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Abstract—There has been a growing interest in applying
machine learning to real-world tasks. However, due to the black-
box nature of machine learning models, it is crucial to (1)
verify important properties of a model and (2) understand the
reasons behind a model’s prediction before deploying them in
a production environment. Existing approaches typically handle
them as two separate and sometimes orthogonal topics. In this
paper, we show that the verification and interpretability of
machine learning models are tightly related and can be unified by
satisfiability modulo theories (SMT). Our key insight is: not only
a wide range of properties of machine learning models can be
formulated as SMT problems and verified accordingly, but many
commonly studied interpretability questions can also be answered
by iteratively checking the satisfiability and related properties
of multiple SMT problems. Leveraging this insight, we design
UINT, a general verification and interpretability framework for
learning-based networking systems. UINT (1) allows operators
to specify verification and interpretability problems as SMT
formulas, (2) encodes the target machine learning models into
SMT constraints, and (3) automatically solves the corresponding
verification and interpretability problems using commodity SMT
solvers. We implement a prototype of UINT and evaluate it on
real-world learning-based networking systems. Results demon-
strate the efficiency and efficacy of UINT in verifying and
interpreting key questions for these systems.

I. INTRODUCTION

Motivated by the success of machine learning in computer
vision [1], natural language processing [2], and recommen-
dation systems [3], there has been an emerging trend to
apply machine learning in various networking systems, such
as bitrate selection [4], congestion control [5], network traffic
classification [6], anomaly prediction [7] and so on.

However, due to the black-box nature of these systems,
fully understanding their behaviors is difficult. This makes
it difficult to deploy them in production networks [8], [9].
For example, in our private conversation with a large cloud
provider, it is revealed that their in-house learning-based traffic
anomaly detection system only slightly outperforms traditional
non-learning-based solutions. Because the decision-making
mechanism of the system is not precise, it is hard to judge the
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rationality of decisions and further improve the system design.
Moreover, if a learning-based system makes a wrong decision
in the production network, it could lead to severe financial and
social losses. Therefore, it is crucial and imperative to study
the decision-making and reasoning of the model.

Toward understanding the capability and decision rationales
of learning-based networking systems, people recently started
to focus on how to verify and interpret the behaviors of
learning-based systems automatically [10]–[18]. Specifically,
verification focuses on examining whether the machine learn-
ing model of the system is robust (e.g., not sensitive to
small changes in features). The theoretical foundation used
by verification typically includes predicate logic [12], [16] and
mixed integer linear programming [11], [17], [18]. In contrast,
interpretability typically focuses on providing explanations to
specify why the model outputs. The explanations can be either
the extracted rules to explain the decisions of a system’s
learning model [13], [19], [20] (e.g., what features anchor the
prediction of a model) or the feature attribution to the decisions
through analysis. Despite such progress, these studies are
point solutions, and treat the verification and interpretation
of learning-based systems separately and orthogonally.

In this paper, we argue that the verification and interpreta-
tion of learning-based networking systems are tightly related
and therefore should be unified. In particular, verification
studies the question of whether: given a learning-based system
and a set of predicates on its input, examine whether a set of
predicates on its output always holds. Interpretation studies
the question of what: given a learning-based system and a
set of predicates on its output, find a set of predicates on its
input satisfying certain criteria such that the predicates on the
output always hold. In analogy, their relationship is similar
to the decision and optimization problems in computational
complexity theory: the former requires answering whether a
solution exists, and the latter requires answering what the
solution is. Given this close tie between verification and
interpretation, unifying them is beneficial for learning-based
systems. It enables a deeper understanding of the behaviors
of these black box systems. Such understanding can provide
helpful information to operators on the capability and decision979-8-3503-9973-8/23/$31.00 © 2023 IEEE



rationale of such systems and hence help refine system design.
However, due to the diversity of verification and interpretabil-
ity issues, there is a key challenge to uniform the question
forms and find a general solution tool.

To this end, our key insight is that the verification and inter-
pretation of learning-based networking systems can be unified
by satisfiability modulo theories (SMT). Specifically, given a
learning-based system, a set of predicates P on system input
and a set of predicates Q on system output, motivated by the
recent success of computer network configuration verification
and synthesis [21], [22], we can verify whether Q always
holds by checking whether the SMT problem P ∧ N ∧ ¬Q
is unsatisfiable, where N is an SMT formula encoding the
machine learning model of the system. Moreover, given N
and only the predicates Q on system output, we can find the
predicates P satisfying certain criteria and guaranteeing that
Q always holds by iteratively checking the satisfiability and
related properties of multiple SMT formulas.

Building on this insight, we propose UINT , a general
verification and interpretability framework for learning-based
networking systems. UINT (1) allows operators to specify
verification and interpretation problems as SMT formulas; (2)
encodes the learning model of a given learning-based system
as SMT formulas; and (3) automatically computes answers
to the specified questions by solving SMT problems using
commodity SMT solvers. The main contributions of this
paper are as follows:

• We study the important and novel problem of how to
unify various verification and interpretability problems of
learning-based networking systems, and find that they can
be unified using SMT. To our knowledge, we are the first
to make this finding.

• Leveraging this insight, we propose UINT , a general
verification and interpretability framework for learning-
based networking systems, which can verify and interpret
a wide range of common problems about the behaviors
of learning-based systems.

• We implement a prototype of UINT and evaluate it to
verify and interpret real-world learning-based networking
systems. Results demonstrate the efficiency and efficacy
of UINT in interpreting key questions for learning-based
systems.

II. OVERVIEW

In this section, we first provide a background introduction
to the verification and interpretability of learning-based net-
working systems and discuss their relationship (Section II-A).
We next elaborate our key insight on how these two issues
can be related using SMT (Section II-B), and introduce the
architecture of UINT , a general verification and interpretability
framework built on top of this insight (Section II-C).

A. Background

Verification of learning-based systems. Given such a system,
the verification problem studies whether the (input, output)

mapping of a trained model of this system always satisfies
certain properties [23]. Properties of interest to verification
are usually related to the model quality: the robustness of
the model [24], including adversarial perturbation [11], [24],
missing features [11], extreme value [12]. Existing tools
typically model the verification problem of learning-based net-
working systems as a mixed-integer-based linear programming
problem [25] or a predicate logic model [10], [12]. However,
these are point solutions focusing on different properties,
and each work proposes its methods applied to the specific
properties. There is still a lack of a general tool that can
verify a wide range of properties of learning-based networking
systems, obtaining results about the model robustness against
perturbations.
Interpretability of learning-based systems. Different from
verification, the interpretability problem aims to provide oper-
ators with a set of simple, deterministic rules that explains
a trained model’s behaviors [13], [26] or analyze features
to provide explanations [27], [28]. Behaviors that people are
interested in finding rules for include anchor [19], counterfac-
tual explanations [29], and decision rules [30]. As for feature
attribution methods, there are feature importance, sensitivity
analysis [8], [28] and so on. However, not only do the different
tools focus on answering different interpretation questions,
but they also vary in form and complexity. A general tool
that can explain a wide range of behaviors of learning-based
networking systems is also missing.
Relationship between verification and interpretability. Al-
though both verification and interpretability enable important
understanding toward the behaviors of the black box learning-
based systems, people typically treat them as two separate and
often orthogonal topics. Recently, some studies hint that the
verification and interpretability of machine learning models
partially overlap [8], [26], [31]. For example, some argue
that certain model verification problems (e.g., adversarial
perturbations) fall into the scope of deriving reliability-related
rules for interpretability [26]. Some regard the more robust
the model, the better the explanation produced by the in-
terpretability method, thus connecting between explainability
and robustness [24]. However, to the best of our knowledge,
there have been no studies that systematically investigate
how diverse property verification and various interpretability
problems relate to each other.

We observe that the relationship between verification and
interpretability of learning-based systems is similar to that
between the decision and optimization problems in computa-
tional complexity theory. Verification studies whether a given
property is always held by a system while interpretability
studies what properties (i.e., rules) a system holds. As such,
unifying verification and interpretability can enable a deeper
understanding toward the behaviors of learning-based network-
ing systems. It can also prevent system errors and irregularities
from happening by finding them before such systems are
deployed and fulfilling the ethical and legal obligations of
deploying learning-based networking systems.
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Fig. 1: The architecture and workflow of UINT .

B. Key Insight

Our critical insight is that the verification and interpretabil-
ity of learning-based systems can be unified by SMT. In a
nutshell, SMT is a problem that checks whether a formula
of first-order logic is satisfiable. It generalizes the Boolean
satisfiability (SAT) problems from formulas of Boolean vari-
ables to more complex formulas with richer variables (e.g.,
integers and bit vectors) [32]. Although SMT is NP-hard, many
SMT solvers have demonstrated the capability of efficient
SMT solving [33], [34]. As such, SMT has been widely used
in many areas, including software and hardware verification,
program analysis, and mathematical programming.

Given a learning-based networking system, we use N to
denote its machine learning model. The verification problem
of such a system can be defined as to check whether the SMT
formula P ∧ N → Q is a tautology, where P is a set of
predicates specifying the assumptions of the model input, and
Q is a set of predicates specifying the assertion of the model
output. This is equivalent to checking whether P ∧ N ∧ ¬Q
is unsatisfiable [35]. If it is, for any data input x that satisfies
P , its output y = N(x) always satisfies Q. Otherwise, there
exists at least one data input x satisfies P while y = N(x)
does not satisfy Q. For example, the property of adversarial
perturbation [11], [36] requires that: for a given input data with
m features x∗ = [x∗

1, . . . , x
∗
m] and its output y∗ = N(x∗), if

there exists a small perturbation of no more than ϵ on each
input feature, the output should not change. This property can
be verified by checking the satisfiability of

∧i=1,...,m, xi ∈ (x∗
i − ϵ, x∗

i + ϵ)⇒ N(x) = y∗. (1)

Similarly, the interpretability problem of learning-based
networking systems can be usually defined as given a learning
model N and a set of predicates Q on the model output, find a
set of predicates P on the model input such that (1) P∧N∧¬Q
is unsatisfiable; and (2) P satisfies some additional criteria.
Such a problem can be solved by checking the satisfiability and
related properties of multiple SMT formulas. For example, the
interpretability problem of feature importance asks to find the
minimal ϵ such that Equation (1) of adversarial perturbation
property is unsatisfiable. Such an ϵ can be found by repeatedly
solving Equation (1) using binary search.

C. Architecture of UINT

Leveraging the key insight above, we design UINT , a gen-
eral verification and interpretability framework for learning-

based networking systems. Fig. 1 shows the architecture of
UINT . UINT works in four steps. First, given a learning-
based networking system, an operator specifies a verification
or interpretability problem as an SMT formula, and sends
it together with the learning model of this system to the
UINT encoder. Second, the encoder automatically encodes
the received learning model into an SMT formula and sends
it together with the received problem to the UINT planner.
Third, the planner analyzes the received problem and decides
the corresponding SMT problems to solve. Fourth, the planner
invokes the SMT engine, iteratively if necessary, to solve the
received problem, and returns the final verification or inter-
pretability answer to the operator. In the following sections,
we will elaborate on how UINT solves the most commonly
studied verification and interpretability problems specifically.

III. MODEL VERIFICATION

In this section, we introduce how UINT verifies a wide
range of common properties of learning-based networking
systems. We first describe given such a system, how UINT
encodes its machine learning model N (Section III-A). We
then provide details on how operators can specify a wide range
of verification properties by specifying P predicates on model
input, and Q predicates on model output (Section III-B).

A. Encoding of Model
For ease of exposition, we assume the machine learning

model of a learning-based networking system is a deep neural
network. Other models, such as decision trees and support
vector machine (SVM) can be encoded similarly. Given a deep
neural network, UINT encodes it into SMT formulas similar
to other SMT-based verification tools [11], [12]. Specifically,
we divide the model encoding into three phases: input layer
encoding, hidden layer encoding, and output layer encoding.
For input and output layers, we encode them as predicates
on their ranges. As a simple example, the output layer of
Pensieve [4] is a classification network layer with six outputs.
The encoding is:

∧6
i=1 xi ∈ [li, ui].

Hidden layers are slightly more complicated to encode
in that we need to construct relational expressions between
input variables and output variables based on the internal
logic of the neural network. To this end, UINT provides the
encodings of fully connected layers, convolutional layers, and
activation functions. Given a fully connected layer, assuming
the input is an m-dimensional vector x and the output is an
n-dimensional vector y, the weight matrix of this layer is W,
bn denotes bias. The network logic of this layer can be seen
as: y = A(Wx + bn), where A() is an activation function.
The encoding of this fully connected layer is a set of linear
mathematical expressions:

n∧
i=1

i,yi =

m∑
j=1

Wij · xj + bi. (2)

A convolutional layer is the matrix multiplication of the
input and the convolution kernel K, where the latter is a mul-
tidimensional vector. We choose the value of the first channel



TABLE 1: Details of robustness properties.

Property L Pl Pr

Adversarial perturbation F xi ∈ (x∗
i − ϵ · ki, x∗

i + ϵ · ki) None
Missing features K xi ∈ (li, ri) xj = x∗

j

Extreme values K xi ∈ (lei , r
e
i ) xj ∈ (lj , rj)

in the convolution kernel, regard this reduced dimensionality
matrix as a weight matrix and convert the operation of the
convolutional layer into the fully connected layer [11]. For
activation functions, we can directly encode the rectified linear
unit function ReLU(x, y) iff y = max(0,x) because it is
piecewise linear. For other activation functions (e.g., softmax,
sigmoid), we also use ReLU to approximate them as does in
other SMT-based tools [11], [23].

B. Encoding of Property

In UINT , operators can specify the properties to verify in the
form of SMT formulas. We summarized common properties of
interest in learning-based networking systems into robustness
properties: verify the resilience of the systems against pertur-
bation [11], [25], [36], [37]; These properties examine whether
a model maintains its original output when the input features
deviate from their original values. We provide a generic
formulation for robustness properties. Specifically, assume the
output of model N on input x∗ is y∗. Let F denote the set
of all input features, and L denote the set of input features
that can be perturbed. We let Pl denote the predicates on
perturbable input features and Pr denote the predicates on
other input features. Set the output predicate Q as N(x) = y∗.
The unified formulation of robustness is:

∀i ∈ L, j ∈ F\L,Pl(xi) ∧ Pr(xj)→ N(x∗) = y∗. (3)

By setting set L and the predicates Pl and Pr differently,
Equation (3) can represent different robustness properties
(Table 1). Next, we will describe them in detail one by one.
Adversarial perturbation. This property examines given an
(input, output) mapping (x∗, y∗), whether the output remains
the same when each input feature may have a slight pertur-
bation [11], [36]. This property can help operators understand
how resilient the model is. We can specify it by setting L = F ,
and set Pl based on the attack power. Specifically, let ki be
the difference between the maximum and minimum possible
values of xi. Then the attacker with an attack ability ϵ can
change xi within range xi ∈ (x∗

i − ϵ · ki, x∗
i + ϵ · ki). This

property is then specified as:

∀i ∈ F, xi ∈ (x∗
i − ϵ · ki, x∗

i + ϵ · ki)→ N(x) = y∗. (4)

If this formula is a tautology, then the system is immune to
attackers whose attack power is within ϵ.
Missing features. This property examines given an (input,
output) mapping (x∗, y∗), whether a model maintains the
output y∗ even if some features are lost [11]. Suppose a set
of missing features K. We can specify this property by letting
L = K and set Pl and Pr accordingly:

∀i ∈ K, j ∈ F \K, (xi ∈ (li, ri)) ∧ (xj = x∗
j )→ N(x) = y∗,

(5)

Algorithm 1: Qualitative anchor.
1: Input: The original input x∗ with output y∗, model

encoding N
2: Output: The minimum dominant feature set Fd

3: Set constraints: N ∧N(x∗) ̸= y∗ as hard, x∗
1, ..., x

∗
m as

soft
4: if Equation (10) returns unsat then
5: L = CoMSS(Equation (10))
6: end if
7: Return L

where (li, ri) is the valid range of feature xi. If the formula
is always satisfiable, we can conclude that the model used in
the system is resilient when missing a set of features K.
Extreme values. This property examines given an (input,
output) mapping (x∗, y∗), whether a model remains the same
when a subset of features is taking extreme values, while
other features still fall in their typical ranges. An example
of this property is that in the Airborne Collision Avoidance
System [12] if the intruder is distant and is significantly slower
than the airship, the model agent should directly make a Clear-
of-Conflict (COC) advisory decision.

Suppose the set of features that may take extreme values is
K. This property can be specified as:

∀i ∈ K, j ∈ F\K, (xi ∈ (lei , r
e
i ))∧(xj ∈ (lj , rj))→ N(x) = y∗,

(6)
where (lei , r

e
i ) is the range of extreme values of feature xi.

IV. MODEL INTERPRETABILITY

In this section, we introduce how UINT finds answers to
common interpretability problems by checking the satisfiabil-
ity of relevant properties and multiple SMT formulas. UINT
focuses on analyzing machine learning models after training,
and answering interpretable questions about the internals of
models [8], [26], [31], [38]. In particular, UINT focuses on
two categories of interpretability problems, which cover the
majority of interpretable problems of learning-based systems:
rule explanation, which aims to find a set of rules that explains
why a model makes a certain prediction, and feature attribu-
tion, which aims to specify which features are important and
which are relatively less important. These categories represent
the most important and most commonly asked interpretability
problems for learning-based networking systems [13].

We provide a generic formulation for these interpretability
problems. Assume the output of model N on input x∗ is y∗.
Let F denote the set of all input features, and L denote the
set of input features that we focus on (be perturbed). We let
Pl denote the predicates on input features L, and Pr denote
the predicates on other input features. Set the output predicate
Q on N(x). The unified formulation is:

∀i ∈ L, j ∈ F\L,Pl(xi) ∧ Pr(xj) ∧N ∧Q(N(x)). (7)

By setting set L and the predicates Pl and Pr differently,
Equation (7) can represent different interpretability problems
(Table 2). Next, we will describe them in detail one by one.



TABLE 2: Details of Interpretability.
Sub-problem L Pl Pr Q(N(x))

Qualitative anchor None None xj = x∗j N(x∗) = y∗

Quantitative anchor Fd xi ∈ (x∗i − ϵ, x∗i + ϵ) None N(x∗) ̸= y∗

Counterfactual explanation Fd xci ∈ (li, ri)
∧
d(x∗,xc) ∈ (lT , rT ) None N(xc) = ye

Decision boundary xa, xb xa ∈ (la, ra)) ∧ (xb ∈ (lb, rb) xj = x∗j N(x) = y∗

Feature importance Fp xi ∈ (x∗i − ϵ, x∗i + ϵ) xj = x∗j N(x) ̸= y∗

Sensitivity analysis Fp xi ∈ (x∗i − ϵ, x∗i + ϵ) xj = x∗j N(x)

TABLE 3: Rule Explanation.

Sub-problem P (x) Q(N(x))
Qualitative anchor ∀i ∈ Fd, xi = x∗i N(x) = y∗

Quantitative anchor ∀i ∈ Fd, r(xi) N(x) = y∗

Counterfactual explanation ∀i ∈ Fd, x
∗
i = xci N(xc) = ye

Decision boundary ∃{x} ∈ XD,XD∗ ∧ XDother

= XD,x ∈ XD∗ N(x) = y∗

A. Rule Explanation

Given a learning-based system, we use N to denote its
machine learning model, and given input data with m features
x∗ = [x∗

1, . . . , x
∗
m] and its output y∗ = N(x∗). F denotes

the m-dimensional feature set of N . We use these symbols
to illustrate all the following problems. Rule explanation aims
to find a set of predicates P = {r1, r2, ..., rm} that express a
logical relationship between the input x∗ and corresponding
output N(x∗):

P (x∗)→ Q(N(x∗)). (8)

Sub-problems provide different rule explanations with dif-
ferent P and Q, as in Table 3.
Anchors. Given an (input, output) mapping (x∗, y∗) of learn-
ing model N , the problem of anchor aims to find a set of
predicates of dominant features such that they are decisive for
prediction and all other features are irrelevant for models to
make the decision [19].

1) Qualitative anchor: The qualitative anchor aims to find
the minimum set of dominant features Fd that are decisive for
N(x∗) = y∗ such that for any other feature in F \Fd, it can
take on arbitrary values without changing the output [39]:

∀i ∈ Fd, xi = x∗
i → N(x) = y∗. (9)

To solve this problem, UINT leverages the concept of
unsatisfiable core and MaxSAT problem in SMT [35], [40]. To
be concrete, an SMT formula can be written as a conjunctive
normal form (CNF) of clauses. By marking clauses “hard”
or “soft”, when this formula is unsatisfiable, a MaxSAT
solver can return a maximum set of soft clauses that can be
simultaneously satisfied by an assignment that also satisfies
all hard clauses. The complement of such a set of maximum
soft satisfiability clauses (CoMSS) is a set of soft clauses of
minimum cardinality whose removal will make the original
formula satisfiable [40]. Leveraging these concepts, we define
the following SMT formula based on the given data mapping
and Equation (9):

∀i ∈ F, (x∗
i )︸︷︷︸

soft

∧N ∧N(x∗) ̸= y∗︸ ︷︷ ︸
hard

. (10)

Obviously, the SMT solver will return an unsat for this
formula. As such, we can find the minimum set of features

Algorithm 2: Quantitative anchor.
1: Input: The original input x∗ with output y∗, model

encoding N , update step a.
2: Output: Anchor Pa

3: Pa ← ϕ
4: Get Fd from Algorithm 1
5: Set the attack power ϵ← init
6: Set constraint C1 for Fd: ∀i ∈ Fd,

xi ∈ (x∗
i − ϵ, x∗

i + ϵ) as soft
7: Set constraint C2: N ∧ (N(x) ̸= y∗ as hard
8: while (Fd != null) do
9: while Equation (12) returns sat do

10: ϵ ← ϵ - a
11: end while
12: L = CoMSS(Equation (12))
13: Pa ← Pa ∪ L
14: Fd ← Fd − L, update C1

15: end while
16: Return Pa

Fd by getting the CoMSS of soft constraints. The process is
summarized in Algorithm 1.

2) Quantitative anchor: Given an (input, output) mapping
(x∗, y∗) of learning-based model N and its qualitative anchor
(i.e., the dominant feature set Fd), the quantitative anchor
problem aims to find a set of predicates Pa = {r1, r2, ..., rd}
for the dominant feature set Fd of x∗, where each ri is in the
form of xi ∈ [v1, v2] [19], [39], such that:

∀i ∈ Fd, r(xi)→ N(x) = y∗. (11)

In other words, the quantitative anchor aims to find the
value range of each dominant feature xi, where i ∈ Fd that
collaborative guarantees the model output stays as y∗.

We design Algorithm 2 to find the quantitative anchor.
Specifically, after finding Fd using Algorithm 1, we perturb
the dominant features with an attack power of ϵ. When
Equation (12) is satisfiable, indicating there exists an input
value whose output is different (the scope of the soft clause
is outside the scope where the output is y∗), then reduce
ϵ until Equation (12) is not satisfied (line 8 to 11), the
corresponding CoMSS L is the feature range that keeps the
prediction unchanged and saves these clauses in Pa (line 12
to 13), then remove the features in L from Fd to update Fd

and C1 (line 14), repeat the process until we get complete Pa.

∀i ∈ Fd, xi ∈ (x∗
i − ϵ, x∗

i + ϵ)︸ ︷︷ ︸
C1: soft

∧N ∧N(x) ̸= y∗︸ ︷︷ ︸
C2: hard

. (12)

Counterfactual explanation. Given an (input, output) map-
ping (x∗, y∗) of learning-based model N , and the expected
prediction ye, the problem of counterfactual explanation aims
to find the closest counterfactual xc such that N(xc) =
ye [28], [29]. A commonly used distance measure d is the
L1 norm weighted by the inverse median absolute deviation
(MAD) [29], expressed as d(x∗,xc) =

∑
k∈xD

|x∗−xc|
MADk

where



Algorithm 3: Closest counterfactual.
1: Input: The original input x∗ with output y∗, model

encoding N , expected output ye, accuracy δ.
2: Output: The closest counterfactual xc

3: ld ← 0, rd ← dmax

4: Set constraint: (
∧m

i=1 x
c
i ∈ (li, ri)) ∧N

∧(N(xc) = ye)
5: while rd − ld > δ do
6: mid = (rd + ld)/2
7: Set constraint: d(x∗,xc) < mid
8: if Equation (13) return sat then
9: rd = mid

10: else
11: ld = mid
12: end if
13: end while
14: xc = Equation (13)
15: Return xc

xD is the neighbors of x∗.

We design Algorithm 3 to find xc. Specifically, we first set
the possible search range of d as (ld, rd). We then perform a
binary search on this range (line 5 to 13) [41] by iteratively
solving the following SMT formula in Equation (13). In each
iteration, if the formula is satisfiable, it indicates that the upper
bound rd of d can be reduced (line 9). If the formula is
unsatisfiable, it indicates that the range is too small and the
lower bound ld should be increased (line 11). By the end of
this search process, we can find a counterfactual xc whose
distance to x∗ is minimum within an accuracy of δ.

∀i ∈ F,

(xc
i ∈ (li, ri)) ∧ (d(x∗,xc) ∈ (ld, rd) ∧N ∧N(xc) = ye.

(13)

Decision boundary. Given an (input, output) mapping
(x∗, y∗) of learning-based model N , the problem of decision
boundary [42], [43] aims to find a set of input variables vectors
{x} that divides the feature space XD into the corresponding
parts XD∗

and XDother

. This explanation of decision bound-
ary is expressed as:

∃{x} ∈ XD,XD∗
∧ XDother

= XD,

x ∈ XD∗
→ N(x) = y∗.

(14)

We focus on finding the decision boundary of two features
xa, xb of x in XD [11]. We iteratively check the SMT
formula in Equation (15). Every time the solver finds it
satisfiable, a satisfiable assignment is returned. To avoid SMT
returning duplicate solutions, we add solution constraints C4 to
Equation (15) (line 8) to make sure next returned solutions are
outside the neighborhood of the known solutions. By solving
this SMT formula iteratively (line 9 to 12), we get enough
value combinations of xa, xb, and we can fit the corresponding
decision boundary. See the detailed process in Algorithm 4.

Algorithm 4: Decision boundary.
1: Input: The original input x∗ with output y∗, model

encoding N , the selected features: xa, xb, neighborhood
range δ.

2: Output: The solution list S (draw the area of decision
boundary based on S)

3: Set constraint C1: xa ∈ (la, ra), xb ∈ (lb, rb);
4: Set constraint C2: ∀j ∈ F\{a, b}, xj = x∗

j

5: Set constraint C3: N(x) = y∗

6: S ← ϕ
7: Add s1 = Equation (15) to S
8: Set solution constraints C4: ∀si ∈ S : {xai, xbi},

the values of xa, xb in returned solution is not in
(xai − δ, xai + δ) and (xbi − δ, xbi + δ)

9: while (Equation (15) ∧C4) return sat do
10: Add si to S
11: Update solution constraint C4

12: end while
13: return S

Algorithm 5: Feature importance.
1: Input: The original input x∗ with output y∗, model

encoding N , perturbed feature set Fp, increase step α,
accuracy δ.

2: Output: The minimal attack power ϵ0 of Fp

3: Set ϵ← init, lϵ ← 0
4: Set constraint C: ∀i ∈ Fp, xi ∈ (x∗

i − ϵ · ki, x∗
i + ϵ · ki)

5: Set constraint: (∀j ∈ F\Fp, xj = x∗
j ) ∧N ∧N(x) ̸= y∗

6: while Equation (16) returns unsat do
7: lϵ ← ϵ, ϵ← ϵ · (1 + α)
8: ∀i ∈ Fp, re-encode C with the updated ϵ
9: end while

10: rϵ ← ϵ
11: while rϵ − lϵ > δ do
12: ϵ← (lϵ + rϵ)/2
13: ∀i ∈ Fp, re-encode C with the updated ϵ
14: if Equation (16) returns sat then
15: rϵ ← ϵ
16: else
17: lϵ ← ϵ
18: end if
19: end while
20: Return ϵ0

(xa ∈ (la, ra)) ∧ (xb ∈ (lb, rb))︸ ︷︷ ︸
C1

∧ (
F\{a,b}∧

j=1

xj = x∗
j )︸ ︷︷ ︸

C2

∧N

∧N(x) = y∗︸ ︷︷ ︸
C3

.

(15)



B. Feature Attribution

In addition to finding the rules that each feature needs to
satisfy, people are also interested in the feature’s contribution
to the prediction of the learning-based systems [13], [44], this
type of interpretability problem is called “Feature Attribution”.
We focus on the feature importance and sensitivity analysis,
as these are the two most significant problems of Feature
Attribution, from which all other sub-problems extend.
Feature importance. This problem aims to get the features
importance ranking array M for the prediction. We leverage
the perturbation-based metric to get the feature importance
based on this fact: the features that contributed more to the
original classification will be just those that contributed more
to the misclassification [8], [44]. So we rank the features
according to how well a feature resists the perturbation.

Given an (input, output) mapping (x∗, y∗), we can get
the importance array M by comparing the minimal attack
power on each feature that can change the output. The smaller
the minimum attack power, the more important the feature.
Algorithm 5 presents the process of finding a minimal attack
power. Given the SMT formula in Equation (16), we set the
perturbed feature set Fp, set ki be the difference between the
maximum and minimum possible values of xi, and initialize
the attack power ϵ with range (lϵ, rϵ) according to the actual
systems. We perturb the features within the Fp to verify
whether the current attack power ϵ can change the output. If
the solver returns unsat, indicating current ϵ cannot change
the output, multiplicative increase with α to update ϵ (line 7)
until SMT returns sat, and set the current ϵ as upper bound.
Then we can determine the minimal attack power ϵ0 under the
accuracy δ by binary search (lines 11 to 19).

(

Fp∧
i=1

xi ∈ (x∗
i−ϵ·ki, x∗

i+ϵ·ki))∧(
F\Fp∧
j=1

xj = x∗
j )∧N∧N(x) ̸= y∗.

(16)
Sensitivity analysis. This problem aims to evaluate the un-
certainty in the output of a model for different sources of
uncertainty in its inputs [27]. Given an (input, output) mapping
(x∗, y∗), we apply random perturbations to the selected feature
set to examine the change in the output. We use the degree
of deviation of the output as a measure of the sensitivity of
the feature Fp: s(Fp) = N(x) − N(x∗). For the same value
of perturbation, the feature set with the largest value indicates
how much potential it has in causing output.

The SMT formula below is used as a constraint, we can get
the values of N(x) returned by the SMT solver, and calculate
the value of s(Fp) by subtracting the original output.

∀i ∈ Fp, j ∈ F\Fp,

xi = (x∗
i − ϵ · ki, x∗

i + ϵ · ki) ∧ (xj = x∗
j ) ∧N ∧N(x).

(17)

V. PERFORMANCE EVALUATION

We implement a prototype of UINT and evaluate its per-
formance with extensive experiments on real-world learning-

Algorithm 6: Sensitivity analysis.
1: Input: The original input x∗ with output y∗, model

encoding N , the selected feature set Fp.
2: Output: The deviation of output s(Fp)
3: Set constraints: ∀i ∈ Fp, xi ∈ (x∗

i − ϵ · ki, x∗
i + ϵ · ki)

4: Set constraints: ∀j ∈ F\Fp, (xj = x∗
j ) ∧N ∧N(x)

5: Get N(x) returned by SMT
6: Return N(x)− y∗

based systems. We aim to answer the following questions:
(1) Can our framework verify common properties of different
learning-based networking systems, and how efficient is it? (2)
Can our framework provide understandable interpretability in
different networking systems, and how efficient is it? We first
describe our experiment settings and then present the results.

A. Experiment Settings

Real-world learning-based networking system.
As our work innovatively unifies verification and interpre-

tation into one framework, no analogous tools are currently
available for comparative analysis. We evaluate UINT on two
representative systems: Pensieve and Aurora. The source code
is available at [45].

Pensieve is an RL-based adaptive video bitrate selection
system [4]. It trains a neural network model composed of
two fully connected hidden layers with ReLU activation, and
both hidden layers have 128 neurons. Pensieve divides its
25 features into six categories: previous bit rate, throughput,
download time, current buffer size, next chunk sizes, and
remain chunks. The prediction is the download bitrate with
the highest probability of the output layer.

Aurora is an RL-based congestion control protocol [5]. It
uses a neural network architecture with two hidden layers
and we have several options for the number of neurons per
layer (e.g., 32*16). There are three features in Aurora: latency
inflation, latency ratio, and send ratio. The prediction is the
changed ratio of transmission rate over the last action. It makes
decisions based on the latest k-step history of all features.
Verification and interpretability. We present some results
of verification properties due to the space limit, whose experi-
ment parameters for each system are in Table 4. These param-
eters are set similarly to other model verification tools [11],
[23]. Similarly, we evaluate the interpretability problems of
rule explanation and feature attribution discussed in Sec-
tion IV and present the results of some of them due to space
limitations. The experiment settings are in Table 5.
Environment. All experiments run on a server with 2 *
Intel Xeon Silver 4210R @ 2.40GHz CPU and 128G DDR4
Memory. Our prototype uses Z3 [33] as the SMT engine.

B. Results

Verification. As the result of the verification time distribution
of Pensieve shown in Table 6, UINT performs well when a
feature is missing or when the value of a feature fluctuates
within a certain range.



TABLE 4: Settings of verification experiments.

Property

System
Pensieve [4] Aurora [5]

Adversarial perturbation ϵ ∈ [0.016, 0.32]
step size = 0.016

ϵ ∈ [2.5× 10−4, 5× 10−3]
step size = 2.5× 10−4

Missing features |K| = {1, 2},
In each run, select one feature as the missing feature set K.

|K| = l. In each run, select one feature and its most recent
l − 1-step histories as the missing feature set K.

l ∈ {1, 3, 5, 10}

Extreme values Pre bitrate ≤ 1850kBps, current buffer size = 0.4 and
throughput ∈ (0.54, 0.541) → the output = 1,850kBps Send ratio ∈ (0.99, 1.0) → send rate increase

TABLE 5: Settings of interpretability experiments.

Interpretability

System
Pensieve [4] Aurora [5]

Anchor Find the qualitative anchor for an input whose
output (i.e., download bitrate) = 1, 850 kbps

Find the qualitative anchor for an input whose
output (i.e., changed ratio transmission rate) = 3.0

Counterfactual explanations Give an instance with output = 1, 850 kbps,
find an input with expected output = 1, 200 kbps, δ = 0.01

Give an instance with output = 3.0,
find an input with expected output = 2.5, δ = 0.01

Decision boundary Find the boundary for {buffer size, throughput},
δ = 0.01, history length = 1

Find the boundary for {latency ratio, latency inflation},
δ = 0.01, history length = 10

Feature importance
Give an instance with output = 1, 850 kbps,

find the minimal attack power for each feature.
History length = 1, ϵ0 = 0.01, δ = 1× 10−2

Give an instance with output = 3.0,
find the minimal attack power for each feature,

the universal minimal attack power for all features.
History length ∈ {5, 10},

ϵ0 = 5× 10−5, δ = 1× 10−6

Sensitivity analysis History length = 1, δ = 1× 10−5, ϵ = 5× 10−5.
The result is the difference in the rate change ratio.

History length = 10, δ = 1× 10−5, ϵ = 5× 10−5.
The result is the difference in the probability of

original selected bit rate.

TABLE 6: Property verification time distribution for Pensieve

Property 50% 70% 90%

Adversarial Perturbation 168.57s 309.88s 1494.31s
Missing Features 518.82s 1608.37s 3596.76s

Missing Features (|K | = 2) 4198.37s 6252.11s 45181.94s

In addition to the Aurora model with 32×16 network ar-
chitecture, we train three Aurora system models with different
neural network structures (32×32, 48×16, 48×32) and deploy
experiments on those systems to demonstrate the effective-
ness and scalability of UINT . We verify several robustness
properties on Aurora. The verification run time for different
properties on Aurora at all scales can be seen in Fig. 2. UINT’s
running time increases slightly as the scale of the problem
increase. The results on different scales of Aurora’s neural
network demonstrate that our framework UINT is generic
and scalable in verifying common verification problems in
learning-based networking systems of different scales.
Interpretability. We first show the minimal attack power
results to get Pensieve’s feature importance in Table 7. The
UINT takes hundreds to tens of thousands of seconds to find
the minimal ϵ and get the importance ranking. Considering
the running time of many studies using SMT and some
other interpretable methods are mainly between 103 and 104

seconds [10], [12]. Besides, Pensieve is a relatively complex
learning-based networking system, and the interpretability is
performed before the model is deployed. This overhead is
reasonable and acceptable.
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102
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104
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m
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Missing feature(|K|=2)(50%)

Fig. 2: Property verification time distribution for Aurora

We next show the result of Aurora in Table 8 and Fig. 3.
We train four Aurora models with different neural network
structures (32×16, 32×32, 48×16, 48×32) and deploy ex-
periments on those systems to demonstrate the effectiveness
and scalability of UINT . For qualitative anchor, the median
time of UINT spends finding the answer is less than 100
seconds. Although the median time in Aurora is relatively



TABLE 7: Minimal attack power of Pensieve

Feature ϵ Rank Time(s)
Previous bit rate 0.331 1 833.08

Buffer size 0.334 2 3169.283
Throughput 0.437 3 11064.44

Download time 1.599 4 33138.59

TABLE 8: Minimal attack power of Aurora (32*16)

Feature ϵ Rank Time(s)
Latency ratio (History=5) 0.004 1 98.49

Send ratio (History=5) 0.013 2 120.04
Latency inflation (History=5) 0.034 3 112.46

Latency ratio (History=10) 0.002 1 233.79
Send ratio (History=10) 0.009 2 335.39

Latency inflation (History=10) 0.023 3 233.79

large, most are within 1,000 seconds. This demonstrates the
generality and scalability of UINT in answering a wide range
of interpretability questions.

Fig. 4 shows the decision boundary we found about latency
ratio and latency inflation for Aurora. We can discover a set
of feature values dividing the decision space into two regions,
forming a decision boundary such that Aurora maintains the
original output of 3.57 in the blue region and changes in the
red area. This allows operators to intuitively see that model de-
cisions will conform to the expected behavior within a certain
range of features. When making judgments near the boundary,
operators decide based on previous decisions to avoid abrupt
changes in transmission rate, ensuring smoothness in the rate
selection process. Besides, it also provides operators with ideas
for understanding the model: for example, the model decision
in Aurora is highly tolerant of latency ratio when latency
inflation = −0.2 compared to −0.4.

Fig. 5 shows the results of sensitivity analysis. While
feature importance analyzes the feature contribution under
collaborative perturbation of all features, sensitivity analysis
focuses on individual features each time. We can find that
send ratio is the most sensitive feature in Aurora in the current
case. Therefore, the feature send ratio should be given special
attention. Likewise, it can be seen that previous bit rate is
less responsible for the observed behavior. The remaining
features are equally important in contributing to the model,
small changes in these features can cause large fluctuations in
the model’s decision.
Discussion. The current experiments evaluate the performance
of basic network structures, but for deeper and wider models,
UINT may suffer from the limitations of longer time. We leave
the optimization to future work.

VI. CONCLUSION

In this paper, we design a framework UINT that unifies the
verification and interpretation of learning-based networking
systems using SMT. We give the generic formulations to
verify robustness properties and solve a wide range of in-
terpretability problems. UINT automatically encodes machine
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Fig. 3: Interpretability running time distribution for Aurora
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learning models as SMT formulas and automatically solves
operator-specified verification and interpretation issues using
an SMT solver. Extensive experiments on real-world systems
demonstrate the efficiency and efficacy of UINT .
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