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People usually assess fruit qualities from external features such as color, shape, size, and texture. However, it is quite common
that we select fruits with perfect appearances but rotten inside, especially for fruits with thick pericarps. Thus the accurate
measurement is desirable to evaluate the internal conditions of fruits. As two key features of fruit internal qualities, existing
methods on measuring fruit moisture and soluble solid contents (SSC) are either destructive or costly, limiting their adoption
in daily life. In this paper, we propose Wi-Fruit, a non-destructive and low-cost fruit moisture and SSC measurement system
leveraging Wi-Fi channel state information (CSI). First, to cope with the fruit structure dependency challenge, we propose
a double-quotient model to pre-process CSI on adjacent antennas. Second, to address the fruit size and type dependency
challenges, a lightweight artificial neural network (ANN) model with visual information fusion is proposed for fruit mois-
ture and SSC estimations. Extensive evaluations are conducted on 6 types of fruits with both thick (i.e., watermelon and
grapefruit) and thin pericarps (i.e., dragon fruit, apple, pear, and orange) over a month in either an empty laboratory room or
a library with massive books. Results demonstrate that Wi-Fruit achieves an acceptable estimation accuracy (RMSE=0.319).
It is independent of various fruit structures, sizes, and types, while also robust to time and environmental changes. The fruit
internal sensing capabilities of Wi-Fruit can help fruit saving and safety in both pre-harvest and post-harvest applications.
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puting systems and tools.
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1 INTRODUCTION
The United Nations (UN) General Assembly designated 2021 the international year of fruits and vegetables,

indicating the rising awareness on the important roles of fruits and vegetables in human health as well as the UN
sustainable development goals [1]. According to a report by the Food and Agriculture Organization (FAO) of the
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UN, 1.3 billion tons of food (a third of global production) had been wasted worldwide in 2020, which is enough
to feed 3 billion people [2]. Crops like fruits and vegetables have the highest post-harvest wastage rates of any
food [3]. Thus, the evaluation of fruit quality has significant value on combating fruit waste while meeting the
increasing quality demand of consumers.

Fruit quality evaluations rely on both external and internal factors. External factors of fruits such as color,
shape, size, and the absence of surface bruise, can be inspected by human eyes [4], which are usually used to
judge the quality of fruits in daily life. Some vision-based fruit sorting systems [5–8] also take these external
features for fruit freshness classification. However, it is biased to judge fruit quality only from external factors, as
it is quite common to select a watermelon with the normal outside but rotten inside. As two key internal features,
the measurements on fruit moisture and soluble solid content (SSC) levels can help to eliminate such bias. The
widely used commodity off-the-shelf (COTS) analyzers perform in a destructive manner. Penetrometer [9, 10] and
vacuum oven [11] measure the water contents of fruits by probe insertion and heat drying. Refractometers [12,
13] calculate sugar levels from the light refraction on juice samples. Spectrometers [14], on the contrary, non-
destructively and comprehensively measure these two factors from different absorption, reflection, and scatter
degrees of near-infrared (NIR) signals emitted to fruit tissues. The professional editions of spectrometer [15] can
provide relatively accurate measurements (±1 Brix (◦Bx) on SSC and ±1.7% on moisture) [16, 17] but require
high costs (around 100k US dollars) and controlled laboratory settings [18]. Although its portable version is
cheaper (still cost 9000 US dollars) [19], it has an unsatisfactory accuracy on fruits with thick pericarps, such as
watermelons and grapefruits.

To avoid destructive and high-cost fruit internal measurements, efforts have been made on radio frequency
(RF)-based fruit sensing. It leverages the phenomenon that RF waves suffer from different velocity loss and
propagation attenuation when penetrating through fruits with different moisture and SSC levels. Ren et al. [20]
proposed amachine learning (ML) driven fruit moisture classification systemwith 0.75-1.1 terahertz (THz)waves.
But its implementation requires a specialized platform like Swissto12 MCK, limiting its adoption in daily usage.
Tan et al. [21] built fruit ripeness profiles over 600MHz bandwidth of commodity Wi-Fi at 5GHz, while they
failed to provide fine-grained biological feature measurements such as moisture and SSC values of fruits.

In this paper, we propose Wi-Fruit, a non-destructive and low-cost fruit moisture and SSC measurement sys-
tem leveraging Wi-Fi channel state information (CSI). Wi-Fruit targets various types of fruits with either thick
(i.e., watermelon and grapefruit) or thin pericarps (i.e., dragon fruit, apple, pear, and orange). Specifically, fruit
moisture and SSC levels are closely related to the permittivity and electrical conductivity (EC) of fruit pulps,
resulting in amplitude and phase changes when Wi-Fi signals penetrate through fruits. Taking this fact, Wi-
Fruit collects the CSI of the target fruit when it is deployed statically on the Line of Sight (LoS) link between
Wi-Fi transceivers. It measures the CSI changes of penetrated Wi-Fi signals and then maps them to fine-grained
biological properties (i.e., fruit moisture and SSC levels).

Although recent advances have been made on RF-based material sensing [21–30], the practical implementa-
tion of Wi-Fruit entails substantial challenges:

(1) Fruit structure dependency: The different chemical components of fruit pericarp and pip result in differ-
entiated impacts on penetrated signals compared with fruit pulp. And the thicknesses of fruit pericarp and
pip are unknown under non-destructive sensing, which would introduce errors in estimation.

(2) Fruit size dependency: The phase and amplitude changes of penetrated signals depend not only on fruit
moisture and SSC levels but also on target sizes, which correlate with different lengths of transmission paths
through fruits.

(3) Fruit type dependency:The accurate biological feature measurements require the awareness of fruit types,
which are corresponding to specific electrical-biological mapping relations.
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First, to cope with the fruit structure dependency challenge, we propose a double-quotient model to pre-
process raw CSI readings. This model goes beyond the commonly used CSI quotient model [31]. It combines two
different CSI quotients, one is the CSI quotient with or without the target object, and the other is the CSI quotient
between two adjacent antennas. Assuming that path differences happen in fruit pericarps and pips are the same
for adjacent antennas, this model can eliminate the effect of fruit structure dependency while achieving signal
denoising. To further reduce the multi-path impact, we select the processed amplitude ratio and phase difference
values with the lowest package variances and average them for further biological feature estimations. Second,
to address the fruit size and type dependency challenges, we propose an information fusion-based estimation
module in Wi-Fruit. This module aims to accurately determine fruit moisture and SSC values with sensing and
visual information fusion. The sensing information is the averaged amplitude and phase differences acquired
from the previous double-quotient model, and the visual information includes fruit size, shape, and type acquired
from image processing algorithms. They are together input into a 3-layer lightweight ANN model to obtain
the final fruit moisture and SSC estimations, which provides the highest estimation accuracy among classic
lightweight non-linear regression models.

The main contributions of this paper are summarized as follows:

(1) We propose a non-destructive and low-cost fruit moisture and SSC measurement system with commodity
Wi-Fi. To the best of our knowledge, our approach is the first one that considers fruit structure, size, and type
dependencies which can provide fine-grained fruit internal feature measurements. This system can be easily
deployed in realistic scenarios and is helpful for both pre-harvest and post-harvest applications of fruits.

(2) We propose a double-quotient model for raw CSI pre-processing between adjacent antennas. The one model
solves two pin spots in fruit internal sensing, which can remove fruit structure dependency and denoise
received signals as well. It enables the compatibility of the Wi-Fruit to various types of fruits and different
environments.

(3) We design an information fusion-based estimation method with a lightweight ANN for the accurate deter-
mination of fruit moisture and SSC levels. The visual information assists to remove fruit size and type de-
pendency while fusing with sensing information, thus obtaining higher estimation accuracy than ones with
individual aspects. The lightweight ANN, in addition, enables the compatibility ofWi-Fruit with commodity
smart devices.

(4) We conduct extensive experiments and case studies using various fruits of different structures, sizes, and
types to evaluate the performance of Wi-Fruit. These evaluations not only present the efficiency and robust-
ness of Wi-Fruit but also reveal the in-depth relationships between external and internal fruit features from
the perspectives of signal science and biology.

The rest of the paper is organized as follows. Section 2 introduces backgrounds and motivations ofWi-Fruit on
fruit moisture and SSCmeasurements. Section 3 and 4 respectively propose detailed designs and implementation
details ofWi-Fruit. Section 5 presents evaluations and case studies on real-collected fruit data. Section 6 reviews
the related work in non-destructive fruit sensing. Section 7 discusses how this work can be extended in the
future and Section 8 finally concludes the paper.

2 BACKGROUND & MOTIVATIONS
In this section, we first present several potential scenarios on measuring fruit moisture and SSC levels in

daily life, and then introduce existing COTS devices and research attempts on such measurements. For a better
understanding of readers, we further show the RF-based fruit sensing theories. The substantial challenges for
Wi-Fi-based fruit moisture and SSC measurements are also analyzed, which motivate the design of Wi-Fruit.
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(a) Moisture changes with respect to time.
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(b) SSC changes with respect to time.

Fig. 1. Moisture and SSC observations with respect to time.

2.1 Fruit Moisture and SSC Measurements: Potential Scenarios
The moisture and SSC levels are two key features to describe the internal quality of fruits. These two features

may be used in the following practical scenarios:
• Pick “yummy” fruits in shops. Most of the fruit selection behaviors in daily life depend on the experience

of customers. They may judge the quality of fruit from its color, shape, firmness, weight, skin characteristics,
and even smell, that is, most judgments are based on external features of fruits. These judgments are biased
because it is quite common to pick fruits with the beautiful outside but tasteless inside. The accurate sensing
of the internal qualities of fruits can make the selection of fruits no longer a lottery-like behavior. For this
application scenario, customers would like to get fast feedback with minimum effort. So, the measurements of
fruit moisture and SSC levels are required to be non-destructive, lightweight, and convenient to be deployed.

• Distinguish rotten fruits and protect our health.The rotten pulps are more dangerous than tasteless pulps
as they may threaten our health. In order to extend the freshness of the cut fruit, we may cover it with plastic
wrap and store it in the refrigerator. However, the rot of these protected fruits is not easy to show up in a short
time. Observed from our collected data, there are rotten thresholds for moisture and SSC levels on each fruit
type. As shown in Fig. 1, for example, the moisture of watermelon above 77 and the SSC above 10 imply the
rot of watermelons. Once we acquire the exact values of moisture and SSC, we can judge the fruit status with
the comparison of these thresholds.

• Provide a coarse storage suggestion on household fruits. Further in Fig. 1, both moisture and SSC levels
show monotonic change after the 4th day when the fruit is about to rot. (Except pear, other fruits are mono-
tonically decreasing on moisture and increasing on SSC after they rots.) The slope for either moisture and SSC
with respect to time can be estimated for each fruit type, which would be the reference to calculate the left
days before the fruit rots with the consideration of its present moisture and SSC values. So a coarse storage
suggestion can be given to reduce the household fruit waste.

2.2 Fruit Moisture and SSC Measurements: Existing Methods
Existing COTS devices for measuring fruit moisture and SSC levels are summarized in Table. 1 and Fig. 2 (a).

The portable penetrometers [9, 10] reads the voltage difference between two probes inserting into fruit tissues
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Fig. 2. Fruit sensing motivations.

for moisture estimation. The vacuum oven [11] leveraged in laboratories provides more accurate water content
evaluations through drying fruit samples under restricted conditions. Refractormeter [12, 13] measures SSC via
light refraction on juice samples. However, all these devices have a limited adoption range as they can only
perceive a single internal feature in a destructive manner. On the contrary, spectrometers [32, 33] become a
promising selection for internal fruit quality assessment which can non-destructively provide both moisture and
SSC measurements. But as surveyed in Table. 1, these devices require relatively high cost (9k-100k US dollars),
making them infeasible for daily use.

As observed from Fig. 2 (b), RF waves penetrating through fruits suffer from different transmission attenuation
than in the air with respect to its moisture and SSC levels. Thus, it is feasible to measure fruit moisture and SSC
with RF signal processing. Ren et al. [20] and Tan et al. [21] have explored this feasibility by building fruit ripeness
profiles over 0.75-1.1 THz or 5GHz RF spectrum, while they did not provide fine-grained internal feature analysis
with low costs. In this paper, we utilize commodity Wi-Fi for a non-destructive and low-cost fruit moisture and
SSC measurements, named as Wi-Fruit. To the best of our knowledge, Wi-Fruit is the first attempt on fine-
grained fruit moisture and SSC measurements with commodity Wi-Fi signals. In the following subsections, we
will introduce the general RF-based fruit sensing theories and substantial challenges when Wi-Fi-based sensing
comes to the fruit scenario.

2.3 RF-based Fruit Moisture and SSC Measurements: Fundamentals
RF-based internal feature sensing relies on the fact that RF waves suffer from velocity loss and transmission

attenuation through targets than in the air due to their different permittivity and EC values.

2.3.1 Electrical Properties. Apparent permittivity and EC are twomain electrical properties leveraged in existing
RF-based sensing techniques [22].
(1) Permittivity 𝜖∗ is a complex value represented as 𝜖∗ = 𝜖

′ + 𝑗𝜖
′′ , where j =

√
−1. Its real component 𝜖 ′ mea-

sures the ability of the material to store electromagnetic energy, and the imaginary component 𝜖 ′′ measures
electrical energy loss. The relative permittivity 𝜖∗𝑟 is calculated by dividing 𝜖∗ with the free space permittivity
𝜖0 = 8.854 × 10−12𝐹/𝑚, which is represented as:

𝜖∗𝑟 =
𝜖∗

𝜖0
=
𝜖
′

𝜖0
+ 𝑗

𝜖
′′

𝜖0
= 𝜖

′
𝑟 + 𝑗𝜖

′′
𝑟 . (1)
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Table 1. The COTS devices for fruit internal factor measurements. [Ref.=reference, M=Moisture, D=destructive, ND=non-
destructive, the unit of price: US$]

Class Example Ref. Techniques Factor Manner Price Accuracy Scheme

Penetrometer Jacks JK-100R [9, 10]
Voltage difference
between inserted

probes
M D 400 ±0.1% Portable

Vacuum oven Yamato ADP-31 [11] Weight loss after
infrared heating M D 3500 ±0.01% Dedicated

Refractormeter Mileseey SM20 [12] Light refraction
on juice samples SSC D 100 ±0.2◦Bx Portable

Atago Pallete PR [13] 2500 ±0.1◦Bx Dedicated

Spectrometer Felix F-750 [19] Near-infrared
spectrum analysis

M
+SSC ND 9000 M: ±4.5%

SSC: ±2.7◦Bx Portable

ASD LabSpec 4 [15, 16] 100K M: ±1.7%
SSC: ±1◦Bx Dedicated

The apparent permittivity 𝜖𝑎 is the permittivity measured in situ at frequency 𝑓 . It is also related to the EC 𝜃 ,
given as:

𝜖𝑎 =
𝜖 ′𝑟
2

[√
1 + tan2 𝛿 + 1

]
=
𝜖 ′𝑟
2


√
1 +

𝜖 ′′𝑟 + 𝜃
2𝜋 𝑓 𝜖0

𝜖 ′𝑟
+ 1

 .
(2)

(2) The apparent EC 𝜃𝑎 is the EC measured in situ at frequency 𝑓 . It is represented by both the EC 𝜃 and the
imaginary part of permittivity 𝜖 ′′

𝑟 , as they are both related to energy loss. So it is denoted as:

𝜃𝑎 = 𝜃 + 2𝜋 𝑓 𝜖0𝜖
′′
𝑟 . (3)

2.3.2 Penetrated Wave Analysis. These electrical properties can be obtained by analyzing phase and amplitude
changes of waveform penetrating through target materials. The received waveform after penetrating through
the distance 𝑑 can be modelled as: 𝑅(𝑑) = 𝐴𝑒−𝛼 ·𝑒−𝑗𝛽𝑑 . The amplitude attenuation factor 𝛼 and the phase change
factor 𝛽 in this function can be represented by the above mentioned permittivity and EC as:

𝛼 =
2𝜋 𝑓

𝑐

√
𝜖 ′𝑟
2

[√
1 + tan2 𝛿 − 1

]
, (4)

𝛽 =
2𝜋 𝑓

𝑐

√
𝜖 ′𝑟
2

[√
1 + tan2 𝛿 + 1

]
=
2𝜋 𝑓

𝑐
· √𝜖𝑎 .

(5)

Thus, electrical properties of target fruits can be estimated from amplitude and phase changes when signal
penetrating through them, so as to be used for further biological feature measurements.

2.3.3 Biological Properties. Among various fruit biological properties, we focus on measuring fruit moisture
and SSC, not only because they are strongly related to electrical properties of penetrated RF waves, but also
because they are two of the most representative properties for fruit internal quality assessment [34]. Here we
denote fruit moisture as𝑀 , demonstrating water contents in fruit tissues. It is related to the apparent permittivity
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Fig. 4. Fruit structure and size dependency related real tests.

𝜖𝑎 [35], given as:
𝑀 (%) = 0.118

√
𝜖𝑎 − 0.117. (6)

And the fruit SSC is denoted as 𝑆 , composed mainly by sugars thus measuring fruit sweetness. The mapping
relation from the apparent EC 𝜃𝑎 to 𝑆 is presented as [36]:

𝑆 (◦𝐵𝑥) = 640 × 𝜃𝑎 . (7)

2.4 Wi-Fi-based Fruit Moisture and SSC Measurements: Motivations
Various attempts have been made on RF-based internal sensing, such as with RFID [24–26], ultra-wideband

(UWB) [27], or 60GHz radars [28, 29]. Compared with them, Wi-Fi-based sensing [22, 23, 30, 37] is more con-
venient with lower cost due to the wide deployment of Wi-Fi modules either on smart devices or in our living
environment. So it becomes a promising solution on non-destructive and low-cost fruit moisture and SSC mea-
surements. However, accurate measurements entail a number of substantial challenges:
(1) Fruit structure dependency: Sensing targets in recent work [22, 23, 27] are deployed in specially designed

size-known containers (such as the polypropylene beaker used for liquid sensing [23] or waterproof boxes
in soil sensing [22]). The container impact can be simply eliminated in these problems and researchers can
concentrate on penetration attenuation caused by the contained material. In non-destructive fruit sensing,
we cannot break the original structures of fruits, which means the impact on penetrated signals caused by
each composition of fruits should be discussed. As illustrated in Fig. 3, most fruits consist of a pericarp, pulp,
and pip. We conduct several real tests on fruits holding different compositions to explore the fruit structure
impact on penetrated signals as shown in Fig. 4. We retrieve the CSI of received signals with Intel 5300 Wi-Fi
card [38] deployed on a laptop. To avoid the random phase jump problem when collecting CSI with this tool
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Fig. 5. Fruit structure and size dependency related real test results.

at 2.4GHz frequency [39], we select a 5GHz Wi-Fi spectrum for measurements in this paper. Analysis results
based on these real tests are summarized in Fig. 5. Accordingly, we get the following observations:

(a) Different CSI impacts for pericarps and pulps: Fig. 5 (a) corresponds to real tests on the former two
figures in Fig. 4 (a), where the red solid line represents the amplitude difference before and after removing
apple pericarp, and the pink dot line represents the amplitude difference from pericarp removal to pulp
removal with the same thickness. It can be seen that the amplitude changes caused by the pericarp and
pulp with the same thickness are different, due to their different chemical compositions. As we mainly
care about the moisture and SSC levels of fruit pulps, the impacts from other fruit compositions should be
carefully eliminated.

(b) Different CSI impacts for pericarps with different thicknesses: Real tests in Fig. 4 (b) are conducted
on the same watermelon with only skin left. The amplitude results shown in Fig. 5 (b) indicate that the
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signal attenuation degrees are quite different with respect to different thicknesses of pericarps under the
same fruit size.

(c) Sensitive CSI impacts for fruits with thick pericarps: When summarizing all above real test results
in Fig. 5 (c), it can be observed that the signal attenuation is more sensitive to changes in the structure of
fruits with thick pericarps like watermelons.

Observed from these real tests, pericarps of fruits perform as a natural “container” for our sensing targets
(fruit pulp). Therefore, it becomes a challenging part that the size of this “container” is unknown when
measuring the moisture and SSC levels of fruit pulps non-destructively.

(2) Fruit size dependency: After eliminating the fruit structure dependency, the remaining phase and ampli-
tude changes of retrieved CSI are related to biological features of fruit pulps. However, these changes depend
not only on fruit moisture and SSC levels but also on target sizes, which correlated with different penetra-
tion path lengths through fruits for Wi-Fi signals. Real tests shown in the latter two figures of Fig. 4 (a)
are conducted on the same apple without pericarps, which is sliced from the bigger size to a smaller one.
The evaluation results in Fig. 5 (d) demonstrate that the signal attenuation would be different due to the
size impact when the moisture and SSC levels keep the same. So to acquire accurate fruit moisture and SSC
estimation results, we should further eliminate the fruit size dependency.

(3) Fruit type dependency: Different fruit types relate to different electrical-biological mapping functions.
Specifically, the formats and parameters in function 6 and 7 should be fine-tuned for different fruit types.

3 SYSTEM DESIGN
In order to provide fine-grained internal fruit evaluation, we design a non-destructive and low-cost fruit

moisture and SSC measurement system mainly depending on commodity Wi-Fi, named as Wi-Fruit. In this
section, we present the system overview of Wi-Fruit and its detailed design.

3.1 The System Overview of Wi-Fruit
Any device with the Wi-Fi transmission module can perform as the transmitter to send Wi-Fi signals. Smart

devices with multiple antennas and camera modules perform as receivers that collect Wi-Fi CSIs and fruit im-
ages as inputs and process them for final fruit moisture and SSC estimation. According to the received signals
penetrating through target fruits deployed on the LoS link between transceivers, Wi-Fruit can measure electri-
cal properties from relative amplitude and phase changes among antennas, which are then fused with visual
information like fruit size, shape, and type to estimate fruit biological properties. As illustrated in Fig. 6, there
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Fig. 7. Observations on neighboring antennas and fruit pericarp thickness.

are two key components in Wi-Fruit include (1) a double-quotient model-based CSI pre-processing; and (2) an
information fusion-based fruit moisture and SSC estimation.

The double-quotient model-based CSI pre-processing module is proposed to process raw CSI readings
between neighboring antennas with and without target appearance. This module can denoise the received CSI
information and remove the fruit structure dependency (i.e., the first challenge discussed in Section 2.4) as well,
ensuring the estimation accuracy for the next module.

The next information fusion-based estimation module takes both sensing and visual information as in-
puts and outputs fruit moisture and SSC measurements via a 3-layer lightweight ANN. The sensing information
is acquired from the previous CSI pre-processing module. And the visual information including fruit size, shape,
and type is obtained from image processing methods. It assists to remove fruit size and type dependency in
estimations, which are the latter two challenges as discussed in Section 2.4. In the following subsections, we will
introduce each module in detail.

3.2 Double-quotient Model-based CSI Pre-processing
The rawCSI readings reported by each antenna on theWi-Fi NICs cannot be directly applied for fruit moisture

and SSC measurements due to the bandwidth limitation, signal noise, and fruit structure dependency problems.
The absolute amplitude and phase analysis on a single antenna require ultra-wide bandwidth for satisfactory
accuracy [21], which is not available in the UHF unlicensed spectrum. Previous work [22, 23, 37, 40, 41] has
demonstrated that the high accuracy can be achieved by the relative ToF and AoA analysis among multiple
antennas with limited bandwidth, such as Strobe [22], which realized satisfactorymeasurements on soil moisture
and EC with 20MHz-channel and 3-antenna commodity Wi-Fi. Thus, Wi-Fruit also utilizes relative amplitude
and phase analysis among multiple antennas to overcome bandwidth limitations on commodity Wi-Fi devices.

Our observations based on real-collected CSI have explored several relationships between neighboring anten-
nas on the same receiving chip:
(1) As observed from Fig. 7 (a), the amplitude ratio between neighboring antennas has the lowest packet variance

on all subcarriers compared with amplitude readings for each antenna.
(2) As observed from Fig. 8 (b), the phase subtracted results between neighboring antennas can aggregate within

a small degree range, reducing the randomness shown in the phase of each antenna.
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Fig. 8. CSI denoising.

(3) As observed from Fig. 7 (b), the average amplitude ratios and phase subtractions for the watermelon skin
(Fig. 4 (b)) are symmetrical evenly, so the measurement on any degree from one side can also represent the
one on the symmetrical side. The maximum and the minimum amplitude ratios happen at the minor axis and
macro axis of fruits respectively. So in our analysis, we assume that the average values measured at the fruit
minor axis and macro axis can represent the measurement on the whole fruit.

According to these observations, the signal noise and fruit structure dependency can be removed between
adjacent antennas. It motivates our design of the double-quotient model for CSI pre-processing, which goes
beyond the commonly used CSI quotient model [31].

3.2.1 The CSI Quotient Model for Signal Denoising: Background. The CSI quotient model has been widely used
for CSI denoising recently [31, 42]. Recall the received waveform representation in Section. 2.3, the quotient
model 𝑄 for two neighboring receiving antennas is:

𝑄 =
𝐴1𝑒

−𝛼 · 𝑒−𝑗𝛽𝑑
𝐴2𝑒−𝛼 · 𝑒−𝑗𝛽 (𝑑+Δ𝑑)

=
𝐴1

𝐴2
𝑒 (𝜙1−𝜙2) , (8)

where 𝐴1, 𝐴2, 𝜙1, 𝜙2 are amplitudes and phases for CSIs collected on antenna 1 and 2 respectively. That is, the
quotient value on two receiving waveforms is transformed to the amplitude ratio and phase difference between
neighboring antennas. We then show how this quotient model can be used for signal denoising.

For phase denoising, blue dots in Fig. 8 (b) represent raw CSI complex values on one subcarrier of the first
receiving antenna collected at one timestamp. It shows the “doughnut” shape implying the randomness of raw
CSI phase values, which is caused by asynchronization between transceivers and hardware noises, such as Packet
Boundary Delay (PBD) 𝜆𝑝 , Sampling Frequency Offset (SFO) 𝜆𝑠 , Carrier Frequency Offset (CFO) 𝜆𝑐 , and other
measurement noises 𝑁 . Accordingly, we can represent the polluted phase readings 𝜙𝑘,𝑖 for the 𝑘th subcarrier on
the 𝑖th antenna as [23]:

𝜙𝑘,𝑖 = 𝜙𝑘,𝑖 + 𝑘 (𝜆𝑝 + 𝜆𝑠 ) + 𝜆𝑐 + 𝑁 . (9)
Since different antennas on the same board share the same clock, their PBD, SFO and CFO are identical [43, 44].
We can remove these noises by phase subtraction of neighboring antenna pair and get the relative phase reading
Δ𝜙𝑘 on the 𝑘th subcarrier: Δ𝜙𝑘 = Δ𝜙𝑘 + Δ𝑁 , where Δ𝑁 follows Guassian distribution thus can be removed by
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the sliding window average method. As shown by the red cross symbols in Fig. 8 (b), the phase difference values
is relatively “clean” without the random noise impact.

For amplitude denoising, as shown in Fig. 8 (a), the raw amplitude readings (represented by the red dot line
in this figure) contain substantial outliers, impulse noise, and even missing values in our dataset. They also
suffer transmission power inconsistency with respect to time, due to the random power adjustment among Wi-
Fi transceivers in changing environments. But no matter how transmission power changed with respect to time,
antennas on the same receiving board share the same changing ratio. Therefore, the amplitude ratio for the
neighboring antenna pair is transmission power independent. The amplitude denoising ability of the quotient
model can be also seen in Fig. 7 (a). The amplitude variances among packages are the smallest for the amplitude
ratio when comparing with amplitude values on single antennas. From the above discussions, the CSI quotient
model can denoise both amplitude and phase readings.

However, this CSI quotient model cannot be directly used in our scenario due to fruit structure dependency.
So we go beyond and propose a double-quotient model introduced in the next subsection.

3.2.2 The Double-quotient Model for Eliminating Fruit Structure Dependency. For better analysis results, we
conduct several signal preprocessing steps before the double-quotient model. Considering fruits are measured
statically, the noises from outside like potential motions have higher frequencies than the penetrated signals.
So the raw CSI readings are first performed by a Fourier Transformation to retain signals with the frequency of
0. Then the amplitude of the left CSI is pre-processed with a Butterworth low-pass filter, which can remove a
large number of outliers and impulse noise. We also test the DWT reconstruction used in other material sensing
work [23]. It can be seen from Fig. 8 (a) that the Butterworth filter (blue line) performs relatively better as it
is less affected by outliers than DWT reconstruction (green line) in our static fruit sensing environment. Such
pre-processed CSI signals are further input into the proposed double-quotient model.

Denote the amplitude and phase of the received signals without the target on the LoS link as (𝐴𝑎𝑖𝑟1, 𝜙𝑎𝑖𝑟1)
and (𝐴𝑎𝑖𝑟2, 𝜙𝑎𝑖𝑟2) for neighboring antenna 1 and 2 respectively. When the fruit is on the LoS link, its amplitude
and phase readings are denoted as (𝐴1, 𝜙1) and (𝐴2, 𝜙2) for neighboring antenna 1 and 2. As illustrated in Fig. 9,
if the thickness of fruit pericarp on the LoS link is 𝑑𝑠 , according to the symmetrical feature from the above
observation (3), the total length of the pericarp on the LoS link is assumed to be 2𝑑𝑠 . Especially, for some big-
pip fruits such as mango or avocado, the thickness of the pip 𝑑𝑝 should also be considered. When the distance
between transmitter and receiver is 𝐿 and the distance between antenna 1 and 2 is Δ𝐿, the amplitude ratio and
phase difference for each antenna with and without target are:

𝐴1

𝐴𝑎𝑖𝑟1
=
𝐴𝑒−𝛼𝑎𝑖𝑟 (𝐿−𝑑1−2𝑑𝑠−𝑑𝑝 ) · 𝑒−𝛼𝑡𝑎𝑟𝑑1 · 𝑒−2𝛼𝑠𝑑𝑠 · 𝑒−𝛼𝑝𝑑𝑝

𝐴𝑒−𝛼𝑎𝑖𝑟𝐿
,

𝐴2

𝐴𝑎𝑖𝑟2
=
𝐴𝑒−𝛼𝑎𝑖𝑟 (𝐿+Δ𝐿−𝑑2−2𝑑𝑠−𝑑𝑝 ) · 𝑒−𝛼𝑡𝑎𝑟𝑑2 · 𝑒−2𝛼𝑠𝑑𝑠 · 𝑒−𝛼𝑝𝑑𝑝

𝐴𝑒−𝛼𝑎𝑖𝑟 (𝐿+Δ𝐿)
,

(10)

𝜙1 − 𝜙𝑎𝑖𝑟1 = 2𝜋 ·
𝐿 − 𝑑1 − 2𝑑𝑠 − 𝑑𝑝

𝜆𝑎𝑖𝑟
+ 2𝜋 · 𝑑1

𝜆𝑡𝑎𝑟
+ 2𝜋 · 2𝑑𝑠

𝜆𝑠
+ 2𝜋 ·

𝑑𝑝

𝜆𝑝
− 2𝜋 · 𝐿

𝜆𝑎𝑖𝑟
,

𝜙2 − 𝜙𝑎𝑖𝑟2 = 2𝜋 · 𝐿 + Δ𝐿 − 𝑑2 − 2𝑑𝑠
𝜆𝑎𝑖𝑟

+ 2𝜋 · 𝑑2
𝜆𝑡𝑎𝑟

+ 2𝜋 · 2𝑑𝑠
𝜆𝑠

+ 2𝜋 ·
𝑑𝑝

𝜆𝑝
− 2𝜋 · 𝐿 + Δ𝐿

𝜆𝑎𝑖𝑟
.

(11)

Assuming the fruit has a uniform pericarp thickness and pip shape, penetration paths happens in fruit pericarp
𝑑𝑠 and pip 𝑑𝑝 are the same for adjacent antennas. So we can remove their effects by a further division operation
between two antennas:

𝐴𝑞 =
𝐴1

𝐴𝑎𝑖𝑟1
· 𝐴𝑎𝑖𝑟2

𝐴2
= 𝑒−(𝛼𝑡𝑎𝑟−𝛼𝑎𝑖𝑟 ) (𝑑1−𝑑2) , (12)
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𝜙𝑞 = (𝜙1 − 𝜙𝑎𝑖𝑟1) − (𝜙2 − 𝜙𝑎𝑖𝑟2)

= 2𝜋 · (𝑑1 − 𝑑2) (
1

𝜆𝑡𝑎𝑟
− 1
𝜆𝑎𝑖𝑟

)

= (𝑑1 − 𝑑2)(𝛽𝑡𝑎𝑟 − 𝛽𝑎𝑖𝑟 ).

(13)

In a word, the double-quotient model is presented as:

𝑄
′
=
𝑄1↔𝑎𝑖𝑟1

𝑄2↔𝑎𝑖𝑟2
= 𝐴𝑞𝑒

𝜙𝑞 , (14)

where 𝑄1↔𝑎𝑖𝑟1 denotes the quotient model for receiving waveforms on antenna 1 with and without fruit exis-
tence, and 𝑄2↔𝑎𝑖𝑟2 is for antenna 2. According to the discussions in previous section 3.2.1, the amplitude ratio
and phase difference values acquired from this double-quotient model have been denoised and at the meantime,
the effects of fruit pericarp and pip are also removed from function 12 and 13.

The phase difference 𝜙𝑞 and amplitude ratio𝐴𝑞 acquired from the quotient model are then expected to remove
the multi-path impact.The 40MHz bandwidth ofWiFi channels in our paper results in a distance resolution of 7.5
meters when the wireless signal travels at the speed of light. In typical indoor environments, the acquired first-
arrival CSI would suffer from themulti-path impact, which is themixture of signals penetrated through, scattered
from fruits, and reflected from surroundings. To deal with this problem, subcarriers with smaller variance across
packets are selected, which are considered to be less affected bymulti-path [23].The final phase difference𝜙𝑞 and
amplitude ratio 𝐴𝑞 values are averaged from the selected subcarriers for the next biological feature estimation
procedure. Subcarriers are selected for each measurement, so they can deal with the changing surroundings.
Besides, this subcarrier selection strategy can also help to remove the missing value impact in CSI readings,
as subcarriers containing missing values have larger packet variance and would not be selected for the final
calculation. According to our real tests, we select 4 subcarriers with minimum variances to get satisfactory
measurement accuracy.

3.3 Information Fusion-based Biological Feature Estimation
Illustrated by function 6 and 7, the fruit moisture 𝑀 and SSC level 𝑆 can be estimated when knowing the

apparent permittivity 𝜖𝑎 and the apparent EC 𝜃𝑎 . And according to function 4 and 5, the measurements of 𝜖𝑎 and
𝜃𝑎 rely on the phase change factor 𝛽𝑡𝑎𝑟 and the amplitude change factor 𝛼𝑡𝑎𝑟 respectively. If we ignore the fruit
size dependency and possible deployment differences, 𝛽𝑡𝑎𝑟 and 𝛼𝑡𝑎𝑟 can be directly calculated by removing the
dependency of (𝑑1−𝑑2) in function 12 and 13 with the following equations. Denote the processed amplitude ratio
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Fig. 10. Image processing based fruit size and shape analysis. [The left figure is the camera captured image and the right
figure is its processed binary image with illustrations.]

and phase change acquired at the target timestamp are {𝐴𝑞1, 𝜙𝑞1} and ones at another timestamp are {𝐴𝑞2, 𝜙𝑞2},
we have:

ln𝐴𝑞1

ln𝐴𝑞2
=
ln 𝑒−(𝛼𝑡𝑎𝑟−𝛼𝑎𝑖𝑟 ) (𝑑1−𝑑2)

ln 𝑒−(𝛼
′
𝑡𝑎𝑟−𝛼𝑎𝑖𝑟 ) (𝑑1−𝑑2)

=
𝛼𝑡𝑎𝑟 − 𝛼𝑎𝑖𝑟
𝛼

′
𝑡𝑎𝑟 − 𝛼𝑎𝑖𝑟

, (15)

𝜙𝑞1

𝜙𝑞2
=

(𝑑1 − 𝑑2)(𝛽𝑡𝑎𝑟 − 𝛽𝑎𝑖𝑟 )
(𝑑1 − 𝑑2)(𝛽 ′

𝑡𝑎𝑟 − 𝛽𝑎𝑖𝑟 )
=
𝛽𝑡𝑎𝑟 − 𝛽𝑎𝑖𝑟

𝛽
′
𝑡𝑎𝑟 − 𝛽𝑎𝑖𝑟

. (16)

The {𝐴𝑞2, 𝜙𝑞2} and {𝛼
′
𝑡𝑎𝑟 , 𝛽

′
𝑡𝑎𝑟 } in these functions can be recognized as the anchor values of each fruit type, which

are obtained by calculating the average of the collected values in dataset. The biological properties𝑀𝑡𝑎𝑟 and 𝑆𝑡𝑎𝑟
are further estimated with these anchor values according to function 3, 4, 5, 6, and 7. However, as shown in
Table. 2, the estimation accuracy of this anchor-based method is quite low (RMSE = 1.890). It illustrates that
although we have acquired sensing results 𝐴𝑞 and 𝜙𝑞 from the last step, we still cannot accurately calculate 𝑀
and 𝑆 due to the following two main challenges mentioned in Section 2.4.

First is the fruit size dependency.The calculation of𝛼𝑡𝑎𝑟 , 𝛽𝑡𝑎𝑟 depends not only on the averaged phase difference
𝜙𝑞 and amplitude ratio 𝐴𝑞 , but also on the penetration path difference (𝑑1 − 𝑑2) as shown in function 12 and 13.
It is intuitive to obtain this path difference values for calculation as how Strobe [22] did. It can be realized when
the angle of incidence for transmitted signals is known, but requiring the surface of the soil is controlled to be
flat and the penetrated thickness in the soil is also pre-known. However, both the angle of incidence and the
penetrated thickness in fruits are difficult to be acquired, because the curvature of fruit surface and the fruit size
are various on different fruit samples. So it is changeable to directly calculate the path difference in fruit sensing.

Second is the fruit type dependency. Assuming we already have electrical feature measurements (i.e., 𝜖𝑎 and
𝜃𝑎), the mapping from these two electrical measurements to biological properties (i.e.,𝑀 and 𝑆) varies from fruit
types. In other words, the function 6 and 7 are not generalized and suitable for all types of fruits.

As both these two challenges can not be addressed only fromWi-Fi sensing information, we found it possible to
leverage the widely deployed camera module on smart devices to provide fruit size, shape, and type information
from the visual dimension. The sizes of fruits are represented by their longest and shortest diameters and the
shapes of fruits are represented by the corresponding curvatures. They are acquired from image processing,
which are geometric problems in essence. The images of target fruits are captured with a relatively “clean”
background where no other objects are in the view to avoid detection interference. A faster median filter is
firstly applied to acquire the fruit binary image (as shown in the right figure of Fig. 10). The diameters are
calculated from this binary image by the method proposed in [45] with the pre-known camera focal length and

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 169. Publication date: December 2021.



Wi-Fruit: See Through Fruits with Smart Devices • 169:15

Table 2. Performance of lightweight machine learning models for fruit moisture and SSC estimation.

Index Model Parameters RMSE R2 score
1 Anchor-based estimation - 1.890 -
2 Linear Regression default 0.900 0.218
3 Decision Tree default 0.939 0.254
4 SVR default 0.892 0.320
5 KNN Regression default 0.760 0.393
6 Random Forest max_depth=5 0.570 0.588
7 XGBoost max_depth=3, lr=0.1 0.66 0.338
8 LightGBM num_leave=32, lr=0.1 0.758 0.414
9 GBDT n_estimators=200,max_depth=11,lr=0.1 0.744 0.452
10 3-layer ANN {32,16,2},lr=1e-5,iter=1000 0.319 0.856

shooting distance. The edge is detected with the 8-connected boundary tracking method where the center and
axis points are located for further diameter and curvature acquisition. Due to the symmetric shape for most fruits,
we only extract the longest and shortest diameters of fruits. Then the curvature set can also be calculated once
finding the edge sequence points. We finally preserver two curvatures at the point corresponding to the longest
and shortest diameters (the point A and B as shown in Fig. 10). To further obtain the fruit type information, we
leverage a state-of-the-art 13-layer CNN [46] as the back-end to output fruit types from the captured images.

Until now, the multi-dimension knowledge we have before biological feature estimation is from both sens-
ing and vision dimensions. That is, the amplitude change factor 𝐴𝑞 , the phase change factor 𝜙𝑞 , the shortest
and longest diameters denoted as 𝐷𝑠 and 𝐷𝑙 , the corresponding curvatures 𝐶𝑠 and 𝐶𝑙 , and the fruit type 𝑇 . As
the ground truth, we collect their corresponding moisture and SSC levels in situ with portable devices (i.e., the
penetrometer Jacks JK-100R for moisture measurements and the refractometer Mileseey SM20 for SSC measure-
ments) in a destructive manner. The biological feature estimation is essentially a regression problem, taking a
five dimension inputs {𝐴𝑞, 𝜙𝑞, 𝐷,𝐶,𝑇 } to predict a two-dimension outputs {𝑀, 𝑆}.

Mathematically, this regression problem can be regarded as a supervised learning problem with input 𝑋 and
its label 𝑌 . Each fruit 𝑖 builds two inputs at each collection timestamp 𝑡 when the shortest (𝑠) and longest
(𝑙 ) diameters appear on the LoS link, that is, 𝑋 𝑠 (𝑖, 𝑡) = {𝐴𝑠

𝑡𝑎𝑟 (𝑖, 𝑡), 𝜙𝑠
𝑡𝑎𝑟 (𝑖, 𝑡), 𝐷𝑠 (𝑖), 𝐶𝑠 (𝑖),𝑇 (𝑖)} or 𝑋 𝑙 (𝑖, 𝑡) =

{𝐴𝑙
𝑡𝑎𝑟 (𝑖, 𝑡), 𝜙𝑙

𝑡𝑎𝑟 (𝑖, 𝑡), 𝐷𝑙 (𝑖),𝐶𝑙 (𝑖),𝑇 (𝑖)}. The labels for 𝑌 𝑠 (𝑖, 𝑡) and 𝑌 𝑙 (𝑖, 𝑡) are the same combination of 𝑀 (𝑖, 𝑡)
and 𝑆 (𝑖, 𝑡) denoted as𝑌 (𝑖, 𝑡) = {𝑀 (𝑖, 𝑡), 𝑆 (𝑖, 𝑡)}. We apply the one-hot coding for the input𝑇 (𝑖) and conduct data
normalization for a better regression performance. For COTS device adaptation, a lightweight regression model
is required. We have tried 9 lightweight machine learning models and summarize their performance in Table 2. It
is obvious that the dataset shows its nonlinearity where the R2 score of linear regression model is lowest (0.218).
And a 3-layer ANN model outperforms other nonlinear regression models with the highest prediction accuracy
(RMSE=0.319) and model relevance (R2 score=0.856). It is a powerful tool to dig out potential features in data due
to its self-learning, state-association memory, and fast optimization ability. Our lightweight ANNmodel consists
of three dense layer with 32, 16, and 2 outputs, corresponding to 416, 528, and 34 parameters respectively. They
are fully connected layers with flat number of hidden units. The activation function for the latter two layers is
the Relu function, and the optimizer of our model is Adam in Tensorflow.

4 IMPLEMENTATION DETAILS
In this section, we introduce the prototype of Wi-Fruit and discuss some implementation issues. Considering

that implementation issues mainly happen in the Wi-Fi sensing stage, we utilize the amplitude ratio and phase
difference output from the double-quotient model to show impacts on different setups.
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Fig. 11. The prototype ofWi-Fruit.

4.1 Prototype Setups
To conduct extensive evaluations on Wi-Fruit, we implement a prototype shown in Fig. 11. A commodity 3-

antenna Wi-Fi router is the transmitter and a laptop with an embedded 2-antenna Intel 5300 wireless card is the
receiver. Besides, a mobile phone with a 12 megapixel (MP) master camera and a 5 MP slave camera is used to
capture target fruit images. The router works in 802.11n AP mode at 5.24GHz frequency with 40MHz bandwidth.
The laptop operates with 64bit Ubuntu 14.04 LTS system, 2.5GHz CPU, and 3.7GB memory.

When the target fruit is deployed on the LoS link of transceivers, the raw CSI is collected by the Linux CSI
Tool [38] on the laptop. The target images captured by the mobile phone are sent to the laptop for image pro-
cessing through Wi-Fi connections. The double-quotient model-based CSI pre-processing is coded on Matlab
2016a. The information fusion-based estimation includes the image processing and ANN estimation is coded
with Python on Pycharm Community Edition 2020. All these data processing codes are running on the receiver
side (i.e., the laptop in this prototype) for acquiring the final fruit moisture and SSC values.

4.2 Implementation Issues
In this subsection, we will discuss several implementation issues with the prototype shown in Fig. 11. Proper

setups are selected from these discussions for better fruit moisture and SSC estimation performance in real
deployments.

4.2.1 Antenna Deployment Distances. As shown in Fig. 11, the straight-line distance between the transmitting
antenna array and the embedded receiving antenna array is one of the design issues. Considering the general
sizes of the COTS fruit scales, which range from 35cm to 60cm, we evaluate CSI differences by changing the
distance from 35cm to 70cm while putting a watermelon with an 18cm diameter on the LoS link. It can be seen
from Fig. 12 (a) that the amplitude ratio and the phase difference do not change sharply after the distance of 55cm.
It can be explained that under the 5.7cm wavelength for 5.24GHzWi-Fi communication, the watermelon with an
18cm diameter can be entirely covered in the first Fresnel Zone [42] when the distance between transceivers is
56.84cm. To adapt to most of the fruit scales in the market, we choose 60cm as the antenna deployment distance.

4.2.2 Antenna Deployment Angles. The antenna deployment angle describes the angle between the antenna
array and the table. As shown in the left figure of Fig. 11, we consider the angle is 0 when the antenna array
is perpendicular to the table, and the angle is positive when the antenna array rotates to the right side and
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Fig. 12. The CSI performance on implementation issues.

vice versa, where the absolute value represents the rotation angle. Results shown in Fig. 12 (b) illustrate that
different deployment angles will greatly impact CSI information. In this paper, the deploy angle is kept to be 0
(perpendicular) for the following measurements.

4.2.3 Target Positions. When the axis of fruits falls at the center point between transceivers (i.e., 30cm away
from the transmitter), the target position is denoted as “0” in the paper. The position is positive when the fruit
is far away from the transmitter and vice versa, where the absolute value represents the multiple of the moving
distance (i.e., 5cm). The impacts on CSI with respect to different positions of targets are presented in Fig. 12 (c). It
is obvious that slight changes in target positions will cause non-monotonous changes in amplitudes and phases,
but when −3 < 𝑥 < 1, the amplitude ratio keeps increasing possibly due to more signals bypassing the target
surface are received. To ensure the target material can impact more on the receiving signals, the object should
be placed closer to the transmitter [37]. So the axis of fruits is decided to fall at the point which is 15cm away
from the transmitter (i.e., “𝑥 = −3” in Fig. 12 (c)) in real deployments.
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Fig. 13. The impacts of CSI on practical design choices for targets.

4.2.4 Target States. It is unavoidable in a practical sensing scenario that the CSI is collected while the target
fruit is not in a stable state. Fig. 12 (d) shows that both amplitude ratio and phase difference fluctuate following
the movement of the target. So the CSI is required to be collected after the target is kept stable in our paper.

4.2.5 Plastic Covers on Targets. In order to prolong the freshness of fruits, fruit retailers often put a layer of
plastic wrap on some damaged fruits, such as a cut watermelon. Evaluation results in Fig. 13 (a) proves that such
thin plastic wrap causes a negligible impact on processed CSI results with our method. It can be seen that the
amplitude ratio and phase difference values for the same fruit with and without cover are quite similar. Thus,
we also adopt this preservation method on our fruit samples for CSI collection in a longer period.

4.2.6 Temperatures of Targets. Similar to plastic covers, it is also common to put fruits in refrigerators for ex-
tending their preservation time. Evaluations on two kinds of fruits (i.e., grapefruit who has thicker pericarp
and apple who has thinner pericarp) have been summarized in Fig. 13 (b). The measurements of CSI with only
temperature difference (i.e., 2◦C and 23◦C) for each kind are slightly different. The impacts on fruits with thick
pericarps like grapefruits are larger than ones with thin pericarps like apples. It can be understood that fruit
pericarps and pulps have different chemical components, and the thicker pericarps will result in a larger impact
on CSI analysis for pulps. For a better evaluation performance, the CSI will be collected when the temperatures
of fruit samples are consistent with the room temperature after taking out from the refrigerator.

4.2.7 Sampling Methods on Targets. As the collection of ground truth moisture and SSC levels is performed
on fruit samples, which cause damage to the fruit structure, we need to decide on a sampling method to cause
the minimum damage and impact on CSI compared with its original form. We have considered two sampling
methods: 1) Cut a small piece of fruit and put it back after measurement to ensure structural integrity; 2) Insert
a needle syringe to extract a pulp sample. Evaluation results shown in Fig. 13 (c) prove that the second method
can cause less impact on the sensitive CSI, which becomes our choice for ground truth collection.

2Note that “Dragonfruit1” and “Dragonfruit2” are collected when the longest and shortest diameters appear on the LoS link for the same
fruit respectively.
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5 PERFORMANCE EVALUATION
We conduct extensive evaluations to validate the efficiency of Wi-Fruit on non-destructive and low-cost fruit

moisture and SSC estimation. In this section, we will introduce evaluation setups and report results with anal-
ysis. At the end of this section, we present two case studies corresponding to potential application scenarios
introduced in Section 2.1 to further illustrate the real-world deployment of Wi-Fruit.

5.1 Evaluation Setups
5.1.1 Hardware setups. Evaluations are conducted on the prototype shown in Fig. 11. According to the discus-
sions of implementation issues, in our evaluations, the transceivers are placed with a distance of 60 cm and the
transmitting antennas are perpendicular to the tabletop.

5.1.2 ANN Parameters. The ANN model is a fully connected network with 3 dense layers. The learning rate is
1𝑒−5 and the epoch is 1000. 20% dataset is split as the testing set and others build the training set.

5.1.3 Fruit Samples and Treatments. We select 6 kinds of fruits categorized into thick skin and thin skin groups.
The fruits in the thick skin group are watermelons and grapefruits, while the ones in the thin skin group are
apples, pears, oranges, and dragon fruits. We have collected CSI and ground truths of 20 items for each kind
during a one-month period in total with 12 hours gap. These fruits are stored under 2◦C in the refrigerator for
preservation. Each item stored in the fridge is separated and sealed by PE fresh-keeping films which are changed
after every measurement. It aims to reduce any possible cross-infection (e.g., ethylene volatilization effect) and
microbial infection, and prolong the lifespan of fruits. All fruits will be placed under the room temperature (i.e.,
23◦C) for half an hour before measurements. They will also be washed with tap water to remove any dust or soil
material and wiped to dry for next measurements.

5.1.4 Ground Truth Collection. Two ground truth values are measured for evaluation: fruit moisture and SSC.
They are collected with COTS devices on fruit internal tissues extracted with the syringe. The moisture is mea-
sured by a penetrometer SmartSensor AR991 with 0.1% accuracy, and the SSC is measured by a refractometer
Mileseey SM 20 with 0.2% accuracy. The mirror of the refractometer and the probe of the penetrometer are
calibrated with de-ionized water and dried in the air before any measurement.

5.1.5 Dataset Collection. The CSI measurements are received every 10 seconds with the 100pkt/s package rate.
The datasets are collected in two environments: an empty laboratory and a library with massive books, repre-
senting low and high multi-path impacts respectively. The CSI and its ground truth pairs are collected every 12
hours within a week as we found that our fruit samples with slight damage will rot in about a week. The CSI
without fruit deployment (i.e., signal penetrates only in the air) will be collected before every measurement at
each collection timestamp. And CSI readings for target presence are then collected when it keeps stable.

5.2 Evaluation Results
We conducted extensive evaluations on Wi-Fruit in the following aspects:
(1) Estimation Accuracy: The estimation accuracy is measured with the Root Mean Square Error (RMSE)

with respect to moisture and SSC ground truth values.
(2) Fruit type independence: This independence is measured from the accuracy for different types of fruits

with various moisture and SSC levels.
(3) Fruit structure and size independence: This independence is measured from the estimation accuracy

for fruits with different thicknesses of pericarps and different sizes.
(4) Time robustness: The time robustness is measured with the estimation accuracy on data collected on

different days.
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Table 3. Performance on overall estimation accuracy with multiple contrast evaluations.

Method Difference with Wi-Fruit RMSE R2 score
ANN + information fusion Ours 0.319 0.856
ANN + sensing information The amplitude and phase values are inputs. 0.422 0.039
ANN + visual information The diameters, curvatures, and types are inputs. 0.341 0.322

ANN + moisture The moisture is the output. 0.745 0.445
ANN + SSC The SSC is the output. 0.516 0.733

(5) Environment robustness: The environment robustness is measured with the estimation accuracy on
data collected in two environments with different multi-path impacts.

5.2.1 Contrast Evaluations onOverall Biological Feature Estimation Accuracy. Wediscuss the estimation accuracy
of Wi-Fruit by comparing it with the following methods, and their performance is summarized in Table 3:

(1) ANN on sensing information: We only take {𝐴𝑡𝑎𝑟 (𝑖, 𝑡), 𝜙𝑡𝑎𝑟 (𝑖, 𝑡)} as inputs to train our proposed ANN
model, which are acquired from the double-quotient model-based CSI pre-processing module.

(2) ANN on visual information: We only take {𝐷 (𝑖),𝐶 (𝑖),𝑇 (𝑖)} provided by the image processing module to
train our proposed ANN model for estimation.

(3) ANN training only with moisture: We only take 𝑌 = 𝑀 to train the proposed ANN.
(4) ANN training only with SSC: We only take 𝑌 = 𝑆𝑆𝐶 to train the proposed ANN.
Results in Table 3 have shown the superiority of the accuracy of our proposed ANN with information fusion.

On the one hand, training on sensing and visual information fusion provides higher accuracy than training on
individual dimensions as shown in rows 1, 2, and 3. We further present the estimation performance of these
three methods in Fig. 14, where Fig. 14 (a, b) are for information fusion estimation, Fig. 14 (c, d) are for sensing
information-based estimation, and Fig. 14 (e, f) are for visual information-based estimation. Compared with the
information fusion estimation, the sensing-based estimation dots for various kinds of fruits fall within a small
area (i.e., (71, 76) for moisture, (8, 12) for SSC). Because to cope with the bandwidth limitation of Wi-Fi, we
analyze relative amplitude and phase values among multiple antennas, which ignore the fruit type and size
impacts. On the contrary, the vision-based estimation can distinguish among different fruit kinds, but it has a
relatively low estimation accuracy than fused estimation since it ignores fruit structure dependency.

On the other hand, training with moisture and SSC aggregation achieves higher accuracy than training with
the single label as shown in the 4th and 5th row. It is consistent with the observations reported in researches [47–
49] that fruit moisture and SSC levels are correlated with each other. So the model built on these two factors
utilizes their correlations to increase estimation accuracy mutually.

5.2.2 Fruit Type Independence. The overall moisture and SSC estimation results for our collected 6 fruit types
are presented in Fig. 14 (a) and (b) respectively. It can be seen that the estimation accuracy of all fruit types
are satisfactory as they are approaching the 𝑦 = 𝑥 line, illustrating the fruit type independence. Specifically, we
further validate the overall estimation accuracy with RMSE for each fruit type and summarized in Table. 4. Wi-
Fruit realizes fruit type independence because it obtains the fruit type information from the image processing
module and takes it as one of the inputs of the ANN estimation model. Thus, the estimated results are related to
features corresponding to each specific fruit type. The fruit type independence of Wi-Fruit makes it extendable
to other fruits as long as their ground truth values are collected for model training.

5.2.3 Fruit Structure and Size Independence. To evaluate the fruit structure and size independence, we first select
two types of fruits in our dataset: watermelons and apples, which represent thick and thin pericarps respectively.
Their biological properties are estimated when (i) keeping their completeness, (ii) removing their pericarps, (iii)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 169. Publication date: December 2021.



Wi-Fruit: See Through Fruits with Smart Devices • 169:21

68 70 72 74 76 78

Actual Moisture (%)

68

69

70

71

72

73

74

75

76

77

78

E
s
ti
m

a
te

d
 M

o
is

tu
re

 (
%

)

Watermelon

Grapefruit

Apple

Dragonfruit

Orange

Pear

(a) Moisture estimation performance with information fusion.

8 10 12 14 16 18

Actual SSC (
°
 Bx)

7

8

9

10

11

12

13

14

15

16

17

18

E
s
ti
m

a
te

d
 S

S
C

 (
°
 B

x
)

Watermelon

Grapefruit

Apple

Dragonfruit

Orange

Pear

(b) SSC estimation performance with information fusion.
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(c) Moisture estimation performance with only sensing informa-
tion.
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(d) SSC estimation performance with only sensing information.
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(e) Moisture estimation performance with only visual information.
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(f) SSC estimation performance with only visual information.

Fig. 14. Biological feature estimation performance for various fruit types with different inputs.
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Table 4. Performance on fruit type and structure independence and environment robustness.

Fruit type & structure independence
Type Watermelon Grapefruit Apple Dragon fruit Orange Pear
RMSE 0.293 0.447 0.574 0.473 0.515 0.661

Euclidean Distance 0.854 0.913 0.171 0.169 0.257 0.164
Environment robustness

Environment Empty Laboratory Library with massive books
RMSE 0.319 0.520
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(a) Fruit structure and size independence evaluation.
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(b) Time robustness evaluation.

Fig. 15. Evaluations ofWi-Fruit on fruit structure and size independence as well as time robustness.

cutting them to half and deploying its longest axis on the LoS, and (iv) deploying the shortest axis of the half fruit
on the LoS. The estimation accuracy under four conditions is presented by RMSE results in Fig. 15 (a), where the
RMSE values are similar for all manual processing. Specifically, the fruit structure independence is implied from
blue and red bars in this figure, where the estimation accuracy is similar with or without pericarps. And the fruit
size independence is implied by blue, yellow, and purple bars, where the estimation accuracy after cutting fruits
to half has a slight difference with measurements on complete targets.

Additionally, we examine the performance of Wi-Fruit when measuring targets from different angles. After
deploying the longest or the shortest axis on the LoS, the similarity of two estimation results is calculated by the
average Euclidean distance. The quite short Euclidean distances presented in Table. 4 illustrate thatWi-Fruit can
achieve fruit structure independence, where the estimated values are robust regardless of the detection angle of
targets on the LoS.

5.2.4 Time Robustness. To evaluate the robustness of our method on time, we divide our test dataset into 7
sets containing data collected from 7 continuous days (a week). The estimation accuracy for each fruit kind in 7
days is presented by RMSE values in Fig. 15 (b). It can be seen that the estimation accuracy for most fruit types
keeps high during a week which is around the overall estimation accuracy (RMSE = 0.319). So our method can
be applied at any time and gives accurate results in situ.
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Fig. 16. Clustering results for apples in case study I.

Table 5. The fruit internal quality classification accuracy of
estimated moisture and SSC values.

Level Precision Recall F1-score
0 0.94 0.60 0.73
1 0.97 0.89 0.93
2 0.78 0.91 0.84
3 0.57 0.86 0.69

Overall accuracy 0.80
Macro avg 0.82 0.81 0.80

Weighted avg 0.84 0.80 0.81

5.2.5 Environment Robustness. As we have collected data from two environments: an empty laboratory and
library with massive books, we divide the test dataset into two sets and estimate with our proposed ANN model.
As summarized in Table. 4, the RMSE for data collected in an empty laboratory is 0.319 and the one for data
collected in the library is 0.520. Because the multipath impact is dealt with inWi-Fruit, the estimation errors are
similar in these two environments, illustrating the environment robustness of the system.

5.2.6 System Overhead. The system overhead is evaluated from the latency and cost aspects. The latency is
required to be low for Wi-Fruit, as a relatively short feedback time after data collection is preferred for daily
use. The overall system latency of Wi-Fruit after CSI and image collection is the sum of the latency for two
proposed modules: double-quotient model-based CSI pre-processing and information fusion-based estimation.
In our evaluations, the average latency for double-quotient model-based CSI pre-processing is 2.03s and the
one for information fusion-based estimation is 2.17s. So the overall latency is determined as 4.2s without the
consideration of data transmission latency between modules as it can be further removed by system integration.

Additionally, the cost of the overall system is mostly spent on physical setups including a Wi-Fi transmitter
such as a commodity router (cost around 40 US dollars) and a smart device with Wi-Fi and camera modules such
as smartphones or tablets (cost around 310 US dollars). All these devices have been widely deployed in our daily
life and no other specialized devices are required, so we consider the cost of Wi-Fruit is extremely low.

5.3 Case Study I: Fruit Internal Quality Classification
As mentioned in Section 2.1, the first potential application of Wi-Fruit is for consumers to pick fruits with

high qualities. The manual selection depends mainly upon the external features of fruits, but it is common to
pick good-looking but tasteless items.Wi-Fruits provides a low-cost solution to classify fruits with their internal
qualities, measured by fruit moisture and SSC levels.

To validate its feasibility, we firstly label our experimented fruit sampleswith K-means clustering algorithm [50],
taking the ground truth values of the fruit type, moisture, and SSC as inputs. In this validation, we attempt to
classify fruit qualities into 4 levels. One of the labeling examples is shown in Fig. 16. It can be observed that 4
centers of clustering in this figure are corresponding to 4 levels for apples: low moisture and SSC, low moisture
but high SSC, high moisture but low SSC, high moisture and SSC. Then we take the same inputs and these labels
to train a KNN classifier [51] for fruit internal quality classification. The estimated fruit moisture and SSC values
from Wi-Fruit together with the fruit type are input into this trained KNN classifier. The classification results
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(a) Non-destructively estimated moisture values for different kinds
of fruits in case study II.
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(b) Non-destructively estimated SSC values for different kinds of
fruits in case study II.

Fig. 17. Case study II results.

will then be compared with the labeling data of the ground truth values as summarized in Table 5. These results
illustrate that the estimated moisture and SSC values from Wi-Fruit can achieve 80% accuracy on fruit internal
quality classification. Thus,Wi-Fruit can provide fruit internal quality information for consumers when picking
fruits, making it no longer a lottery-like behavior. It can also help fruit retailers carry out tiered pricing to meet
the needs of different types of customers in order to maximize profits.

5.4 Case Study II: Fruit Internal Quality Prediction and Storage Suggestion
The non-destructive measurement of Wi-Fruit makes it possible to monitor the changing trend of fruit mois-

ture and SSC values when actual fruits gradually deteriorate at room temperature. In this case study, we every
day estimate fruit moisture and SSC values on six fruit kinds (i.e., watermelon, grapefruit, apple, dragon fruit,
orange, pear), ten samples each in a month with Wi-Fruit. All fruit samples are stored at room temperature (i.e.,
23◦C). Denote the day when fruits show obvious wrinkles or spoilage spots on pericarps as an anchor. Dragon
fruits are observed to have the shortest time from the purchase day to the anchor day, which is only 7 days on
average. Thus, we present the average values of estimated moisture and SSC in seven days including the anchor
day and three days after in Fig. 17. These figures have revealed the following phenomena:
(1) Both moisture and SSC values decrease when fruit pericarps are approaching decay. (We also label it with

black arrows in two figures.)
(2) The moisture and SSC values for some fruit kinds (e.g., watermelons and grapefruits in these figures) are not

monotonically decreasing. Sometimes it shows a trend of rising first and then falling because these fruits are
still in the process of maturity after purchase.

(3) Although pericarps of some fruits like dragon fruits show obvious signs of decay on the 7th day in these
figures, their moisture and SSC values slightly drop after this day. Through cutting, it is found that the inside
of the fruit has not rotten at this time.

According to these observations, different kinds of fruits have different recommended storage periods. The
fruits with continuously descending moisture and SSC values are recommended to be consumed as soon as pos-
sible. For some fruits with thick pericarps, the recommended storage time based on internal feature estimation
is slightly longer than the recommendation only based on appearances. Therefore, Wi-Fruit can be applied in
fruit internal quality prediction and provide storage suggestions for regular customers or small retailers.
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6 RELATED WORK
Recent advances have been made on non-destructive fruit quality assessment, from both external and internal

evaluations [7, 34]. External factors include fruit type, size, shape, weight, firmness, smell, surface color, and fea-
tures (e.g., mildew spots). The Doppler laser vibrometer (LDV) [52] is designed to accurately measuring surface
texture changes of fruits with the reflected laser beam at a very early age. Nowadays, vision-based technolo-
gies [5–8] are widely adopted to provide comprehensive external evaluations with the help of image processing
and deep learning, while their performance is sensitive to environmental illumination conditions.

It is inaccurate to assess fruit quality only by external factors. Fruit internal factors describe its chemical
components and features, including moisture, SSC, water activity, the content of fat, fiber, etc. Spectroscopy [14,
53] is a classical method for analyzing the internal fruit patterns from electromagnetic radiation with a chemical
substance. It emits NIR signals to the surface of the target fruit and analyzes its internal features from the different
absorption, reflection, and scatter degrees. It has been widely applied as spectrometers for non-destructive fruit
internal measurements in the market, while it requires high cost and controlled setups for most versions. The
ultrasound-based sensing is another attempt at non-destructive fruit internal measurements. Researchers in [54,
55] measure the color and hardness of fruits from this mechanical wave with a programmable bipolar remote
ultrasonic pulse generator, while they only achieved around 82% evaluation accuracy on these two features.

By contrast, RF-based methods can realize the non-destructive fruit internal sensing with an easier deploy-
ment, lower cost, and relatively high accuracy. The potential RF-based methods have been explored in the ma-
terial sensing area via various spectrums. TagScan [26], Tagtag [25], and RE-EATS [24] move a big step in this
direction with the utilization of RFID devices. LiquidID [27] senses liquid categories with UWB radios. Compared
with them, RF-based sensing with commodity Wi-Fi has the lowest cost and easiest deployment, as the Wi-Fi
module is widely deployed on smart devices and environments. According to the Cisco Annual Internet Report
White Paper updated in 2020 [56], there will be nearly 628 million public Wi-Fi hotspots by 2023, up from 169
million hotspots in 2018 globally. So the sensing with Wi-Fi devices has a wider application range. The ability
of Wi-Fi-based material sensing has been explored in baggage detection [37], liquid level sensing and classifica-
tion [23, 30], as well as soil monitoring [22]. Nevertheless, fruit-oriented substantial challenges including fruit
structure, size, and type dependencies cannot be directly solved with these proposed methods.

Toward the most related work in non-destructive RF-based fruit sensing, Ren et al. [20] proposed a machine
learning (ML) driven fruit moisture content classification system with 0.75-1.1 terahertz (THz) waves. The trans-
mission of these super-high frequency signals requires a specialized platform like Swissto12 MCK used in their
paper, which is not feasible for daily use. Tan et al. [21] built fruit ripeness profiles over 600MHz bandwidth
of commodity Wi-Fi at 5GHz, with a lower-cost and satisfactory classification accuracy. But their outputs stay
at a coarse ripeness classification level. To the best of our knowledge, the Wi-Fruit proposed in this paper is
the first Wi-Fi-based fine-grained fruit internal assessment, which measures fruit moisture and SSC levels in a
non-destructive and low-cost manner.

7 DISCUSSIONS
In this section, we discuss some limitations in the presented work and give possible extensions for Wi-Fruit

as the future work. At the end of this section, we provide some other potential applications of Wi-Fruit except
the ones introduced in case studies.

The first limitation is the size of the evaluation dataset, including the limited number of data samples and
fruit types. As there are no publicly available CSI datasets measured on fruits, the data samples used for ANN
training and testing in this paper are manually collected for 20 items each on 6 types of fruit during a one-month
period with 12 hours gap. However, in this collected dataset, items in the same type do not belong to the same
sub-type. For example, apples in this dataset are composed of both Red-FuJi and Aksu apple (two sub-types of
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Table 6. Discussions on impacts in dynamic environments.

Circumstances RMSE on electrical properties RMSE on biological estimations
Static environment Baseline
Motions on the LoS 0.134 1.000

Motions away from the LoS 0.088 1.433

apples). The estimation accuracy is lower when we further classify them into sub-types due to fewer samples.
But considering that this limitation is a matter of time and human efforts, we believe that more data would be
acquired with the spatial and temporal extension usage of Wi-Fruit. Through the fine-tuning of our pre-trained
ANN model, Wi-Fruit can achieve higher estimation accuracy and stronger compatibility on more fruit types.
As the future work, an incentive mechanism can be designed to expand the usage scope of Wi-Fruit and inspire
users to contribute more source data with unknown fruit types. The transfer learning can also help to transfer
our pre-trained model to unknown fruit types with limited data acquired from users according to the feature
similarity among various fruit types.

The second limitation is sensing in dynamic environments with motion impacts. In this paper, we have
conducted three methods to reduce motion impacts, including multi-antenna deployment, FFT-based amplitude
denoising, and variance-based multipath removal. To validate the performance of dealing with motion impacts,
we experiment on several apples and collect their CSI under three circumstances: (i) in a static environment;
(ii) performing motions on the LoS between transceivers; (iii) performing motions away from the LoS around
transceivers. Taking the data collected and estimated in a static environment as the baseline, the differences of
data collected and estimated in dynamic environments (i.e., the latter two circumstances) are measured by RMSE
values and summarized in Table 6. The table illustrates that motions indeed have impacts on fruit moisture and
SSC estimations but are small. Methods proposed in [40, 57] can help to further eliminate these impacts, which
is one of the future directions to improve our work.

The third limitation is the demanding acquisition of visual information. The result in Fig. 14 shows
that visual information contributes more than wireless information does to estimating biological features of
fruits. However, the estimation accuracy using visual information highly depends on the quality of the input
fruit images. Our experiment uses our own small-scale private dataset as a proof of concept, while in the real
world, capturing high-quality images of target fruits is demanding. As such, investigating how Wi-Fruit can
perform efficiently with high estimation accuracy without high-quality images is one of the interesting future
work directions.

The deployment of Wi-Fruit is quite simple and convenient, which only needs to be configured once at the
beginning. It can be easily deployed in a variety of practical scenarios. For example, this system can be deployed
on a computerized scale in a fruit store, with only an extra camera and aWi-Fi router. The fruit’s picture and CSI
information can be collected and processed at the same time during the fruit weighing process, and its internal
quality analysis results can be quickly obtained locally.

Thanks to its convenient deployment,Wi-Fruit has a wealth of applications. Several post-harvest applications
have been discussed before, including fruit internal quality classification, prediction, and storage suggestion.
Moreover, fruit moisture and SSC estimations given by Wi-Fruit are also beneficial to pre-harvest applications,
such as fruit harvest time prediction or fruit planting suggestion. kvikliene et al. [58] found strong relationships
between the harvest time and SSC values during ripening. Wi-Fruit can provide estimated SSC values after
harvest non-destructively, where the exact harvest time can be predicted according to their work. The farmers
can also adjust their planting and harvest plan according to the post-harvest moisture and SSC levels. Therefore,
we believe that the non-destructive fruit moisture and SSC estimation capabilities provided by Wi-Fruit can be
of great help in fruit saving and safety career during both pre-harvest and post-harvest stages.
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8 CONCLUSION
With the increasing demand for the quality of fruits, the accurate evaluation of fruit quality becomes a hot

topic in food saving and safety areas. The external fruit quality evaluation is commonly used for fruit picking
in daily life while this evaluation is bias as it ignores the fruit internal quality. As two key features on fruit
internal quality assessment, existing solutions on fruit moisture and SSC measurements are either destructive
or expensive. In this paper, we design Wi-Fruit, a non-destructive and low-cost fruit moisture and SSC measure-
ment system with acceptable accuracy and lightweight deployment. Smart devices with Wi-Fi and camera mod-
ules can deploy Wi-Fruit in a Wi-Fi transmission environment. It provides accurate estimation results through
double-quotient model-based CSI pre-processing and information fusion-based estimation via lightweight ANN.
Extensive evaluations and discussions based on data collected in real fruits prove the efficiency of Wi-Fruit on
high estimation accuracy, fruit type, structure, and size independence, together with time and environment
robustness. The estimated moisture and SSC values provided by Wi-Fruit can be further used in pre-harvest
applications like fruit harvest time prediction or planting suggestion, and post-harvest applications like fruit
internal quality classification, prediction, and storage suggestion.
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