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ABSTRACT

Handling state dependencies is a major challenge in
modern SDN programming, but existing frameworks
do not provide sufficient abstractions nor tools to ad-
dress this challenge. In this paper, we propose a novel,
high-level programming abstraction and implement the
Function Automation SysTem (FAST). With the two
key features, i.e., automated state dependency tracking
and efficient re-execution scheduling, we demonstrate
that FAST substantially simplifies state-dependent SDN
programming and boosts the performance.

CCS Concepts

eNetworks — Programming interfaces; Network
control algorithms;
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1. INTRODUCTION

A common characteristic of many network control-
plane functions is that their computation depends on
network states. For example, basic routing algorithms
such as the shortest path depend on the topology, QoS-
based routing depends on both topology and the current

This research is supported by the National Science Foundation (CNS-
1018502, CC*IIE 1440745), the National Natual Science Foundation of China
(No0.61472213 and No.61502267) and the Google Faculty Research Award.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

SIGCOMM ’16, August 22-26, 2016, Florianopolis , Brazil
© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. .. $15.00
DOL: http://dx.doi.org/10.1145/2934872.2960424

Chen Gu
Tongji University
gc19931011jy@gmail.com

579

Qiao Xiang
Tongji/Yale University
giao.xiang@cs.yale.edu

Jun Bi
Tsinghua University
junbi@tsinghua.edu.cn

resource allocations, and security functions (e.g., access
control, policy-based forwarding) depend heavily on the
current state of configured security policies.

Implementing aforementioned control-plane functions
in a correct and efficient manner, however, can be com-
plex. Existing frameworks such as OpenDaylight and
ONOS recognize this complexity and introduce datas-
tores and broker services with a powerful pub/sub API
to enable state dependent programming. However, many
programming complexities remain.

Firstly, it is still the responsibility of the program-
mers to handle the complexity of identifying dependent
data and subscribing to their changes. This, however,
is not trivial. For example, a production implementa-
tion of the Dijkstra algorithm using a priority queue[2]
touches only a subset of links, depending on the specific
source and destination locations. Missing a subscription
to a touched link can lead to inconsistency between the
calculated path and the current network topology. On
the other hand, naive approaches to simplify the pro-
gramming by oversubscribing to changes on all links in
the whole topology, lead to unnecessary re-executions.

Secondly and more importantly, it can be more com-
plex than one might think to handle state changes cor-
rectly. Consider a control function f which depends on a
certain state variable vs. When the value of vs changes,
the naive solution, which simply update the outcome by
re-executing f using the new value, can lead to errors.
Consider the QoS routing example which finds a path
and makes bandwidth reservations along the path. As-
sume a link on the path fails, and the function is to be
re-executed to find an alternative. It is important that
the previously reserved bandwidth be released first, to
avoid “garbage” bandwidth reservations. However, re-
leasing the reservations may trigger other data change
events and lead to cascading effects.

We address the preceding complexities by exploring a
novel and substantially simpler control-plane program-



ming abstraction where state changes are transparent to
programmers. The tasks to manage state dependency
tracking and schedule re-executions are automated by
our runtime system, FAST.

2. PROGRAMMING ABSTRACTION

There are two different views for a programmer in
FAST, as demonstrated in Figure 1.
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Figure 1: Programmers’ view of FAST.

The datastore provides the API for control func-
tions to access and modify persistent network state. As
FAST handles data changes internally, the control func-
tion f contains no event driven code and is programmed
to execute with the current state.

The function store is the key concept of FAST. It is
built on top of the datastore and manages the meta in-
formation about submitted control functions for better
analysis and scheduling. The launcher programs can
submit certain control functions to the FAST function
store and withdraw them when appropriate. They can
also configure the parameters passed to the control func-
tions and set attributes to specify the behaviours of cer-
tain control functions. For example, launchers can spec-
ify the precedence relationship between different control
functions to create a workflow, or using groups to en-
force that all updates in a group be committed as a
single transaction.

3. SYSTEM COMPONENTS

FAST function store is driven by a sophisticated run-
time, shown in Figure 2, which includes novel algo-
rithms to automate complex tasks of state-dependent
programming. Specifically, the runtime system consists
of the following key components.

Event dispatcher Classify events such as state changes

and submission/withdrawal of control functions, and
dispatch them to corresponding components.
Restoration module Restore the system state after
certain events so that the current state is consistent
with the status of the function instances.
Min-makespan scheduler Schedule execution orders
to minimize the maximum sum of control plane comput-
ing latency and the control path outbound latency.
Instance executor Execute and monitor the control
functions to obtain fine-grained state dependencies.
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Figure 2: Runtime system for FAST.

Datastore Store the persistent network states and also
act as the the storage for function metadata.

4. PRELIMINARY EVALUATION

We implement a prototype of FAST and evaluate its
performance using Open vSwitch to simulate real topolo-
gies. We demonstrate the efficiency of FAST arisen from
state awareness and fine-grained dependency tracking.

Figure 3a demonstrates the recovery time of restor-
ing end-to-end connectivities after the control plane is
notified of a random link failure event. We compare a
routing function using FAST with periodic path com-
putation engines in Floodlight[1] with various timeout
values. We observe that being state-aware substantially
improves the end-to-end recovery time.

Figure 3b shows how the number of re-executions
changes with the number of running functions for dif-
ferent state tracking strategies. From the result, we
see that re-executions both increase linearly but the
slope with fine-grained state tracking is much smaller
as expected, because FAST only monitors the touched
links so that some link change events will not trigger re-
executions. In addition, we find that allowing users to
specify the satisfiability attribute of instances in FAST
substantially reduces the number of re-executions, which
is approximately 1/40 and 1/20 of those caused by the
coarse-grained system and FAST without SAT attributes.
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Figure 3: Evaluation results.



