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Abstract—The increasing market share of electric vehicles
(EVs) makes charging facilities indispensable infrastructure for
integrating EVs into the future intelligent transportation systems
and smart grid. One promising facility called fast charging
reservation(FCR) system was recently proposed. It allows people
to reserve fast chargers ahead of time. In this system, fast
chargers are the most scarce resource instead of electricity.
Thus how to allocate these charging points requires careful
designing. A good allocation policy should 1) ensure charging
points to be allocated to EV users who really value them, and
2) prevent users’ private information, e.g., identity, personal
agenda, residing area and etc., from being inferred. A simple
combination of classic multi-item auction and user identity
anonymization cannot satisfy both criteria simultaneously. To
find such an allocation, in this paper we investigate the design of
privacy-preserving auctions in FCR systems. Traditional privacy-
preserving strategies such as cryptography could incur high
computation and communication overhead and hence jeopardize
the efficiency of allocation. To this end, we propose Auc2Reserve, a
differentially private randomized auction. Auc2Reserve applies an
improved approximate sampler and the belief propagation(BP)
technique to accelerate the resource allocation and pricing pro-
cess. As a result, it is much more computationally efficient than
generic exponential differentially private mechanisms and other
theoretical approximate implementations. Through theoretical
analysis, we show that Auc2Reserve is γ-incentive compatible,
individual rational and ε-differentially private. And it provides a
close-form approximation ratio in social welfare of FCR systems.
In addition, we also demonstrate the efficacy of Auc2Reserve
in terms of social welfare and privacy leakage via numerical
simulation.

I. INTRODUCTION

The electric vehicle (EV) is visioned as a crucial component
of intelligent transportation systems (ITS) [5]. Compared with
gasoline-powered vehicles, EVs have the potential benefits of
a lower carbon emission, a lower powering cost and a higher
power efficiency. With these promising benefits, however,
they also introduce a high penetration into the power grid
by shifting the energy load from gasoline to electricity. As
EVs’ market share is increasing, the large-scale integration
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of EVs into the future smart grid has drawn great attention
from both academia and industry. And charging facilities
have become indispensable infrastructure to support such
integration[10][13].

Among various charging facilities have been designed and
studied, e.g., home charging point [9] [24], workplace charg-
ing facility [10] [23] and etc., one up-and-coming facility
called fast charging reservation (FCR) system was recently
proposed. In an FCR system, EV users can send requests to
reserve Direct Current (DC) fast charging points at different
locations, which are capable of charging the battery of EV
to 80% capacity, i.e., a 0.8 state of charge(SOC), in half
an hour. Figure 1 gives an overview of the FCR system.
FCR systems facilitate users to charge EVs during a long
distance trip without experiencing long-time charging delay.
Several FCR systems have been deployed in major automobile
markets [4], [1], [2]. For instance, Tesla has deployed over 400
Supercharger stations across the United States [4]. And China
has initiated a project to develop a FCR system with over
600 fast chargers along major highways across the country by
2020[2].

DC Fast
Charger

DC Fast
Charger

R
es

er
ve

R
es

er
ve R

eserveA
pp

ro
ve

A
pp

ro
ve

R
eject

A B C

(a) EVs reserve fast chargers.

DC Fast
Charger

DC Fast
Charger

A

B

30 minutes

A

B

(b) EVs get charged within 30 minutes.

Fig. 1: An overview of fast charging reservation system.

One important observation we can get from these FCR
systems is that the main principle when deploying a FCR
system is to ensure coverage, i.e. distribute DC fast chargers
across a large area. This is because 1) the hardware cost of
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DC fast charger is high; and 2) the short charging time of
fast charger determines that a 1:1 ratio between the number
of fast chargers and EV is unnecessary. As a result, in the
FCR system, the number of fast charging points is much less
than that of EVs. This means when EV users send reservation
request to the FCR system, they are competing for not only
the electricity, but also the fast charging points. It is shown
in recent study [3] [35] that in an FCR system where there
are more EVs than fast charging points, fast chargers are
the most scarce resource, instead of the commonly assumed
electricity. Therefore, how to allocate fast chargers in FCR
systems requires careful designing.

Regardless of the differences on hardware and charging
schedule, current FCR systems usually adopt a first-reserve-
first-serve approach with fixed pricing policies, e.g., pay-per-
use or flat-rate, to allocate fast charging points to EV users.
Though this strategy is simple and could help the market
expanding of EVs, they are not efficient allocation mechanisms
in that 1) fast charging points may not be assigned to EV users
who really value them, i.e., EVs with a lower state of charge
(SOC); and 2) overpricing and underpricing could happen due
to the fluctuation of electricity price, thus impairing the benefit
of both EV users and fast charging stations. These deficiencies
have also been identified in other charging facilities. Recently
researchers propose to tackle these drawbacks using auctions
as resource allocation strategy for EV charging. Different
auctions have been proposed to compute an efficient allocation
of electricity and charging points for EV users so that the
system social welfare can be maximized. And social welfare
is the monetary sum of the revenue of charging facilities and
the utility gained by EV users. Exemplary studies in this
area include auctions for residential charging [32], park-and-
charge [29] and FCR systems [35].

As a powerful tool for resource allocation in EV charging,
auctions in current studies are designed to incentivize EV
users to truthfully report their valuation on different sets of
resources, i.e., incentive compatible, so that social-welfare-
maximization allocation and pricing decisions can be derived.
However, forcing EV users to reveal their real valuation profile
during the auction put users at the risk of exposing their
privacy. These real valuation contains users’ preferences on
different charging points and different amount of electricity.
Adversaries may use these information to infer users’ personal
information, such as transportation agenda, residing area and
etc. These information have high commercial value. More
importantly, they are also crucial for EV users’ personal safety.
And due to the fact that EVs need to be charged every
one or two days, users may participate EV charging auction
frequently, which makes inferences on these information even
easier. Though anonymizing users’ valuation profile appears to
be an efficient approach for protecting these information and
users’ identity, recent studies [27], [15] show that adversaries
can easily deanonymize users’ identity and expose all such
private profiles by linking two or more separate sets of
users’ profiles. Such privacy vulnerabilities is a major barrier
preventing the large scale deployment of auction-based EV
charging resource allocation. In this paper, we aim to find
solutions to overcome this obstacle and hence advocate the
further development of electric vehicles. In particular, we take
FCR systems as an example and explore the feasibility and
benefits of designing an efficient privacy-preserving auction
to allocate fast chargers, the most scarce resource in FCR

systems, between EV users. Designing such a mechanism
requires us to address a series of challenges:

Challenge 1. The proposed auction should preserve user
privacy while satisfying other requirements of mechanism de-
sign, i.e., (approximate) incentive compatibility and individual
rationality.

Challenge 2. The proposed auction should provide an ex-
plicit guarantee on social welfare of FCR systems.

Challenge 3. The proposed auction should be computation-
ally efficient so that the allocation and pricing decisions can
be quickly made in large-scale FCR systems.

Dealing with these challenges is a non-trivial mission. Tra-
ditional privacy-preserving mechanisms use cryptosystems to
protect users’ privacy [26][28]. However, the high computation
and communication overhead in such cryptosystems often
compromise the performance of corresponding mechanisms
such as social welfare and incentive compatibility. McSherry et
al. [25] proposed to incorporate differential privacy in mecha-
nism design. In a differentially private mechanism, it is hard to
infer users’ personal information as a single change in users’
reported valuation has very limited impact on the outcome
of the auction. And it is also proved that differential privacy
implies approximate incentive compatibility [25]. Nonetheless,
the generic differentially private mechanism has an exponen-
tial computational complexity. Though some polynomial-time
approximate implementation was proposed afterwards [19], it
is only theoretical and impractical in real-world due to its
O(n13) complexity with a large implied constant.

In this paper we cope with the aforementioned challenges
by designing Auc2Reserve, a computationally efficient differ-
entially private auction. For an FCR system with M EV users
competing for N fast chargers, we developed an improved
randomized approximate sampler in Auc2Reserve to iteratively
allocate fast charging points to EV users. Leveraging the
fact that there are usually more EV users than fast chargers
in FCR system, Auc2Reserve randomly selects an EV user
(agent) for receiving a given fast charging point (item) at
every iteration. In this way, it reduces the sampling overhead
by M−N

M times than that of the original sampler [19]. By
integrating this allocation process with an approximate pricing
function in generic differentially private mechanisms [19] [25],
Auc2Reserve successfully address Challenges 1 and 2. Both
the allocation and pricing policies in Auc2Reserve involve
computing the permanent of non-negative matrix, which is
#P-complete. To resolve Challenge 3, we apply the belief
propagation technique [11][12] for permanent approximation
in Auc2Reserve. As a result, not only does Auc2Reserve ensure
incentive compatibility, individual rationality and differential
privacy, it is also computationally efficient in making social-
welfare-guaranteed allocation and pricing decisions for FCR
systems.

Our main contributions in this paper are as follow:

• We study the novel problem of designing privacy-
preserving auction for EV fast charging reservation systems.
In particular, We propose Auc2Reserve, a differentially pri-
vate randomized auction. Compared with generic exponential
differentially private mechanisms and other approximate im-
plementations, Auc2Reserve is much more computationally ef-
ficient in making allocation and pricing decisions. In addition,
Auc2Reserve can also be generalized for different scenarios in
FCR systems.
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• Through theoretical analysis, we show that Auc2Reserve is
γ-incentive compatible, individual rational and ε-differentially
private. It also provides a close-form approximation ratio
on social welfare of FCR system. We also demonstrate the
efficacy of Auc2Reserve under various settings of FCR systems
in terms of social welfare and privacy leakage via numerical
simulation.

The remaining of this paper is organized as follows. We in-
troduce system settings, related solution concepts and present a
formal problem definition in Section II. We give an exponential
generic differentially private mechanism in Section III. We
develop the Auc2Reserve differentially private auction for
FCR systems and analyze its performance in Section IV. We
demonstrate the efficacy of Auc2Reserve via simulation in
Section V. We discuss related work on EV charging facilities
and auction theory in Section VI, and conclude our paper in
Section VII.

II. SYSTEM SETTINGS AND PROBLEM FORMULATION

In this section, we present the settings of EV fast charging
reservation systems, discuss related solution concepts and
formally define the auction problem in FCR system.

A. System Description
We consider a fast charging reservation system composed

of a set of M EV users, indexed by i = 1, 2, . . . ,M , and
N DC fast charging points, indexed by j = 1, 2, . . . , N . We
assume that M > N as the number of EVs is usually higher
than that of DC fast charging points in real world systems.
In our model we divide time into slots with a equal length
of 30-minute. Thus every fast charging can be finished within
one time-slot. To keep a concise presentation, we focus on the
auction scenario where all EV users submit bids to reserve fast
charging points and electricity for the same future time slot.
Our solution to this simpler scenario can be easily generalized
to the reservation auction in multiple time slots, as will be
discussed in Section IV-E.

In the auction, every EV user i can submit multiple bids
to the system central controller to reserve fast charging point.
These bids are sent via mobile devices, personal computers
or a reliable vehicle-to-infrastructure communication system,
e.g., OnStar. Every EV user is unit-demand, i.e., she only
needs at most one charging point. Thus for every EV user,
no duplicate bids on the same charging point is allowed. We
use an M -by-N matrix B to denoted the bids submitted by
EV users. The bids submitted by EV user i are denoted by a
row vector bi. This vector is composed of bij , j = 1, 2, . . . , N ,
where bij ≥ 0 represents user i’s reported valuation on getting
charging point j in a monetary form. A bij > 0 means that
user i submitted a bid of value to reserve the charging point
j, and a bij = 0 means that user i does not submit any bid
to reserve charging point j in this auction. Other than the
reported valuation, every user i also has a real valuation vij
on reserving every charging point j. This real valuation is
private to user i, which can be affected by many factors, e.g.,
personal agenda, distance to a certain charging station, risk
preference and etc., and is also expressed in monetary form. In
addition, given an EV user i, we use b−i and v−i to represent
the reported valuation and real valuation of all EV users other
than i, respectively.

After collecting bids from all EV users, a central controller
of the FCR system makes allocation decision on fast charging

points, and the corresponding pricing decision. We use a set of
binary decision variables yij ∈ {0, 1} to denote the allocation
decision for every bid bij . A yij = 1 means the bid bij is a
winning bid and user i will get a reservation charging point j.
And user i need to pay Γi for this reservation. A yij = 0 means
user i does not win the bid bij and will pay nothing for this bid.

Because every user is unit-demand, we have
∑N

j yij = 1 for
any EV user i. We define ui, the utility for user i as follows:

ui =
N∑
j=1

vijyij − Γi

In the auction, every user is selfish and aims to maximize her
own utility. We use SW to denote the social welfare of FCR
system, which is calculated as the sum of the revenue made
by fast charging points and the utility of all users. And we
can express it as:

SW =
M∑
i

Γi +
M∑
i

ui =
M∑
i

N∑
j

vijyij . (1)

We see that the EV fast charging reservation auction falls
into the category of multi-item auction[7][8]. We use r =
{r[1], r[2], . . . , r[M ]} to denote an allocation outcome, where
r[i] records which charging point is assigned to user i. If r[i] ∈
[1, N ], we have yir[i] = 1, otherwise yir[i] = 0. We denote
the set of all its allocation outcomes as R. And the number of
possible allocation outcomes in the auction, i.e., the cardinality
of R, can be expressed as |R| = M !

(M−N)! .

B. Solution Concepts

To avoid overpricing and underpricing, and to allocate
the fast charging point to EV users who really value it, a
good auction mechanism for FCR system should possess the
following properties:

Incentive Compatibility. An auction achieves incentive
compatibility if every user i can always maximize her utility by
truthfully reporting her real valuation as the reported valuation
no matter what strategies are adopted by other users, i.e.,
ui(vi,b−i) ≥ ui(bi,b−i) for any bi. Incentive compati-
bility saves users the trouble to perform complex strategic
calculations[22]. In addition, we also consider an approximate
form of incentive compatibility, called γ-incentive compati-
bility. i.e., ui(vi,b−i) ≥ ui(bi,b−i) − γ, where γ ≥ 0 is a
small constant. This relaxed definition further simplifies the
design and analysis of mechanism. When γ = 0, we see that
it reduces to the original definition of incentive compatibility.

Individual Rationality. An auction achieves individual
rationally if every participating user always gets non-negative
utility regardless what strategy is adopted by her and other
users, i.e., ui(bi,b−i) ≥ 0, for any bi. This property is also
known as the “participation constraint” [22] [19].

Social Welfare Maximization. As shown in Equation (1),
the auction maximizes social welfare by maximizing the total
real valuation of all winning bids. However, the real valuation
v of every bid is private information to EV user, and is
unknown to the charging reservation system. When the auction
is incentive compatible, the expression of social welfare in

Equation (1) can be rewritten as SW =
∑M

i

∑N
j bijyij since

the reported valuation for each bid equals to the corresponding
real valuation [22].
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Other than incentive compatibility, individual rationality and
social welfare maximization, the auction for EV FCR systems
also needs to ensure the privacy of EV users. This is because
users need to charge their EVs every one or two days. As a
result, they would participate fast charger reservation auction
frequently, which makes the inference on EV users’ personal
preferences much easier. Not only do such information have
high commercial value, they are also crucial in protecting EV
users personal safety. Therefore, it is important to design a
privacy-preserving auction for FCR systems. Among various
privacy standards, in this paper we focus on differential
privacy, a paradigm for private data analysis that has drawn
much attention in the past decade [15] [36].

Differential Privacy. Given a small constant ε > 0, an
auction Auc is ε-differentially private if for any two sets of
reported valuation b and b′ that only differ in one reported
valuation, and for any set of allocations S ⊂ R(Auc), we have

Pr[Auc(b) ∈ S] ≤ Pr[Auc(b′) ∈ S] · exp(ε).
Differential privacy has many elegant theoretical properties

as well as useful applications [16]. And its feasibility and
potentials in mechanism design have been studied under differ-
ent scenarios, such as digital good auction[22] [19], spectrum
auction [37] [36] and etc. Having reviewed related concepts in
mechanism design and privacy, we are able to formally define
the auction design problem for FCR systems.

FCR-Auc Problem: Given the aforementioned settings of
FCR system, design an auction that is γ-incentive compatible,
individual rational, ε-differentially private, and maximizes the
social welfare in a computationally efficient way.

III. EXPONENTIAL DIFFERENTIAL PRIVATE MECHANISM

One general technique in designing differentially private
auction is the exponential mechanism [25] [19]. The basic
idea of exponential mechanism, denoted as EXP , is to first
compute a probability for every feasible allocation outcome
r ∈ R as follows:

Pr[EXP (R,Q,D,ε ) = r] = exp(
ε

2Δ
Q(D, r)). (2)

In Equation (2), Q is the quality function in the differential
privacy literature [16]. It takes a data set D and a feasible
allocation outcome r as the input and compute a real-valued
score as the output. When designing differentially private
mechanisms, D is usually the set of reported valuation b,

and Q(b, r) =
∑M

i

∑N
j vijyij(r) is the social welfare of

allocation r. In addition, Δ is the Lipschitz constant. Without
loss of generality, we set it to be 1.

With the probability for every feasible outcome r, the
exponential mechanism randomly selects one outcome based
on the computed probability in Equation (2) as the final
allocation decision in the auction, and then makes correspond-
ing pricing decisions. We present the exponential differential
private mechanism EXPR

ε for the FCR-Auc problem in
Algorithm 1. Among different pricing policies, we use the
well-studied policy proposed in [19] for EXPR

ε .

EXPR
ε has many nice properties, applying the results in

[25] we can have the following theorem on the social welfare
of EXPR

ε .

Algorithm 1 EXPR
ε : An Exponential Differentially Private

Mechanism for FCR-Auc Problem

1: INPUT: An M -by-N bidding matrix B
2: for every feasible allocation outcome r ∈ R do

3: Pr[r]→ exp(
ε

2

M∑
i

bir[i])

4: end for
5: for every feasible allocation outcome r ∈ R do
6: Pr[r]→ Pr[r]∑

r∈R Pr[r]
7: end for
8: Select an allocation outcome r with probability Pr[r]
9: for i→ 1, 2, . . . ,M do

10: Γi =
2

ε
ln

(∑
r∈R

exp
( ε

2

∑
k �=i

bkr[k]

))

−2

ε
· S
(
EXPR

ε (bi,b−i)

)
− E

r∼EXPR
ε (bi,b−i)

[∑
k �=i

bkr[k]

]

11: end for

Theorem 1: EXPR
ε is ε-differential private and ensures that

Pr

[
SWEXPε < SWopt − ln

|R|
ε

− t

ε

]
≤ exp(−t). (3)

for any t > 0.
Furthermore, in [19] Huang et al. proved the following

theorem regarding the incentive compatibility and individual
rationality of EXPR

ε .
Theorem 2: With the pricing policy in Line 9-11, the

exponential mechanism EXPR
ε is incentive compatible and

individual rational.
Both theorems have been proved in an elegant way. For

instance, the proof of Theorem 2 relies on the connection
between exponential mechanism and a well-known probability
measure called the Gibbs measure. Interested readers may refer
to [25] [19] for more details.

Although with the appealing feature in satisfying all four
requirement in FCR-Auc problem, EXPR

ε has an important
drawback in that it needs to traverse all M !

(M−N)! feasible

allocation outcomes and compute a probability to each of
them. As a result, this high computational complexity makes
EXPR

ε inapplicable in large-scale FCR systems. Therefore, in
the next section, we propose Auc2Reserve, a computationally
efficient differentially private auction as the solution to the
FCR-Auc problem.

IV. AUC2RESERVE: A DIFFERENTIALLY PRIVATE

AUCTION

In this section, we propose Auc2Reserve, a computationally
efficient differentially private auction for EV fast charging
reservation system. Auc2Reserve adopts an approximate ran-
dom sampler to iteratively allocate fast charing point to EV
user. In each iteration, it applies a belief-propagation-based
algorithm for matrix permanent approximation. In this way,
Auc2Reserve is significantly more computationally efficient
than exponential differentially private auction EXPR

ε and
other theoretical approximate implementations [19]. We show
that Auc2Reserve is γ-incentive compatible, individual ratio-
nal, ε-differentially private and provides an explicit guarantee
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on social welfare of FCR systems. We also discuss the gener-
alization of Auc2Reserve in other scenarios of FCR systems.

A. Preliminary
Before we present the design of Auc2Charge, we first review

an important concept in linear algebra called permanent.
Definition 1: Given a K-by-K matrix W, W = (Wij |i, j =

1, 2, . . . ,K), its permanent is defined as

perm(W) =
∑

π∈Π(K)

K∏
i=1

Wiπ[i], (4)

where Π(K) is the set of all permutations of set {1, 2, . . . , n}.
One important property of permanent we leverage in the
design of Auc2Charge is that perm(W) = perm(WT ),
where WT is the transpose of W. Permanent has many
important applications, i.e., the permanent of a 0-1 matrix is
equivalent to the number of perfect matchings of a bipartite
undirected graph. However, computing the permanent is a
complex problem. The fastest known general algorithm in
computing the permanent of matrix is the Ryser Algorithm,
which requires O(n2n) operations. Even for the case of non-
negative matrix, i.e., Wij ≥ 0, ∀i, j, finding its permanent
is a #P-complete problem. Therefore, people often resort to
different approaches to compute the approximate permanent,
denoted as perma, which is a challenging task as well. To keep
the intactness of the presentation, we leave the discussion on
how to approximate matrix permanent later till Section IV-C.

B. Auc2Reserve in a NutShell
We present the design of Auc2Resrve auction in Algo-

rithm 2. In the FCR-Auc problem, the bidding matrix B is
of size M -by-N , where M > N . Other than N actual fast
charging points, we add another M − N dummy charging
points into the auction. And the reported valuation from all
EV users on these dummy charging points are all zeros. In
this way, Auc2Reserve creates a M -by-M square bidding
matrix Bsq by concatenating a M -by-(M − N) zero matrix
to B (Line 2). After the transformation, we construct an
auxiliary bidding matrix D, which is the transpose of Bsq

(Line 3). For any square matrix W, we define a function G:
G(W) = {exp( ε2wij)}, ∀i, j. And we also use W−i,−j to
denote the matrix obtained by removing the ith row and the
jth column of suqare matrix W.

In Auc2Reserve, we developed an improved approximate
sampler that iteratively allocates charging points to EV users,
one at a time. Given an actual charging point j = 1, 2, . . . , N ,
we first compute xi, the probability that EV user i wins the
reservation of charging point j, for all the users who have
not won any charging point yet (Line 6-15). Auc2Reserve then
randomly selects an EV user i with the normalized probability
xi as the winner of charging point j (Line 16). Once a
charging point j is allocated to a winning user ic, all bids
submitted to reserve j or submitted by user ic are removed
from the auxiliary matrix D (Line 19). We then repeat the
same allocation process using the updated matrix D until all
N actual charging points are allocated.

The allocation process in Auc2Reserve is an item-oriented
randomized allocation, i.e., randomly select a user (agent) to
receive a given charging point (item). It differs from the origi-
nal sampler in [19], which uses an agent-oriented randomized
allocation, i.e., randomly select an item to assign to a given

Algorithm 2 Auc2Reserve: A Differentially Private Auction

for FCR-Auc Problem

1: INPUT: An M -by-N bidding matrix B
2: Bsq → B||0M×(M−N)

3: D→ Bsq
T

4: I → {1, 2, . . . ,M}
5: for j → 1, 2, . . . , N do
6: for i→ 1, 2, . . . ,M − j + 1 do
7: if d1i == 0 then
8: xi → 0
9: else

10: xi → perma(G(D−1,−i))
11: end if
12: end for
13: for i→ 1, 2, . . . ,M do
14: xi → xi∑

i xi

15: end for
16: Randomly allocate charging point j to user i with probability

xi, denote the assigned user as ic
17: yI[ic]j → 1

18: ΓI[ic] → bI[ic]j +
2

ε
ln

(
perma

(
G
(
B(bi = 0,b−i)

)))

−2

ε
ln

(
perma

(
G(B)

))

19: D→ D−1,−ic

20: I → {1, . . . , I[ic]− 1, I[ic] + 1, . . . ,M}
21: end for
22: for i→ 1, 2, . . .M do
23: if

∑
j yij == 0 then

24: Γi → 0
25: end if
26: end for

agent. With the property that perm(W = perm(WT ), both
allocation policies would yield the same output in expectation.
However, given the fact that there are more EV users than
fast charging points in the FCR system, i.e., M > N ,
the item-oriented allocation used in Auc2Reserve is more
computationally efficient in that it reduces the computation
overhead by M−N

M times than that of agent-oriented allocation.
This reduction is significant due to the involvement of matrix
permanent computing during the allocation process.

After an actual fast charging point j is allocated to a winning
user ic, Auc2Reserve computes the price ic needs to pay in
Line 18 of Algorithm 2. This pricing policy is an approximated
price of that in the exponential mechanism EXPR

ε . After all
actual charging points have been assigned, users who do not
win any charging point do not need to pay anything (Line
22-26).

Observe the structure of Algorithm 2, we see that the
key step in determining the computational efficiency of
Auc2Reserve is to compute the permanent of non-negative
matrix. This step is needed in both allocation and pricing
process. Due to the #P-completeness of this task[33] , in the
following we review possible approaches in approximating
matrix permanent, and apply a newly developed belief propa-
gation approximation technique in Auc2Reserve.

C. Approximating Matrix Permanent Using Belief Propaga-
tion

Researchers have explored different approaches in devel-
oping approximate algorithms for matrix permanent. In the
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seminal paper [20], Jerrum et al. proposed a fully polynomial
randomized approximation scheme (FPRAS) for computing
the permanent of non-negative matrix using Monte-Carlo
sampling. However, its complexity is O(n11) in the general
case. Even though the complexity of this approach was later
improved to O(n7) in [6], it is still impractical for most
realistic applications.

Recently, belief propagation heuristics is applied to com-
puting the matrix permanent and showed surprisingly good
performance[11][12]. The basic idea of this approach is that
given a non-negative K-by-K matrix W, we can build a
graphical model with a bipartite undirected graph G =
(V1, V2, E). In this graph, V1 and V2 are two sets of K
vertices. And binary variables σij = 0, 1 are assigned to
edges (i, j) with the constraints ∀i ∈ V1,

∑
j∈V2

σij = 1 and

∀j ∈ V2,
∑

i∈V1
σij = 1. And Wij is assigned as the weight

of edge (i, j) in graph G. In this way, the graphic model can
express the permanent of matrix W as:

perm(W) =
∑
σ

∏
(i,j)∈E

(Wij)
σij . (5)

With this graphical model, we define a K-by-K matrix β
where βij is the marginal belief corresponding to finding edge
(i, j) in the matching of G. And the following theorem on BP-
based permanent approximation was proposed in [11].

Theorem 3: Given a non-negative K-by-K matrix W with
corresponding graph G and marginal belief matrix β. A belief
propagation function can be developed as perm(W) as

FBP (β|W) =
∑
i

∑
j

(
βij log(

βij

Wij
)−(1−βij) log(1−βij)

)
,

(6)
and the permanent of W can be approximated as:

permBP (W) = exp
(
− FBP (β|W)

)
. (7)

To compute the marginal belief matrix β, standard be-
lief propagation technique can be applied, and an iterative
algorithm is developed and presented as Algorithm 3. The
convergence of this algorithm is proved in [11]. However,
its convergence speed highly depends on the initial value
of matrix β(0). To ensure a fast convergence and hence the
computational efficiency of Auc2Charge, we use a mean-field
heuristic algorithm, presented as Algorithm 4, to precompute
a matrix φ as the initial value β(0). Extensive empirical
experiments in [11] [12] show that using φ computed by
Algorithm 4 as the initial value of marginal belief matrix β
ensures the fast convergence of Algorithm 3 with arbitrary
input matrix W. In addition, the following Theorem 4 provides
a close-form approximation ratio on this BP-based method
[12].

Theorem 4: Given a K-by-K matrix W, compute the
doubly stochastic matrix β using Algorithm 3, and define

αW =

∏
i,j(1− βij)

perm
(
β · (1− β)

) . (8)

Then the approximate permanent computed from Theorem 3
satisfies:

permBP (W) = αW · perm(W). (9)

To summarize, by transforming a given matrix W to a
graphical model and applying belief propagation technique

Algorithm 3 An Iterative Algorithm for Computing Marginal

Belief Matrix β

1: INPUT: a K-by-K non-negative matrix W
2: n→ 0
3: ui(0) = uj(0) = 1, ∀i, j → 1, 2, . . . ,K
4: Initialize βij(0), ∀i, j → 1, 2, . . . ,K
5: while 1 do
6: for i, j → 1, 2, . . .K do
7: βij(n+ 1)→ λβij(n)

+
(1− λ)Wij

Wij + ( 1
2

∑
s βis(n) +

1
2

∑
s βsj(n)− βij(n))2ui(n)uj(n)

8: end for
9: for i, j → 1, 2, . . .K do

10: βij(n)→ βij(n)/
∑

s βis(n)
11: end for
12: for i, j → 1, 2, . . .K do
13: βij(n)→ βij(n)/

∑
s βsj(n)

14: end for
15: for i→ 1, 2, . . .K do
16: ui(n+ 1)→

∑
s(Wis/u

s(n))

1−∑
j(βij(n))2

17: end for
18: for j → 1, 2, . . .K do
19: uj(n+ 1)→

∑
s(Wsj/us(n))

1−∑
i(βij(n))2

20: end for
21: if maxi,j{|βij(n+ 1)− βij(n)|} > δ then
22: n→ n+ 1
23: else
24: for i, j → 1, 2, . . .K do
25: βij → βij(n)
26: end for
27: break
28: end if
29: end while

to computing its marginal belief matrix, perm(W ) can be
approximated very efficiently with a close-form approximation
ratio. We leave the theoretical proof on convergence speed of
this BP approach in future work. In this way, Auc2Reserve is
significantly more computationally efficient than the generic
exponential differentially private mechanism EXPR

ε and other
theoretical approximate implementations[19].

D. Properties of Auc2Reserve

We now analyze the performance of Auc2Reserve auction in
terms of incentive compatibility, individual rationality, differ-
ential privacy and social welfare. To this end, we first propose
the following theorem.

Theorem 5: Auc2Reserve is an ε-differential private and
individual rational.

Proof 1: The proof of this theorem follows the sketch in
[25] [19]. It relies on the connection between the exponential
mechanism and the well-known Gibbs measure, which is also
known as the Boltzmann distribution. With the connection
established in [19], the correctness of this theorem is a
straightforward conclusion.

Next we study the incentive compatibility and social welfare
of Auc2Reserve. Given a matrix W, we define αmax

W =
maxs(W){αs(W)}, where s(W) is any sub-matrix of W.
Then we are able to propose the following theorem.

Theorem 6: Given any M -by-N bidding matrix B, the
Auc2Reserve mechanism is γ-incentive compatible and the
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Algorithm 4 A Mean-Field Algorithm for Initializing

Marginal Belief Matrix β(0)

1: INPUT: a K-by-K non-negative matrix W
2: n→ 0
3: vi(0) = vj(0) = 1, ∀i, j → 1, 2, . . . ,K
4: φij(0) = 1, ∀i, j → 1, 2, . . . ,K
5: while 1 do
6: for i, j → 1, 2, . . .K do
7: φij(n + 1)→ Wij

Wij + vi(n)vj(n)
8: end for
9: for i→ 1, 2, . . .K do

10: vi(n + 1)→ vi(n)
∑

j φij(n)
11: end for
12: for j → 1, 2, . . .K do
13: vj(n + 1)→ vj(n)

∑
i φij(n)

14: end for
15: if maxi,j{|φij(n+ 1)− φij(n)|} > δ then
16: n→ n+ 1
17: else
18: for i, j → 1, 2, . . .K do
19: βij(0)→ φij(n)
20: end for
21: break
22: end if
23: end while

social welfare computed by Auc2Reserve satisfies:

Pr

[
SW < SWopt −Mγ − M !

ε(M −N)!
− t

ε

]
≤ exp(−t), (10)

where γ = M ln(αmax
G(Bsq)

) and Bsq is defined in Line 2 of

Algorithm 2, for any t > 0.

Proof 2: The basic idea in this proof is that according to
Bayes’ rule and the BP-based permanent approximation ratio
in Theorem 4, in every iteration of Algorithm 2, the probability
that charging point j is allocated to an user i approximates the
correct exponential allocation distribution by a multiplicative
factor of αmax

G(B). So after allocating all M fast charging points,

the probability that we sample an allocation outcome r ∈ R
differs from the correct exponential allocation distribution by
a multiplicative factor of (αmax

G(Bsq)
)M . Then the correctness of

this theorem can be achieved by directly applying the results in
[25] [19]. To begin with, we first prove the following lemma:

Lemma 1: Auc2Reserve yields an outcome r ∈ R differing
from the correct distribution by at most (αmax

G(Bsq)
)M factor.

We use j → i to denote that charing point j is assigned to user
i. In the exponential mechanism EXPR

ε , for any allocation
outcome r ∈ R, using the Bayes’ rule, the probability r is
chosen as the final allocation outcome can be expressed as
follows:

Pr[EXPR
ε (b) = r] = Pr[point 1 is assigned to r−1[1]]

·Pr[point 2 is assigned to r−1[2]|1 → r−1 [1]]
. . . ·Pr[point N is assigned to r−1[N ]
|1 → r−1[1], . . . , N − 1 → r−1[N − 1]].

(11)

Take the first iteration of our Auc2Reserve algorithm as start,

we use the distribution

Pr[point 1 is assigned to user i] = xi ∝ perma(G(D1,i)).

In the exponential mechanism EXPR
ε ,

Pr[point 1 is assigned to user i] ∝ exp(
ε

2
bi1)perma(G(D1,i))

Because xi approximates perma(G(D1,i)) by up to an mul-
tiplicative factor of αmax

G(Bsq)
, we know that the probability

that user i gets charging point 1 in Auc2Reserve approximates
the correct marginal in EXPR

ε up to an αmax
Bsq

multiplicative
factor. Not only for the first iteration, we can find this
αmax
G(Bsq)

multiplicative factor holds for the remaining iterations

in Auc2Reserve. Therefore, the probability that Auc2Reserve
yields an outcome r ∈ R differing from the correct distribution
by at most (αmax

G(Bsq)
)M factor.

Having proved this lemma, the correctness of this theorem
can be achieved by directly applying the results in [25] [19].

Theorem 6 provides an upper bound on the social welfare
of Auc2Reserve. We observe that this bound decreases as the
number of EV users increases, and increases as ε and N
increases. As the differential privacy factor, a smaller ε is
the indicator of a stronger differential privacy. Therefore, this
upper bound indicates that there exists an explicit tradeoff
between maximizing social welfare and providing stronger
differential privacy for more EV users. Theorems 5 and 6
together show that Auc2Reserve satisfies all four require-
ments in the FCR-Auc problem. Compared to the exponential
mechanism EXPR

ε , Auc2Reserve achieves a much higher
computationally efficiency via a tradeoff on an additional γ
factor in incentive compatibility and an additional Mγ factor
in social welfare.

E. Generalization of Auc2Reserve
We design Auc2Reserve under the scenario where all EV

users submit bids to reserve fast charging points for the same
future time slot. In fact, Auc2Reserve can be applied to other
generalized scenarios of FCR systems. One scenario is that
future time slots are to be available for reservation one by
one. Then the central controller in FCR system simply needs
to execute Auc2Reserve for every future time slot after it
becomes available for reservation. Another scenario is that
the administrator opens the reservation for N fast charging
points at T > 1 different time slots at one time, and make
the allocation and pricing decisions all at once. In this case,
the central controller can construct a bidding matrix of size
M -by-NT and then execute Auc2Reserve using this matrix
as the input. If M > NT , Auc2Reserve will use the same
item-oriented allocation process. If M ≤ NT , an agent-
oriented allocation process will be applied. In both scenarios,
Auc2Reserve is able to make fast charging point allocation
and pricing decisions in a computationally efficient manner,
i.e., providing an explicit guarantee on social welfare of
FCR system, and ensure γ-incentive compatibility, individual
rationality and ε-differential privacy simultaneously.

V. PERFORMANCE EVALUATION

In this section, we demonstrate the efficiency of our pro-
posed Auc2Reserve mechanism for EV fast charging reserva-
tion via numerical simulation.

Methodology. In our simulation, we assume a virtual traffic
network where M electric vehicles and N DC fast charging
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points are randomly distributed. Because EV users usually
want to get fast charging at certain locations, they would
only submit bids to a limited number of fast charging points.
Therefore, in the simulation, we assume that every EV user
will submit at most 8 bids in the form of (valuation, charging
point) to compete for reservation at these fast charging points.
We assume that the budget, i.e., the maximal valuation, of
each EV user, follows a uniform distribution between 8 and
12 dollars. For every EV user j, the valuation and charging
point in her bids are separately randomly generated. In our
simulation, we set the parameters λ and δ in the BP-based per-
manent approximation algorithm as 0.7 and 0.1, respectively.
We perform simulation of Auc2Reserve under the settings
of M = 60, 70, 80, 90, 100 EVs and N = 10, 20, 30, 40
fast charging points. And we set the privacy parameter ε in
Auc2Reserve to be 0.1 and 0.5. For each combination of M ,
N and ε, we repeat the simulation for 20 times and compute
the average value.

Results. In what follows, we evaluate the performance of
Auc2Charge on both social welfare and user privacy. Figure 2
shows the social welfare achieved by Auc2Reserve under
different numbers of EVs when the number of fast charging
points is fixed at 40 in the FCR system. We first see that the
social welfare of Auc2Reserve with ε = 0.1 is smaller than
that with ε = 0.5 at all cases. This is because a smaller ε
represents a stronger differential privacy of EV users. And as
pointed in Theorem 6, this stronger is achieved through a trade
of social welfare loss. The smaller ε is, the higher this loss
becomes. An interesting observation we find is that when ε
and number of charging points are fixed, the social welfare of
Auc2Reserve decreases as the number of EVs increases. The
reason of this observation is as follows. In our simulation,
the reservation bids submitted by EV users are generated
following the same distribution. Thus when the number of fast
chargers are fixed, the optimal social welfare SWopt should
also be a fixed value in expectation, and independent from
the number of EV users. However, when there are more EVs
participating the auction, Auc2Reserve ensures the differential
privacy of EV users through a higher tradeoff of social welfare
loss. This observation is consistent with the social welfare
bound of Auc2Reserve in Equation (10) from Theorem 6. From
this equation we see that even if SWopt is fixed, both Mγ and

M !
(M−N)! increase as M increases, which leads to the decrease

of upper bound on Auc2Reserve’s social welfare.
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Fig. 2: Social Welfare with N = 40 Fast Charging Points

We then plot the social welfare of Auc2Reserve under
different number of fast chargers when there are 100 EVs in
the FCR system in Figure 3. We also observe that the social
welfare when ε = 0.5 is higher than that of ε = 0.1 due
to the stronger differential privacy of the latter. And opposite

from the trend of varying EV numbers, Auc2Reserve yields a
higher social welfare when there are more fast charging points
in the system. This is because with more resources in the
auction, there are more EV users being allocated a fast charger
when executing Auc2Reserve. And it is also consistent with
Equation (10), where the social welfare loss M !

(M−N)! decreases

as the number of fast chargers N increases.
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Fig. 3: Social Welfare with M = 100 Electric Vehicles

Other than social welfare, we also use the recent proposed
notion privacy leakage [37] [36] to evaluate the efficacy of
Auc2Charge in protecting user privacy.

Definition 2: (Privacy Leakage[36]) Let 
a and 
a′ be prob-
ability distributions over a price set P for bidding matrix
B and B′, which only differ in one single bid, respectively.
The privacy leakage between the two bidding matrices is the
maximum of absolute differentces between the logarithmic
probabilities of the two distributions, i.e.,

maxi| ln ai − ln a′
i|. (12)
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Fig. 4: Privacy Leakage with N = 40 Fast Charging Points

Given an auction, a smaller privacy leakage implies that
when there is one arbitrary EV user changes one of her bids
in the FCR system, the probability distribution over pricing
decisions made by this auction would only have a small change
as well, which proves the differential privacy of this auction.
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Fig. 5: Privacy Leakage with M = 100 Electric Vehicles

Figure 4 plot the privacy leakage of Auc2Reserve under
different number of EVs with 40 fast chargers in the FCR
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system. We observe that when ε = 0.1, the privacy leakage of
Auc2Reserve is less than 0.02. And when ε = 0.5, this leakage
is less than 0.15. This observation implies that it is almost
impossible to for an adversary to infer the personal information
of EV users, e.g., charging location preference. When fixing
the number of EVs as 100, from Figure 5 we also have a sim-
ilar observation on the privacy leakage of Auc2Reserve under
different number of fast chargers. Therefore, Auc2Reserve is
efficient in ensuring EV users’ privacy.
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Fig. 6: Computational Efficiency of Auc2Reserve with M = 100 Electric
Vehicles

Furthermore, we demonstrate the computational efficiency
of Auc2Reserve by plotting the cumulative distribution func-
tion on number of iterations in Algorithm 3 when it converges.
It is shown in Figure 6 that in Auc2Reserve, the permanent
of bidding matrices can be approximated very fast under
different values of ε, i.e., converging within 30 iterations in
99% cases. With this fast convergence, Auc2Reserve is highly
computationally efficient in making fast charger allocation and
pricing decisions for FCR systems.

VI. RELATED WORK

EV Charging Facilities. EV charging facilities are indis-
pensable infrastructure of both intelligent transportation sys-
tems and smart grid, and have drawn great attention from both
academia and industry. There has been a growing literature
on various EV charging facilities [23], [10], [5], [17], [9], [4],
[1], [2]. Ardakanian et al. [5] designed a distributed charging
algorithm to adjust EV charging rate for residential chargers.
Lopes et al. [23] designed a framework to integrate EVs into
power system. Chen et al.[10] designed a central controller
to schedule the EV charging using renewable energy. Chen et
al. [9] studied a joint optimal power flow and EV charging
problem, and built an online controller to enable efficient
EV charging. Jin et al. [21] built a stochastic optimization
framework to minimize the cost of single charging station.

Recently, the fast charging reservation (FCR) system, an
innovative charging facility, was developed and has drawn
special attention form both academia and industry. In this

system, EV users can reserve DC fast chargers at different
locations ahead of time. which charge the battery of EV to
80% capacity within 30 minutes. The FCR system facilitate
people to charge EVs during a long distance trip with a
short time delay, and thus are welcomed by EV users. In
major automobile markets, several FCR systems have been
developed. Tesla has deployed a Supercharger network with
over 400 Supercharger stations across the United State s[4].
BMW and ChargePoint develop the ChargeNow program, in
which BMW EV users can reserve public fast chargers via
mobile devices [1]. China has initiated a project to develop a
fast charging reservation system with over 600 fast chargers
along major highways across the country by 2020 [2]. And
over 100 fast chargers have been deployed by early 2015. In
FCR systems, there are usually more EVs than fast charging
points. And recent studies [3] [35] show that fast chargers are
in fact the most scarce resource in FCR systems, instead of
the commonly assumed electricity. Thus how to allocate fast
chargers between EV users requires careful study.

Auction Theory. Auction allocates resources to buyers
who value them most, reduces the chance of overpricing
and underpricing, and thus improves social welfare. It has
been widely used in Internet advertisement [14], wholesale
electricity market [30] and cloud computing [31]. Recently
researchers propose to utilize auction to improve resource
allocation efficiency for EV charging, and different auctions
are designed for different scenarios [18], [34], [29]. Gerding
et al. [18] proposed a two-side truthful online auction with
advanced reservation, in which EV users and the charging
station can exchange their charging preference and cost. Robu
et al. [29] designed an online mechanism, in which EV users
bid for different charging speeds based on their arrival time,
and cancel the charging allocation on departure. Xiang et
al. [34] proposed an online auction framework for EV park-
and-charge. However, these auctions achieve social welfare
maximization by incentivizing EV users to truthfully report
their valuation on different set of resources, e.g., electricity and
charging points, putting EV users at the risk of exposing their
privacy. Adversaries may use these real valuations to infer EV
users’ personal information. And this inference becomes even
easier when EV users participate charging auctions frequently.
Therefore, a privacy-preserving auction is desired to protect
the privacy of EV users against such inference.

McSheery et al. first proposed to use differentially private
mechanisms in auction design in [25]. They showed that
differential privacy implies approximate incentive compati-
bility, and designed exponential mechanism for differentially
private digital auctions and attribute auctions. Huang et al.
[19] instantiate the principle in [25], and develop an ap-
proximate implementation for generic differentially private
auctions. Though the implementation has a polynomial-time
complexity, i.e., O(n13). It is impractical in real-world as
the implied constant in the O function is very large. Zhu et
al. designed differentially private mechanisms for spectrum
auction in [37] [36]. The proposed algorithms leverage unique
characteristics in spectrum auctions and achieves approximate
revenue maximization. In our Auc2Reserve, we developed an
improved approximate sampler for fast charger allocation. To
accelerate the allocation, we applies the belief-propagation
technique in matrix permanent approximation. Therefore, not
only is Auc2Reserve γ-incentive compatible, individual ra-
tional, ε-differentially private, it also makes fast charging
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points allocation and pricing decisions with a close-form social
welfare guarantee in a computational efficient way. To the best
of our knowledge, Auc2Reserve is the first differentially private
auction for EV fast charging reservation systems.

VII. CONCLUSION

The FCR system allows EVs to send requests to reserve
DC fast chargers ahead of time. In this system, the allocation
of fast charging points requires careful design because they
are the most scarce resource instead of electricity. Not only
charging points should be allocated to EV users who really
values them, the allocation and the corresponding pricing poli-
cies should also prevent users’ private information from being
inferred. In this paper, we explore the feasibility and benefits
of differentially private auction in FCR systems. We design
Auc2Reserve, a differentially private randomized auction for
FCR system. Auc2Reserve applies the belief propagation tech-
nique to accelerate the randomized allocation process. Thus
it is significantly more computationally efficient than generic
differentially private mechanisms. To the best of our knowl-
edge, we are the first to apply belief-propagation in designing
computationally efficient differentially private mechanisms.
Auc2Reserve is γ-incentive compatible, individual rational, ε-
differentially private and provides an explicit approximation
ratio on the social welfare of FCR systems. Using simulation,
we further demonstrate the efficiency of Auc2Reserve on social
welfare and privacy leakage under various settings of FCR
systems. In future work, we plan to extend the Auc2Reserve
mechanism by including other realistic constraints in both
the electricity market, e.g., electricity allocation, vehicle-to-
grid transmission and ramp-up/ramp-down cost of electricity
generation, and intelligent transportation systems, e.g., the un-
certainty of EV’s mobility. We will also explore the feasibility
of computationally efficient differentially private auctions for
other charging facilities, e.g., EV park-and-charge lot.
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