 SPECIFICATION LANGUAGE

Tulkun provides a declarative language for operators to specify
verification invariants based on the concepts of traces and universes.
Figure 3 gives its simplified grammar.

Language overview. On a high level, an invariant is specified by
a (packet_space , ingress_set , behavior) tuple, with semantics as
explained in §2.2.1. Operators can also include an optional field
fault_scenes in the tuple to specify fault tolerance of invariants
(see §6 for details). To specify behaviors, we use the building block
of (match_op, path_exp) entries. The basic syntax provides two
match_op operators. One is exist count_exp, which requires that
in each universe, the number of traces matching path_exp satisfies
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Invariants Tulkun specifications
Reachability [24, 53, 55] (P, [S], (exist >= 1, 5.7 D))
Isolation [24, 53, 55] (P, [S], (exist==0,5."D))

Loop-freeness [55] (P,[S], (exist == 0, ." and not((not X)*
or ((notX)*X(notX)*)) and ((notY)*
or ((notY)*Y(notY)*))...,))

Black hole freeness[55] (P, [S], (exist == 0, ." and not S.*D))

Waypoint reachability [43] (P, [S], (exist >=1,5.*W.*D))

Reachability with limited path | (P, [S], (exist >=1, SD[S.DIS..D))

length [43]

Different-ingress same reacha-
bility [45, 55]
All-shortest-path reachability
[41]
Non-redundant
[Tulkun]
Mulicast [Tulkun]

(P, [X, YT, (exist 5= 1, X."D[Y.* D))

(P, [S], (equal, (S."D, (== shortest)))

reachability | (P, [S], (exist==1,S."D))

(P, [S], ((exist >= 1,5."D) and (exist >=
1,S.E)))
(P,[S], ((exist >= 1,S.*D) and (exist ==
0,S.*E)) or ((exist == 0,S.*D) and (exist ==
1,S*E)))

Table 1: Tulkun specifications for selected invariants.

Anycast [Tulkun]

count_exp. For example, exist >= 1 specifies at least one trace
should match path_exp in each universe, and can be used to ex-
press reachability invariants. The other operator is equal, which
specifies an equivalence behavior: the union of universes for each
p in pkt_space from each ingress in ingress_set must be equal to
the set of all possible paths that match path_exp [41]. Operators
specify path_exp as a regular expression over the set of devices,
with an optional field length_filters to filter it with length con-
straints. For example, (S.”D, (<= shortest+ 1)) represents all paths
that match S.*D and have a hop count no more than that of the
shortest one plus 1. Behaviors can also be specified as conjunctions,
disjunctions, and negations of (match_op, path_exp) pairs.

These two operators can be used to form a wide range of invari-
ants in DPV. Table 1 provides examples of invariants that can be
specified and verified in Tulkun, and the corresponding specifica-
tions in the Tulkun language. For example, using exist count_exp,
operators can express simpler invariants (e.g., reachability, way-
point reachability, and loop-freeness) that are well studied by exist-
ing DPV tools [43-45, 83, 93], and more advanced invariants (e.g.,
multicast, anycast and no-redundant-delivery routing). Another
example is an invariant given in Azure RCDC [41], which requires
that all pairs of ToR devices should reach each other along a short-
est path, and all ToR-to-ToR shortest paths should be available in
the data plane. This can be formulated as an equal behavior on all
shortest paths across all universes (row 9 in Table 1).

Note that once an invariant is specified, Tulkun checks whether it

is consistently satisfied across all universes. As such, the multipath
consistency [24, 53] is expressed separately as reachability and
isolation invariants.
Convenience features. Tulkun builds and provides operators with
a (device, IP_prefix) mapping for network devices with external
ports (e.g., a ToR switch or a border router), where each tuple means
that IP_prefix can be reached via an external port of device. If an
invariant is submitted with inconsistencies between the destination
IPsin packet_space and the destination devices in its corresponding
path_exp, Tulkun will raise an error to operators.

The language provides syntax sugar to simplify the expression
of invariants. For example, it allows users to specify a device set
and provides device iterators. It provides shortcuts of behaviors,
e.g., loop_free, and length filters, e.g., shortest. It also provides a
third match_op called subset, which requires for packet p entering
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Figure 4: The finite automaton of S."W.*D with an alphabet
> ={S,W,A B D}.
the network from ingress S, the set of traces of p in each universe
is a non-empty subset of path_exp. A behavior subset path_exp
is a shortcut of (match >= 1 path_exp) and (match == 0 .* and
(not path_exp)). We omit their details for the sake of simplicity.
Expressiveness and limitation. This language can express all
"single-path" invariants that require the packet traces of one packet
space to satisfy a certain regular expression pattern. It covers all
invariants studied in DPV literature, except for middlebox traversal
symmetry [53] (i.e, S-D and D-S must pass the same middlebox).
We discuss how to extend Tulkun to specify and verify such "multi-
path" invariants that compare the packet traces of two packet spaces
(e.g., route symmetry and path node-/ link-disjointness) in §7.

4 VERIFICATION PLANNER

We introduce DPVNet and how to use it for verification decomposi-
tion assuming an invariant has one regular expression, and then
describe how to handle more complex invariants.

4.1 DPVNet

Given a path_exp and a network, DPVNet is a DAG representing
all paths in the network that matches path_exp. DPVNet can be
constructed in different ways (e.g., graph dual variables). We are
inspired by network synthesis [11, 39, 66] and leverage the automata
theory [50] for DPVNet construction.

Specifically, given a path_exp, we first convert its regular ex-
pression into a finite automaton (2, Q, F, qo, §). 2 is the alphabet
whose symbols are network device identifiers. Q is the set of states.
qo is the initial state. F is the set of accepting states.§ : Q XX — Q
is the state transition function. For example, Figure 4 shows the
finite automaton of S.*W.*D.

After converting path_exp to a finite automaton, the planner
multiplies it with the topology and gets a product graph G’ =
(V’,E’). Each node u € V’ has an attribute dev representing a
device in the network and an attribute state representing its state
in the finite automaton of path_exp. Given two nodes u,v € V’,
there exists a directed link (u,v) € E’ if (1) (u.dev, v.dev) is a link
in the network, and (2) §(u.state, v.dev) = v.state. If path_exp has
length filters, we trim G’ to only keep paths satisfying the filters.
Finally, the planner performs state minimization on G’ to remove
redundant nodes [36], and assigns each remaining node u a unique
identifier to get the DPVNet. An example of DPVNet was given in
Figure 2c. We refer readers to [50] for a comprehensive tutorial on
automata multiplication.

4.2 Verification Decomposition

Our key insight is to transform DPV to a counting problem on
DPVNet and decompose it into on-device counting tasks. Specifi-
cally, an invariant on p in the form of (exist count_exp, path_exp)
can be verified by counting whether the network can deliver a
satisfactory number of copies of p to the destination along paths in
the DPVNet in each universe. It can be solved by a reverse topologi-
cal traversal of DPVNet (Algorithm 1), during which each node u
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Algorithm 1: Count(DPVNet, p).

1 foreach u;, i =1,...,n in reverse topological order do
2 if w; is a destination then

3 L ci —1

4 else

5 foreach v; € Ng(u;) do

6 if v;.dev € u;.dev.fwd(p) then

7 L L bij — 1;

3

if u;.dev.fwd(p).type == ALL then

9 L Update c,, with Equation (1);
10 else
11 L Update c,, with Equation (2);

12 return c,;

counts the number of copies of p in all p’s universes that can reach
the destination from u.

Counting at nodes. Each u; only keeps unique counting of differ-
ent universes to avoid information explosion. If u; is a destination
in DPVNet, its count is 1. Denote the downstream neighbors of u;
in DPVNet as Ny(u;) = {v;};, and their counting results as sets
{co; }j- Let bij = 1if the group of next-hops for p on u;.dev includes
vj.dev, and 0 otherwise. Define ® as the cross-product sum operator
for sets, i.e, c1 ® ca = (a+bla € c1,b € c2). If uj.dev’s forwarding
action for p is of type ALL, the count of p at u; is,

1

For example, in Figure 2c, for packets in Pj, the count at W1 is [1],
the result of D1, because W forwards P; to only D.

Define @ as the union operator for sets. Let § = 1 if u;.dev
forwards p to at least one device that does not have a corresponding
node in Ny (u;), and 0 otherwise. If u;’s forwarding action for p is
of type ANY, the count of p at u; is,

= eaj:bij:l (Cvj), if § = 0,
l (®j:bij:1(cvj)) ®0, ifd=1.

Cu; = ®jip, ;=1 (ch)'

@

Still in Figure 2c¢, for packets in Ps, the count at A1 is [0, 1], the union
of [0] from B1 and [1] from W2 because A1’s device A forwards
packets in Ps to either B or W. The proof sketch of this counting
algorithm’s correctness is in Appendix A.1.

Distributed counting. This algorithm can be naturally decom-
posed into lightweight tasks, one for each node u in DPVNet, to
enable distributed counting. The planner sends u.dev the task of
u and its lists of downstream and upstream neighbors. u.dev re-
ceives the counts from v;.dev, where v; € Ny(u), computes c,
using Equations (1)(2), and sends ¢, to the corresponding devices
of all u’s upstream neighbors in DPVNet. In the end, the counts
at the source node of DPVNet (e.g., cs1 at S1 in Figure 2c) are the
numbers of copies of p delivered to the destination of DPVNet in all
p’s universes. The device of the source node can then easily verify
the invariant.

Optimizing counting result propagation. If there are a huge
number of paths in DPVNet, ¢, can be large due to ANY-type
actions at devices (e.g., a chained diamond topology). Letting u.dev
send the complete ¢, to the devices of u’s upstream neighbors
may result in large communication and computation overhead.
Given an invariant, we define the minimal counting information
of u as the minimal set of elements in ¢, that needs sending to its
upstream nodes so that the source node in DPVNet can correctly
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[P, (5.*D, 1)]

D [P, (S-*E, 0)

Match Action
P |fwd(ANY, {D, E})

[P, (5.*D, 0)
[P (5.7E, 1)]

E

(a) A network for anycast. (b) The correct DPVNet and counting.
Figure 5: Verifying anycast, an invariant with multiple
path_exp with different destinations.

verify the invariant, assuming arbitrary data planes at devices and
u not knowing the network topology.

For exist count_exp operation, suppose two sets c1, ¢z with all
non-negative elements. Forany x € ¢; andy € cz,a = x+y € ¢c1®c3
satisfies a > x and a > y. We then have:

PROPOSITION 1. Given an invariant with exist count_exp op-
eration, the minimal counting information of node u is min(cy)
(max(cy)) if count_exp is > N or > N (£ N or < N), and the
first min(|cy/|, 2) smallest elements in ¢, if count_exp is== N. The
proof'is in Appendix A.2.

For an invariant with an equal operator, we prove that the mini-

mal counting information of any u is 0. Specifically, no node u even
needs to compute c;,. It only needs to check if u.dev forwards any
packet specified in the invariant to all the devices corresponding
to the downstream neighbors of u in DPVNet. If not, a network
error is identified, and u.dev can immediately report it. This design
enables local verification on generic equivalence invariants, making
the local contracts on all-shortest-path availability in RCDC [41] a
special case.
Computing consistent counting results. Tulkun guarantees
the eventual consistency of counting. Counting tasks are event-
driven. Given an event (e.g., a rule update or a count update received
from the device of a downstream neighbor of u), u.dev updates the
counting result for u, and sends it to the devices of u’s upstream
neighbors if the result changes. As such, assuming the network
becomes stable at some point, the device of the source node of
DPVNet will eventually update its count result to be consistent with
the network data plane.

4.3 Compound Invariants

We introduce how to decide on-device tasks for invariants with
a logic combination of (exist count_exp, path_exp) pairs since
the equal operator can be verified locally. Because an invariant
with path_exps of different sources can be handled by adding a
virtual source device connected to all the sources, we focus on the
destinations of path_exps.
Regular expressions with different destinations. A natural
strawman is to build a DPVNet for each path_exp, let devices count
along all DPVNets and cross-multiply the results at the source.
However, it is incorrect. Consider an anycast invariant for S to
reach D or E, but not both (Figure 5a). It is satisfied in the net-
work. But if we build two DPVNets, S1 — D1 and S2 — E1, one
for each destination. After counting on both DPVNets, S1 and S2
each get [0,1] for D1 and E1, respectively. The cross-product is
[(0,0), (0,1),(0,1), (1,1)], raising a false-positive network error.
To address this issue, for such an invariant, we first construct
a single DPVNet representing all paths in the network that match
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(b) The updated topology with
virtual destinations.

Figure 6: Verifying an invariant with multiple path_exps with
the same destination.

(a) A network and its data plane.

at least one regular expression in path_exps by multiplying the
union of all regular expressions with the topology. We then spec-
ify one counting task for one regular expression at every node in
DPVNet, including all destination nodes. Consider the anycast ex-
ample. The planner computes one DPVNet in Figure 5b. Each node
counts the number of packets reaching both D and E. The count
of D11is [(S.*D, 1), (S.*E, 0)] and E1is [(S.*D,0), (S.*E, 1)]. After
51 receives these results and processes them using Equation (2), it
determines that in each universe, a packet is sent to D or E, but not
both, i.e., the invariant is satisfied.

Regular expressions with the same destination. Following the
case of different destinations, one strawman is to also construct
a single DPVNet for the union of such path_exps. However, be-
cause they have the same destination, the counting along DPVNet
cannot differentiate the counts for different path_exps, unless the
information of paths is collected and sent along with the counting
results. That would lead to large communication and computation
overhead at devices.

Another strawman is to construct one DPVNet for one path_exp,
count separately and aggregate the result at the source in cross-
product. But false positives can arise again. Consider Figure 6a and
aninvariant (P, [S], (exist >= 2, (S.*D and loop_free) or (exist >=
1,5*W.*D and loop_free))), which specifies at least two copies
of each packet in P should reach D along a simple path, or at
least one copy should reach D along a simple path passing W. Fig-
ure 6a satisfies this invariant. But if we construct a DPVNet for
each path_exp and perform counting separately, S will receive a
count [1, 2] for reaching D with a simple path, and a count [0, 1]
for reaching D with a simple path passing W. The cross-product
[(1,0),(1,1),(2,0), (2,1)] raises a phantom error.

We add virtual destination devices to handle such invariants.
Suppose an invariant has m (exist count_exp;, path_exp;) pairs
where path_exp;s have the same destination D. We change D to
D! and add m — 1 virtual devices D? (i = 2, ..., m). Each D' has the
same set of neighbors as D does in the network topology. We then
rewrite the destination of path_exp; to D' (i = 1,..., m). Figure 6b
gives the updated topology to handle the invariant above.

Afterward, we take the union of all path_exps, and intersect it
with an auxiliary path_exp specifying any two D', D/ should not
co-exist in a path. We then multiply the resulting regular expression
with the new topology to generate one single DPVNet. Counting
can then proceed as the case for regular expressions with different
destinations, by letting each device treat all its actions forwarding to
D as forwarding to all D's, and adjust Equations (1)(2) accordingly.

5 DVMPROTOCOL

Given link (u,v) in DPVNet, DVM defines the format and order of
messages v.dev sends to u.dev, and the actions u.dev takes when

158

ACM SIGCOMM 23, September 10-14, 2023, New York, NY, USA

receiving the messages. DVM is inspired by vector-based routing
protocols [56, 64]. One distinction is that it needs no loop-prevention
mechanism. It is because the messages are sent along the reverse
direction in the DAG DPVNet. As such, no message loop will be
formed. For ease of presentation, we introduce DVM assuming a
single destination.

5.1 Information Storage

Each device stores two types of information: LEC (local equivalence
class) and CIB (counting information base). Given a device X, a
LEC is a set of packets whose actions are identical at X. X stores
its LECs in a (packet_space, action) mapping called the LEC table.
We choose to encode packet sets as predicates using binary decision
diagram (BDD [14]), and use BDD-based DPV tools [83, 93] to
maintain a table of minimal number of LECs at devices. It is because
in DVM, devices perform packet set operations (e.g., U and N), which
can be realized efficiently using logical operations on BDD.

Given a device X, CIB stores for each X.node in DPVNet (i.e.,
nodes with a device ID X), for different packet sets, the number of
packet copies that can reach from X.node to the destination node
in DPVNet. For each X.node, X stores three distinct types of CIB:

e CIBIn(v) for each of X.node’s downstream neighbors v: it stores
the latest, unprocessed counting results received from v in a
(predicate, count) mapping;

e LocCIB(X.node): it stores for different predicates, the latest num-
ber of packet copies that can reach from X.node to the destina-
tion node in (predicate, count, action, causality) tuples, where
the causality field records the input to get the count field (i.e.,
the right-hand side of Equations (1)(2));

e CIBOut(X.node): it stores the count results to be sent to the
upstream nodes of X.node in (predicate, count) tuples.

Figure 7a gives an example DPVNet, with the counts of node v, z, the
LEC table of u.dev, and CIBIn(v), CIBIn(z) and LocCIB(u) at node
u. Specifically, the causality field is ([v, P, 1], [z, P1, 1]) because
the count 2 of predicate P; is computed via the results of both v
and z (i.e, 2 =1+1).

5.2 Message Format and Handling

Messages in DVM are sent over TCP connections to ensure in-order
message delivery and processing. DVM defines control messages to
manage the connections between devices. We focus on the UPDATE
message that is used to transfer counting results between devices.
UPDATE message format. An UPDATE message has three fields:
(1) intended link: along which link in DPVNet the result is prop-
agated oppositely ((e.g., (W1,D1) or (W2, D1) in Figure 2c)); (2)
withdrawn predicates: a list of predicates whose counting results
are obsolete; and (3) incoming counting results: a list of predicates
with their latest counts.

UPDATE message principle. DVM maintains an important prin-
ciple: for each UPDATE, the union of withdrawn predicates equal to
the union of the predicates of incoming counting results. It ensures
a node always receives the latest, complete counting results from
its downstream neighbors, guaranteeing the eventual consistency
between the verification result at the source of DPVNet and a stable
data plane.
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predicate | count action causality [ v ] Message(v) ocCIB(u)
p 2 fwd(ALL, (v, Py, 1], withdrawn predicates predicate| count action causality
: {z.dev, v.dev})| [z, P,, 1]) P, CIBIn(v)
i i i : fwd(ALL, ([z, Py, 1],
CIBIn(v CIBIn(z incoming counting predicate| count P 2 1
W) (2) — results ‘ ‘ ? {z.dev, v.dev})| [v, P, 1])
predicate | count predicate | count Predi Py 1
redicate| count P 0
Py 1 P, 1 P, 1 3 P 1 fwd(ALL, ([z, Py, 1],
LEC Table P, 0 : {z.dev, v.dev})| [v, P, 0])
predicate action _
P, fwd(ALL, {z.dev, v.dev}) [Pl' 1] Pl - PZ U P?’
(a) A DPVNet with LEC table of u.dev, CIBIn and LocCIB of u. (b) u.dev handles an UPDATE from v.deo to update CIBIn(v) and LocCIB(u).

Figure 7: An illustration example to demonstrate the key data structure and process of the DVM protocol.

UPDATE message handling. Consider link (u,v) in DPVNet. Sup-
pose u.dev receives from v.dev an UPDATE message whose intended
link is (u,v). u.dev handles it in three steps.

Step 1: updating CIBIn(v). u.dev updates CIBIn(v) by removing
entries whose predicates belong to withdrawn predicates and in-
serting all entries in incoming counting results.

Step 2: updating LocCIB(u). To update LocCIB(u), u.dev first
finds all affected entries, i.e., the ones that need to be updated. To be
concrete, an entry in LocCIB(u) needs to be updated if its causality
field has one predicate from v and belongs to the withdrawn pred-
icates of this message. It then updates the counting results of all
affected entries one by one. Specifically, for each pair of an affected
entry r and an entry r’ from the incoming counting results, u.dev
computes the intersection of their predicates. If the intersection is
not empty, a new entry r"¢" is created in LocCIB(u) for predicate
r.pred N r’.pred. The count of r™¢" is computed in two steps: (1)
perform an inverse operation of ® or @ between r.count and v’s
previous counting result in r.causality, to remove the impact of
the latter; and (2) perform ® or @ between the result from the last
step and r’.count to get the latest counting result. The action field
is the same as r. The causality of this entry inherits from that of r,
with a tuple (v, r’") replacing v’s previous record. After computing
all new entries, all affected entries are removed from LocCIB(u).

Figure 7b shows how u in Figure 7a processes an UPDATE mes-

sage from v.dev to update its CIBIn(v) and LocCIB(u).
Step 3: updating CIBOut(u). u.dev puts the predicates of all en-
tries removed from LocCIB(u) in the withdrawn predicates. For
all inserted entries of LocCIB(u), it strips action and causality,
merges entries with the same count value, and puts the results in
the incoming counting results.

After processing the UPDATE message, for each upstream neigh-

bor w of u, u.dev sends an UPDATE messaging consisting of an
intended link (w, u) and CIBOut(u).
Internal event handling. If u.dev has an internal event (e.g., rule
update or link down), we handle it similarly to an UPDATE message.
For example, if a link is down, we consider predicates forwarded
to that link update their counts to 0. The predicates whose for-
warding actions are changed by the update are considered with-
drawn predicates and the predicates in incoming count results of
an UPDATE message. Different from regular UPDATE messages,
no CIBIn(v) needs updating. The counts of newly inserted entries
in LocCIB(u) are computed by inverting ®/® and reading related
entries in different CIBIn(v)s. Predicates with new counts are in-
cluded as withdrawn predicates and incoming counting results in
CIBOut(u).
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Handling packet transformation. Suppose device X needs to
compute the counting for predicate; and it has a rule that trans-
forms packets in predicate; to packets in predicate; before for-
warding them. In DVM, for each X.node in DPVNet, X sends a SUB-
SCRIBE message sub(predicates, predicatey) to all v.devs, where v
is a downstream node of X.node, to specify that v should send the
counting result of predicatey, not predicate;, to X.node. v.dev then
follows this message to send the counting result of predicates in
UPDATE messages. X uses this received result to update the count-
ing result of predicate;, and sends it to the upstream neighbors of
X.node. If X’s packet transformation rule is updated later, X needs
to send new SUBSCRIBE messages accordingly.

6 MINIMIZING PLANNER-VERIFIERS
COMMUNICATION

We design a mechanism for on-device verifiers to check the fault
tolerance of invariants with minimal involvement with the planner,
avoiding the latter becoming the bottleneck.

Basic idea: precomputing fault-tolerant DPVNet and online
recounting. Given an invariant with specified fault tolerance, (e.g.,
shortest-path reachability under 2-link-failure), the planner com-
putes a DPVNet to represent the union of all valid paths in all fault
scenes, decomposes it into on-device tasks labeled with different
scenes, and sends them to on-device verifiers. Verifiers first per-
form counting along paths corresponding to the original topology.
When a fault scene happens, verifiers detecting link failures flood
them using a link state synchronization protocol [31, 32]. After syn-
chronization, the destinations recount along paths in the DPVNet
corresponding to this scene. If an unspecified fault scene or one
with no valid path in DPVNet happens, any device finding this
during flooding reports it to the planner.

Specifying fault-tolerance. Operators use the fault_scenes field
to specify the fault-tolerance of invariants. It is a set of fault scenes
A, f2, - . ., each expressed as a set of failed links. For example, (P, [S],
(exist >= 1, (S."D ), ({(A,B)}, {(B,W), (B,D)})) requires that S
should reach D not only when all links are up, but also when (A, B)
is down and when both (B, W) and (B, D) are down. Syntax sugars
are provided to simplify the expression (e.g., any_two for all 2-link-
failures).

Relating fault-tolerant DPVNet with length_filters. Given an
invariant, we compute its fault-tolerant DPVNet based on the length
_filters in its path_exp. A length filter is concrete if it stays the
same in all fault scenes as in the original topology (e.g., < 5 hops),
and is symbolic if it may change by fault scenes (e.g., == shortest).
Given a network G and an invariant ¥, denote the set of valid paths
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intolerable fault scenes:
{SA},{AB,AW},{BD,WD},
{SA,AB}, {SA,AW}, {SA,BW},
{SA,BD}, {SA,WD}

[0, {Aw}, {BW}, {WD},
{AW,WD}, {AW,BW}, {BW,WD}]

[0, {AB}, {BW}, {BD},
AB,BW}, {AB,BD}, {BW,BD}]

[0, {AW}, {BW}, {wD},
{AW,WD}, {AW,BW}, {BW,WD

[9, {Aw}, {BW}, {WD}
19, {AB}, {BW}, {BD},
{AW,WD}, {AW,BW}, (16 B}, (AB,BD)

{BW,BD}]

[, {AB}, {wD},
AB,WD}]

[9, {AB}, {wD},
{AB,WD}]

[0, {AB},
{wb}, {AB,WD}]

?, {AB},
{wb}, {AB,WD}]

Figure 8: Fault-tolerant DPVNet of (< shortest+1) reachability
from S to D in Figure 2a with 2-link-failure.

as R(G, ¥). Given a fault scene f, its topology G is a subgraph of
G. We have:

PROPOSITION 2. If'¥ has no symbolic length filter, for any fault
scene f, R(Gy,'¥) C R(G,¥). Otherwise, for any two fault scenes
f,f such that f’ C f, R(Gf, ¥) C R(Gf/,‘I’).

Computing fault-tolerant DPVNet. Given an invariant ¥ with
fault tolerance but no symbolic length filter, its fault-tolerant DPVNet
is the same as that without any failure, a direct result of Propo-
sition 2. For such an invariant, when a link fails, the verifiers on
the devices of this link do not flood the fault scene, but update the
counts of predicates forwarded along this link as 0 and propagate
these updated counts to other devices along the DPVNet.

Given an ¥ with symbolic filters and a network G, the planner
traverses all fault scenes, including the original topology, in as-
cending order of the number of failed links, to iteratively compute
valid paths for each scene and label them. For each fault scene f, if
R(G, ¥) does not use any link in f, the algorithm skips f because
R(G,¥) = R(Gy, ¥). Otherwise, it first computes the concrete val-
ues of symbolic length filters for paths that match reg_exp in Gy.
For each filter, it looks for a maximal subset fault scene f” that is
previously traversed and has the same filter values as f. If f’ is
found, it checks all the valid paths of f” and labels the ones that
still exist when all links in f — f fail as the valid paths of f. If no
f’ is found, the algorithm performs a breadth-first-search to find
the set of valid paths matching reg_exp and the filters in G¢. If no
valid path is found for f, Tulkun records it as an intolerable fault
scene. Intermediate results (e.g., paths matching reg_exp but not
the filters in Gy or the other way around) are stored for incremental
search in the next iteration.

The algorithm’s correctness also lies in Proposition 2. Figure 8
shows the fault-tolerant DPVNet of invariant (dstIP = 10.0.0.0/23,
[S], (exist >= 1, (S.*D, (<= shortest + 1)), (any_two)) in the
topology in Figure 2a.

7 DISCUSSION

Why not forward propagation? Although forward propagation
along DPVNet can also get the correct result, we choose backpropa-
gation because it allows each device to have counting results from
itself to the final destinations, which can be used by routing services
(e.g., convergence-free routing [48, 69] and fast switching among
data planes [49, 72]) to respond to network errors to improve avail-
ability. Forward propagation cannot provide such information.

Large networks with a huge number of valid paths. First,
our survey and private conversations with operators suggest that
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they usually want the network to use paths with limited hops, if
not the shortest ones. The number of such paths is small even
in large networks. Second, for invariants with a huge number of
valid paths, Tulkun verifies them via divide-and-conquer: divide
the network into abstracted one-big-switches, construct DPVNet on
this abstract network, and perform intra-/inter-partition distributed
verifications.

Incremental deployment. Tulkun can be deployed incrementally
in two non-exclusive ways. One is to assign an off-device instance
(e.g., VM) for each device without an on-device verifier, to play as
a verifier to collect the data plane from the device and exchange
messages with others based on DPVNet. It is a generalization of
RCDC, whose local verifiers are deployed in off-device instances.
The other is the divide-and-conquer above. We assign one instance
for each partition to perform intra-/inter-partition verification.
Verifying transient data planes. Tulkun currently guarantees
the eventual consistency between the verification result and the net-
work data plane. To verify transient data planes in networks where
the data plane frequently changes, we may extend Tulkun’s DVM
protocol to capture and verify stable snapshots of the network data
plane by leveraging Libra’s design on taking stable snapshots [90].
Local verification of invariants with exist operators. Consider
such an invariant, given a node u in a DPVNet, if we assume u knows
the network topology (e.g., through pre-configuration), under cer-
tain conditions, the minimal counting information of u could also be
0, the same as that for invariants with equal operators we proved
in §4.2. One such condition is u.dev is a cut of the network (e.g., A
in the example network in Figure 2a). A systematic exploration of
such conditions is an interesting future research question.
Multi-path comparison. To support "multi-path" invariants that
compare the packet traces of two packet spaces (e.g., route symme-
try and node-disjointness), Tulkun can extend its language with an
id keyword to refer to different packet spaces and allow users to
define trace comparison operators. It then constructs the DPVNet
for each packet space, lets on-device verifiers collect the actual
downstream paths and send them to upstream neighbors, and per-
forms user-defined comparison operations on the collected com-
plete paths.

Security and privacy risks. The on-device verifiers of Tulkun
may suffer from security vulnerabilities if their residing network
devices are breached. Preventing these breaches from happening is
an orthogonal research topic [46]. Tulkun currently has no privacy
issue because it operates in a single network. How to extend Tulkun
to an interdomain setting while preserving the privacy of different
networks is another open research question.

8 IMPLEMENTATION

Our prototype has ~9K lines of Java and Pyhon code, including a
verification planner and on-device verifiers (Figure 9). The planner
computes the DPVNet based on the invariant and topology, and
decides the on-device counting tasks.

In addition to security modules (i.e., authentication and autho-
rization interfaces) like those in other protocols (e.g., SNMP, OSPF
and BGP), an on-device verifier has (1) a LEC builder that reads
the data plane of the device to maintain a LEC table of a minimal
number of LECs, and (2) a verification agent that maintains TCP
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Figure 9: The implementation of Tulkun.

connections with the verifiers of neighbor devices, takes in the
LEC table and the DVM protocol UPDATE messages from neigh-
bor devices to update the on-devices CIBs, and sends out UPDATE
messages with latest counting results to neighbor devices, based
on counting tasks. For the verification agent, we use a thread pool
implementation, where a thread is assigned for a node in a DPVNet.
To avoid creating too many threads and hurting the system per-
formance, we design an opportunistic algorithm to merge threads
with similar responsibilities (e.g., invariants with different source
IP prefixes but same destination IP prefixes) into a single thread.
A dispatcher thread receives events (e.g., a LEC table update or a
DVM protocol UPDATE message), and dispatches events to the cor-
responding thread. A LEC table update is sent to all threads whose
invariants overlap with the update, and an UPDATE message is
dispatched based on the intended link field of the UPDATE message.
For predicate operation and transmission, we adapt and modify the
JDD [71] library to support the serialization and deserialization be-
tween BDD and the Protobuf data encoding [30], so that BDDs can
be efficiently transmitted between devices in UPDATE messages.

9 PERFORMANCE EVALUATION

We conduct extensive evaluations on Tulkun. Specifically, we study
four questions: (1) What is the capability of Tulkun in verifying
generic invariants? (§9.1) (2) What is the performance of Tulkun
in a testbed with different types of network devices, mimicking a
real-world WAN? (§9.2) (3) What is the performance of Tulkun in
various real-world, large networks under various DPV scenarios?
(§9.3) (4) What is the overhead of running Tulkun on commodity
network devices? (§9.4)

9.1 Functionality Demonstrations

We build a network of 5 switches in Figure 2a: 3 Mellanox [57], 1
Edgecore [19] and 1 UfiSpace [6], equipped with SONiIC [58] or
ONL [63]. We run demos to verify (1) loop-free, waypoint reacha-
bility from S to D in Figure 2b, (2) loop-free, multicast from S to C
and D, (3) loop-free, anycast from S to B and D, (4) different-ingress
consistent loop-free reachability from S and B to D, and (5) all-
shortest-path availability from S to C [41]. We run each demo with
correct and erroneous data planes. The network always computes
the right results. We also provide an interactive demo in [78].

9.2 Testbed Experiments

We add 1 Mellanox switch and 3 UfiSpace switches to mimic the
9-device INet2 WAN [59]. We install public dataset rules [59] on
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Network |#Device | #Links | #Rules Type | Network |#Device | #Links | #Rules Type
INet2 [51] 9 28 7.74x10¢ | WAN NTT 47 63 1.98x10% | WAN

B4-13 12 18 7.92x10¢ | WAN |AT2-1[19] 68 158 | 3.81x104 | WAN
STFD [4] 16 74 3.84x10° | LAN AT2-2 68 158 | 4.56x105 | WAN
AT1-1[19] 16 26 2.83x10¢ | WAN OTEG 93 103 | 7.22x105 | WAN

AT1-2 16 26 9.60x104 | WAN FT-48 2,880 | 55,296 | 3.31x108 | DC

B4-18 33 56 2.11x10° | WAN NGDC 6,016 | 43,008 | 3.23x107 | DC

BTNA 36 76 2.52x105 | WAN

Figure 10: Datasets statistics.

switches and inject propagation latencies between switches based
on INet2 topology [77]. We verify the loop-free, blackhole-free,
all-pair reachability along paths with (< shortest + 2) hops.
Experiment 1: burst update. We first evaluate Tulkun in the
scenario of burst update, i.e., all forwarding rules are installed to
corresponding switches all at once. Tulkun finishes the verifica-
tion in 0.99 seconds, outperforming the best centralized DPV in
comparison by 2.09x (Figure 11a).

Experiment 2: incremental update. After the burst update, we
randomly generate 10K rule updates and apply and verify them
one by one. For 80% of the updates, Tulkun finishes the incremental
verification < 5.42ms, outperforming the best centralized DPV in
comparison by 4.90x (Figure 11c). This is because in Tulkun, when
a rule update happens, only devices whose task results are affected
need to incrementally update their results, and only these changed
results are sent to neighbors incrementally. For most rule updates,
the number of these affected devices is small [80]).

9.3 Large-Scale Simulations

We implement an event-driven simulator to evaluate Tulkun in
various networks on a server with 2 Xeon 4210R CPUs.

9.3.1 Simulation Setup. We first introduce the settings.

Datasets. We use 13 datasets in Figure 10. Four are public ones and
the others are synthesized with public topologies [35, 40, 47, 67].
FT-48 is a 48-ary fattree [2]. NGDC is a real, Clos-based DC. For
WAN, we assign link latencies based on topologies [77]. For LAN
and DC, we assign a 10ys link latency.

Comparison methods. We compare Tulkun with five state-of-
the-art centralized DPV tools: AP [83], APKeep [93], Delta-net [37],
Veriflow [45] and Flash [34]. We also compare Tulkun with APT [86]
and Katra [7], two DPV tools designed to support packet transfor-
mation, in our technical report [80]. We reproduce Katra, and use
the open-sourced version of other tools.

Invariants. We verify the all-pair loop-free, blackhole-free, (<
shortest + 2)-hop reachability in §9.2 with 3-link-failure for WAN/
LAN and the all-ToR-pair shortest path reachability for DC. Tulkun
also verifies the local contracts of all-shortest-path availability of
DC, as RCDC does, in our technical report [80].

Metrics. In all simulations, Tulkun successfully finds all the errors
we injected. We compute the verification time as the period from
the arrival of rule updates at devices to the time when all invariants
are verified, including the propagation delays. For centralized DPV,
we randomly assign a device as the location of the verifier, and let all
devices send it their data planes along lowest-latency paths. We also
study Tulkun’s message overhead [80] and the latency of Tulkun
planner to compute DPVNet with different k-link-failures. Figure 13
shows that in 10 out of 11 topologies (removing AT1-2 and AT2-2
for deduplication), Tulkun computes 2-link-failure (3-link-failure)
tolerant DPVNet in <95s (<1440s).
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Figure 12: The verification time of Tulkun under fault scenes.

9.3.2  Results: Burst Update. Figure 11a gives the verification time
of Tulkun, and its acceleration ratio over other tools. For WAN/LAN,
Tulkun completes the verification in < 1.60s and achieves an up to
6.21x speedup than the fastest centralized DPV. For DC, Tulkun
finishes verifying NGDC in 40.45s, outperforming AP, APKeep and
Veriflow (10s of hours) by three orders of magnitude (Delta-net
reports memory-out error after 5 hours). Even compared with Flash
(297.265), a recent tool designed specifically to verify such large-
scale networks, Tulkun is still 7.4x faster. It is because Tulkun
decomposes verification into on-device tasks, which have a depen-
dency chain roughly linear to the network diameter. A DC has a
small diameter (e.g., 4 hops). On-device verifiers achieve a very high
level of parallelization, enabling scalability. The verification time
of all tools is in our technical report [80].

Note that Tulkun is slower than AP and Flash in AT1-1 and AT2-
1, but faster in AT1-2 and AT2-2 whose topologies are the same
pairwise. It is because the latter two have a much higher number
of rules (3.39x and 11.97X). The bottleneck of AP and Flash is to
transform rules into equivalence classes (EC), whose time increases
linearly with the number of rules. In contrast, Tulkun only computes
LEC on devices in parallel, and is not a bottleneck [80]. As such,
with more rules, Tulkun becomes faster than AP and Flash.

9.3.3  Results: Incremental Update. We evaluate Tulkun for incre-
mental verification using the same methodology as in §9.2. The 80%
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quantile verification time of Tulkun is up to 2355X% faster than the
fastest centralized DPV (Figure 11c). Among all datasets, Tulkun
finishes verifying at least 72.72% rule updates in less than 10ms,
while this lower bound of other tools is < 1% (Figure 11b). It is for
the same reason as in experiments (§9.2), and proves that Tulkun
enables scalable DPV under various networks and DPV scenarios.

9.3.4  Results: Fault-Tolerance. For each LAN/WAN, we generate
50 fault scenes of < 3 link failures based on the statistic of Mi-
crosoft’s WAN [95]. For each scene, we measure the verification
time of recounting along DPVNet with failure flooding (Figure 12a);
and generate 1K random rule updates after that to measure the
incremental verification time (Figure 12b and 12c). Tulkun consis-
tently outperforms others as in §9.3.3 and §9.3.2. It shows that by
computing a fault-tolerant DPVNet and online recounting, Tulkun
efficiently verifies fault-tolerant invariants without involving the
planner. We observe that Delta-net slightly outperforms Tulkun in
verifying the complete network with fault scenes in several datasets.
It is because in Tulkun, devices need to update their LECs after
fault scenes happen. In contrast, when there is no rule update in
fault scenes (i.e., the setting in Figure 12a), centralized DPVs do not
need to update their ECs. This observation shows that the EC data
structure of Delta-net (i.e., atom) is more effective than those of
other centralized DPVs in invariant checking. However, atom only
works for destination IP-prefix-based data planes.
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Figure 15: DVM UPDATE message processing overhead.

When there are rule updates in fault scenes (i.e., the setting in
Figure 12b and 12c), centralized DPVs provide comparable per-
formances as Tulkun does only in STFD, the campus network of
Stanford. It is because STFD has a much smaller scale than other
datasets, in terms of the number of devices, geo-locations and the
number of rules. This again demonstrates the scalability of Tulkun.

9.4 On-Device Microbenchmarks

We measure the overhead of Tulkun on-device verifiers on four
models of commodity switches. The fourth one is a Centec switch
using an ARM-based CPU and SONiC.
Initialization overhead. For each of 414 devices from WAN /
LAN and 6 devices from NGDC/Fattree (one edge, aggregation
and core switch, respectively), we measure the overhead of its
initialization phase in burst update (i.e., computing the initial LEC
and CIB), in terms of total time, maximal memory and CPU load,
on all four switch models. The CPU load is computed as CPU time
/(total time X number of cores). Figure 14 plots their CDFs. On all
four switches, all devices in the datasets complete initialization in
< 1.75s, with a CPU load < 0.48, and a maximal memory < 19.6MB.
The Centec switch has the worst time performance because it uses
an ARM-based CPU while other sue x86-based CPUs.
DVM UPDATE message processing overhead. For all 420 de-
vices in the datasets, we collect the trace of their received DVM
UPDATE messages in all the evaluations, replay them consecutively
on each switch, and measure the message processing overhead in
terms of total time, maximal memory, CPU load and per message
processing time (Figure 15). For 90% of devices, all four switches
process all UPDATE messages in < 0.29s, with a maximal memory
< 19.57MB, and a CPU load < 0.24. And for 90% of all 2895.62k
UPDATE messages, the switches can process it in < 3.52ms.
These results show that Tulkun on-device verifiers can be de-
ployed on commodity switches with little overhead.

10 RELATED WORK

Network verification includes CPV that checks errors in configura-
tions [1, 5, 8-10, 21, 23, 24, 26, 28, 29, 42, 62, 68, 73, 76, 87, 94]; and
DPV that checks errors in the data plane. Tulkun is a DPV tool, and
can help simulation-based CPV [24, 51, 54] verify the simulated DP.
Centralized DPV. Existing DPV tools [3, 34, 37, 41, 43-45, 53, 55,
61, 74, 75, 82, 83, 85, 86, 90, 92, 93] use a centralized verifier to
collect and analyze the data planes. Despite substantial optimiza-
tion efforts, centralized DPV does not scale due to the need for
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reliable verifier-network connections and the verifier being a bot-
tleneck and single PoF. They also lack explicit support for generic
invariants such as anycast, multicast, no redundant routing and
1+1 routing. Libra [90], RCDC [41] and Flash [34] focus on scale up
DPV using parallelization and batch processing. However, they are
still centralized designs with the limitations above. Our position
paper [81] proposed the idea of distributed DPV, but left many
important questions unanswered. In contrast, we design Tulkun
with several key components to systematically decompose DPV
into tasks executed on network devices, achieving scalable DPV on
generic invariants with little overhead and minimal involvement
of a centralized component.

Verification of stateful/programmable DP. Some studies in-
vestigate the verification of stateful DP [15, 60, 88, 89, 91] and
programmable DP (e.g., P4 [13]) [18, 52]. Extending Tulkun to state-
ful and programmable DP is an interesting future work.

Network synthesis. Synthesis [11, 20, 39, 66, 70] is complementary
to verification. Tulkun is inspired by some of them [11, 39, 66] to
use automata theory to generate DPVNet.

Predicate representation. Tulkun chooses BDD [14] to represent
packets for its efficiency. Recent data structures (e.g., ddNF [12] and
#PEC [38]) may benefit Tulkun.

11 CONCLUSION

We design Tulkun, a distributed DPV framework to achieve scalable
DPV by decomposing verification to lightweight on-device counting
tasks. Experiments demonstrate the benefits of Tulkun. This work
does not raise any ethical issues.
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Appendices are supporting material that has not been peer-
reviewed.

A PROOFS OF DPVNET BACKWARD
COUNTING

A.1 Proof Sketch of the Correctness of the
Counting Algorithm

For presentation purposes, we first summarize the backward count-
ing algorithm in DPVNet in Algorithm 1. Given a packet p and
a DPVNet, the goal of Algorithm 1 is to compute the number of
copies of p that can be delivered by the network to the destination
of DPVNet along paths in the DPVNet in each universe. Suppose
Algorithm 1 is incorrect. There could be three cases: (1) there exists
a path in DPVNet that is provided by the network data plane, but
is not counted by Algorithm 1; (2) There exists a path in DPVNet
that is not provided by the network data plane, but is counted by
Algorithm 1; (3) Algorithm 1 counts a path out of DPVNet. None of
these cases could happen because at each node u, Equations (1) (2)
only counts cy; of vj with b;; = 1, i.e, the downstream neighbors
of u whose devices are in the next-hops of u.dev forwarding p to.
As such, Algorithm 1 is correct.

A.2 Proof of Proposition 1

Consider ¢, of packet p at u, and an upstream neighbor of u, denoted
as w. Suppose u.dev is in the group of next-hops where w.dev
forwards p. Because of the monotonicity of ®, in each universe that
w.dev forwards p to u.dev, the number of copies of p that can be
sent from w to the destination in DPVNet is greater than or equal to
the number of copies of p that can be sent from u to the destination
in DPVNet. As such,

o When count_exp is > N or > N, each u only sends min(cy)
to its upstream neighbors. With such information, in the end,
the source node of DPVNet can compute the lower bound of the
number of copies of p delivered in all universes. If this lower
bound satisfies count_exp, then all universes satisfy it. If this
lower bound does not satisfy count_exp, a network error is found.

e When count_exp is < N or < N, each u only sends max(cy) to
its upstream neighbors. The analysis is similar, with the source
node computing the upper bound.

e When count_exp is == N, if ¢;, has more than 1 count, it means
any action to forward p to u would mean a network error. In this
case, u only needs to send its upstream neighbors any 2 counts
in ¢y to let them know that. If ¢;, has only 1 count, u sends it to
u’s upstream neighbors for further counting. Summarizing these
two sub-cases, u only needs to send the first min(|c,|, 2) smallest
elements in ¢, to its upstream neighbors.

With this analysis, we complete the proof of Proposition 1.
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B ARTIFACT APPENDIX

Abstract

The artifact provides an implementation of Tulkun using Java
and Python. It includes all key components in the paper and the
necessary datasets for reproducing the evaluation results in the
paper.
Scope

The artifact allows to validate the following evaluation results:

(1) The planner parses the invariant specification language (§3)
and generates DPVNet (§4, Figure 13)

(2) The results of testbed experiments (§9.2).

(3) The effects of burst update (§9.3.2), incremental update (§9.3.3)
and fault-tolerance (§9.3.4).

(4) The overhead of Tulkun on-device verifiers (§9.4).

Note that the exact values may vary on different machines (even
with the same CPU and memory configuration).

The artifact is only allowed for research purposes.
Contents

The artifact includes the following contents:

(1) An implementation of Tulkun planner.

(2) An implementation of Tulkun on-device verifier.

(3) A simulator that allows Tulkun to be simulated on a single
machine.

(4) The datasets (Figure 10) include topology, FIB, and packet
space.
Hosting

The artifact is hosted on GitHub.
Requirements

The planner requires a server with at least 16GB memory and
requires Python 3.9+.

The simulator requires a server with at least 16GB of memory
and requires JDK 8.

The on-device verifiers require network devices to have JDK 8
and may need to be adjusted for specific devices.
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