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ABSTRACT
The collaboration between networks and applications pro-

vides opportunities to both applications to improve their

performances and network service providers to increase

business offering. Although many systems are proposed to

support such collaborations, they are point or incremental

solutions. In this paper, we propose the exploration of a

more integrated architecture with huge possibilities taking

a network-application integration (NAI) approach. Specifi-

cally, we explore the NAI possibilities in two concrete aspects:

application-aware networking and network-aware applica-

tions. We review recent progress in these two aspects, and

identify the key challenges in systematically realizing such

a deep integration. To address these challenges, we present

the initial design of PED, a generic NAI possibilities expo-

sure and discovery framework based on satisfiability modulo

theories (SMT). The key components of PED include a uni-

fied, abstract representation of network information using

mathematical programming constraints, a declarative lan-

guage for applications to express their intents on discovering

network information, and an efficient compiler to translate

application intents to constraint programming problems and

discover corresponding network information. Preliminary

evaluation results demonstrate the potentials of the PED

framework. At the end of the paper, we also discuss a series

of key future research directions toward deep NAI.

1 INTRODUCTION
The collaboration between networks and applications in-

creases the quality and hence the business offering of the

former, and the performance of the latter [21, 26]. Data-

intensive science applications (e.g., the large hadron collider,

telescopes, and light sources), for instance, rely on networks

as one of the key components of their infrastructure for

local and global interconnection of laboratories, sites, and

data centres [4]. Another unexpected but evident example

is the current COVID-19 pandemic, with many institutional

applications taking advantage of the network infrastruc-

ture to share data quickly and support collaborative efforts

from multiple communities and disciplines such as medicine,

health, genomics, and disaster mitigation [17]. Flexible inter-

domain routing and End-to-End (E2E) network services are

also emerging applications that construct complex data flows

between users in the network [10, 25].

Different systems and mechanisms have been proposed

to support such collaboration. However, they are point or

incremental solutions with various limitations. For example,

network providers and applications have considered differ-

ent nash equilibrium solutions (See Fig. 1a). ISPs, for example,

attempt to improve the application issues through an infras-

tructure upgrade, usage-based charging model, rate limiting,

or termination of services [16]. Meanwhile, applications at-

tempt to improve the network efficiency having flexibility in

shaping communications patterns as well as having flexibil-

ity to adapt to network topologies and conditions [1, 5, 8, 15].

However, such solutions are largely application/network-

oblivious, making the interaction between them inefficient.

In addition, solutions adopting either a “best-effort” [3, 22]

or “blackbox-request” [5, 27] approach (See Fig. 1b) are also

proposed. In the first one, applications submit complete net-

work requirements, and the network computes and enforces

the optimal resource allocation for applications. In the second

one, applications submit the amount of network resources

needed, and the network returns success or failure based on

the resource availability. These solutions either have limita-

tions on the privacy of applications and scalability, or have

inefficiency in finding the optimal resource allocation for

applications, respectively.

In this paper, we propose to explore a more integrated and

coherent architecture that takes a deep network-application

integration (NAI) approach (See Fig. 1c). Specifically, we

explore the possibilities of NAI in two concrete aspects:

application-aware networking and network-aware applica-

tions. The first one allows applications to specify diverse

requirements for the network infrastructure. The second one

allows networks to expose underlying network information

available to applications.

Despite the huge possibilities of NAI, systematically re-

alizing it is non-trivial. The key challenge is the lacking of

generic mechanisms for exposure and discovery of NAI pos-

sibilities. Existing solutions either fail to provide accurate
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Figure 1: Different approaches for the interaction of networks and applications: (a) nash equilibrium point, (b)
best-effort/black-box approach, and (c) network-application integration (NAI) Approach.

resource sharing information [12, 26], or expose the com-

plete information of the network [11, 24], raising scalability

and security concerns.

To fill this gap, we develop PED, a generic NAI possibil-

ities exposure and discovery framework based on satisfia-

bility modulo theories (SMT). The core of PED is the use

of mathematical programming constraints as a unified ab-

stract representation of network information. Second, PED

provides a declarative language for applications to express

intents on discovering network information. An efficient

compiler is also developed to translate an application in-

tent to a constraint programming problem and discover the

corresponding network information.

Themain contributions of this paper are as follows:

• We conduct a systematic review of the large variety of pos-

sibilities in designing and implementingNAI by application-

aware networking and network-aware applications (Sec-

tions 2 and 3);

• We identify the key challenges for systematically realiz-

ing NAI, and present the initial design and evaluation of

PED, a generic NAI possibilities exposure and discovery

framework based on SMT (Section 4);

• We discuss a series of future research directions toward

deep NAI (Section 5).

2 POSSIBILITIES OF NAI:
APPLICATION-AWARE NETWORKING

Applications have varying needs for network latency, band-

width, packet loss, etc. However, such applications’ require-

ments are often unknown to the network due to applications

and networks are decoupled. Thus, one concrete aspect of

NAI is adding application knowledge to the network so that

applications can express finer granularity requirements.

There are substantial possibilities in designing and imple-

menting NAI by application-aware networking. For example,

the network infrastructure can provide better support for

applications introducing different capabilities. Table 1 shows

a set of transport differentiation capabilities for applications

and the newer trend where applications can also provide

in-network computation or in-network storage.

Research contributions. Several research activities have

been proposed exploring the possibilities of adding applica-

tion knowledge to the network layer [7, 14, 21]. Magellan [7],

for instance, is a programming environment for users to

specify a global packet/in-network processing logic which

is expressed in a general-purpose language. Then, Magellan

automatically generates both datapaths in every single net-

work device and runtime for control plane. Schmidt et al. [21]
introduce Socket Intents as a proactive, application-expressed
approach for multi-access network connectivity. Socket In-
tents allow applications to share information, in a generic

way, about their communication patterns such as preferences

(e.g., bandwidth optimization), characteristics (e.g., expected
packet rates), expectations (e.g., paths availability), and re-

siliences (e.g., handle certain error cases). Application-aware

IPv6 Networking (APN6) [14] proposes a framework for us-

ing IPv6 extensions header to convey the service/application

requirements along with the packet to the network. The

application awareness introduced by APN6 can benefit dif-

ferent use cases, such as application-aware SLA guarantee,

application-aware network slicing, and application-aware

network measurement.

Real deployment examples. BigData Express [6] is a data
transfer service for big data science. It provides an application-

aware SDN-enabled network service to program networks

with fast provisioning of multi-domain E2E network paths

at run-time and with guaranteed QoS. BigData Express is

currently deployed in several research institutions, including

UMD, FNAL, StarLight, KISTI, KSTAR, and Ciena. The SDN

for E2E Networked Science at the Exascale (SENSE) [2] is

another system providing an intuitive intent-based interface

to allow applications to express high-level service require-

ments. A multi-institution testbed has been deployed at DOE

Laboratories and Universities facilities, including Caltech,

Fermilab, UMD, NERSC, among others.
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Table 1: Application-aware networking: possibilities.

Example Capability Network Support

Provide Transport Differentiation
• At app-level granularity

Create different networks/slices/QoS Classification; Scheduling

• At sub-app granularity

Scheduling each packet according to

app-level deadline [18]; Distinguish

application-level structures (e.g., I
frame vs P frame); Co-flow schedule

Classification; Network

State; Scheduling

• Cross-app/protocol dependency
Identify full dependency (e.g., DNS-
>handshake->. . . )

Classification; Network

state; Scheduling

Provide In-Network Storage/Compute
• Application state inside the network

Key-Value Store Programmable networking

• Application compute inside the network

Paxos algorithms Programmable networking

3 POSSIBILITIES OF NAI:
NETWORK-AWARE APPLICATIONS

Applications running over networks face challenges due to

the lack of network state and information. Applications can

benefit from network information exposure to make them

more flexible in terms of rate adaptation, transmission time,

server/path selection, among others. Therefore, the other

side of designing and implementing NAI is network-aware

applications, and there are many possibilities as well.

Table 2, for instance, illustrates that applications have pos-

sibilities to conduct transport selection capabilities based on

network state (e.g., packet loss, INT), performance metrics

(e.g., throughput, max reservable Bandwidth), capability in-

formation (e.g., delivery/acquisition protocol), and locality

(e.g., servers location and paths). Besides, if network can

provide programmability support, then applications can also

use that support to conduct network compute selection.

Research contributions. There are different proposals in-
troducing the benefits of network awareness for applications.

For example, P4P (Provider Portal for Applications) [26] is a

framework to enable a better cooperation between network

providers and network applications. P4P iTrackers accel-

erate the content distribution and optimize the utilization

of ISP network resources. Another maturing example of

NAI protocols is ALTO [12]. ALTO exposes network state

and capabilities to support efficient construction of diverse

network-aware applications models, such as CDN model,

swarm model, dataflow/streaming model, etc. Network infor-

mation is exposed as abstractions (e.g., network/cost maps) to

protect the information privacy and improve the scalability.

Table 2: Network-aware applications: possibilities

Example Capability Network Support

Conduct Transport Selection
• Time adaption

Bandwidth time window Network state; Capability

information

• Server/Path adaption

e.g., Which servers to use in multiple

replicas

Network state; Capability

information

• Rate adaption
Congestion control (reacting to

packet loss/delay/ECN bitdelay,

ECN bit [20]/ INT [13]); Adaptive

streaming; Lower-than-best-effort

(e.g., LEDBAT); Multi-path TCP.

Network state; Capability

information

Conduct Network Compute Selection
• Network function instantiation and invocation

e.g., Function as a service (FaaS) Programmable networking

Real Deployment Examples. Comcast, a large cable broad-

band Internet Service Provider (ISP) in the U.S., deployed a

P4P-based open framework [9]. Specifically, P4P iTrackers

are used to allow P2P networks to optimize trafficwithin each

ISPwhile improve P2P download performance for P2P clients.

Another much larger deployment is Flow Director [19], the

first-ever ISP-hyper-giant collaboration system. Flow Direc-

tor starts with the ALTO protocol but goes further, designing,

building, rolling-out, and operating a large scale system that

enables automated cooperation between one of the largest

eyeball networks and a leading hyper-giant.

4 APPROACH
The preceding discussion exposes huge possibilities of NAI.

However, there still exists a major lacking in systematically

realizing such a deep integration. Different NAI possibili-

ties are not uniformly deployed due to economy, autonomy,

and architecture evolution concerns. Different possibilities

have heterogeneous requirements on information exposure,

manipulation, and interaction. As such, existing realizations

are complex point solutions, and could raise scalability and

security concerns. In this section, we first review the key chal-

lenges for systematically realizing NAI possibilities. Next,

we present the initial design of a systematic framework for

NAI possibilities exposure and discovery (PED).

4.1 Key Challenges of NAI
Network information exposure. The first challenge of

NAI is that applications are lacking of visibility of available

and shared network resources (e.g., bandwidth of shared
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resources for a set of flows), resulting in poor performance.

Existing network resource exposure mechanisms, including

graph-based abstractions [11, 24] and the one-big-switch

abstractions [12, 26], either expose all sensitive information,

or fail to capture the resource sharing between virtual flow

requests. How to expose network information to applications

in a unified, abstract representation is still an open challenge.

Network information discovery. The second challenge

is the lacking of a generic, flexible mechanism for appli-

cations to specify and discover the network information

they need for NAI, from the network. Existing solutions

(e.g., [12, 19, 26]) provide application interfaces to discover

E2E cost information of different packet spaces. However,

this information is derived from the network’s fixed resource

allocation (e.g., fixed route assignment) to the corresponding

packet spaces, and applications are not provided the flexibil-

ity to discover additional network resources (e.g., on-demand

routing) that can satisfy their needs (e.g., waypoint routing).
Security and privacy. Network information exposure and

discovery play an important role in realizing NAI, but can

also raise security and privacy concerns. For example, appli-

cation’s queries may expose proprietary information (e.g.,
internal data flow policies) or may reveal too much infor-

mation about individual clients. From the network side, too

much network information may be exposed if aggregation

or transformation mechanisms are not considered.

4.2 An SMT-based PED Framework
To address the aforementioned challenges, we propose the

initial design of a generic PED framework based on satis-

fiability modulo theories (SMT). First, the PED framework

uses generic mathematical programming constraints as a

unified, compact representation of network information. Sec-

ond, PED utilizes the equivalence between relational algebra

and first order logic to provide a SQL-style language for ap-

plication to express their intents on discovering resources in

the network. Third, PED develops a compiler to translate an

application’s resource discovery intent into a constraint pro-

gramming problem with a set of logical constraints, whose

feasible solutions correspond to qualified configurations for

application. In addition, to improve the efficiency of finding

qualified configurations, PED also develops a search space de-

composition (SSD) algorithm that decomposes the compiled

constraint programming problem into a series of subprob-

lems with smaller, disjoint search space. Fig. 2 presents the

architecture and workflow of the PED framework.

Mathematical programming constraints as a unified,
compact resource representation. In PED, when the net-

work needs to expose the information for a set of flows to

applications, it uses mathematical programming constraints

Application

Network

Discovery 
Language
Compiler

Decomposition

Encoder

Constrain
Programming

Solver

Resource
Discovery
Query

Resource
Information
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(2)
(3)
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Figure 2: Architecture/Workflow of SMT-based PED framework.

to capture the resource availability and sharing information

of these flows, providing a unified resource representation.

Specifically, suppose PED receives the resource discovery

request of a set of flow 𝐹 . For each flow 𝑓𝑗 ∈ 𝐹 , we use 𝑥 𝑗 to

denote an available resource (e.g., bandwidth) the application
can reserve for this flow. Upon receiving this request, PED

first checks the routes – computed by the underlying routing

protocol – for each flow 𝑓𝑗 . Then all the links are enumerated.

For each link 𝑙𝑢 , it generates a linear inequality:∑
𝑥 𝑗 ≤ 𝑙𝑢 .𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒,∀𝑓𝑗 that uses link 𝑙𝑢 in its route.

To illustrate this formulation, consider the network topol-

ogy in Figure 3, where an application wants to reserve band-

width for two flows 𝑓1 : (𝑆1, 𝐷1) and 𝑓2 : (𝑆2, 𝐷2). The routes
for the two flows share common links, i.e., 𝑙3 and 𝑙4, hence
it infeasible for both circuits to each reserve a 100 Mbps

bandwidth. Therefore, the PED framework will generate the

following set of linear inequalities:

𝑥1 ≤ 100, ∀𝑙𝑢 ∈ {𝑙1, 𝑙2, 𝑙5, 𝑙6 },
𝑥2 ≤ 100, ∀𝑙𝑢 ∈ {𝑙7, 𝑙8, 𝑙11, 𝑙12 },
𝑥1 + 𝑥2 ≤ 100, ∀𝑙𝑢 ∈ {𝑙3, 𝑙4 }.

(1)

Where 𝑥1 and 𝑥2 represent the available bandwidth that

can be reserved for (𝑆1, 𝐷1), and (𝑆2, 𝐷2), respectively. Each
linear inequality represents a constraint on the reservable

bandwidths over different shared resources by the two flows.

Resource discovery language. PED introduces a declar-

ative language that allows applications to express flexible

resource discovery intents. Specifically, the language uses a

resource-filtering design, which allows applications to define

predicates on packet spaces (i.e., different sets of flows), and
predicates on resources (i.e., particular resource attributes
that applications are interested in discovering). Leveraging

the equivalence between relational algebra and first-order

logic, the language uses SQL-style semantics, which are fa-

miliar to both application and network engineers. Figure 4

gives an example to discover the bandwidth information of

two flows (based on the configuration in Fig. 3), where the

bandwidth of both flows must be at least 100 Mbps.

From resource discovery query to network informa-
tion exposure. Given a resource query (Step 1 of Fig 2),

PED first compiles the requirement filter predicates into a
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Figure 3: An example where an application tries to dis-
cover information of tow flows from the network.

1 flow_1: {src_ip = 10.0.0.1 and dst_ip = 10.0.0.2};
2 flow_2: {src_ip = 10.0.0.3 and dst_ip = 10.0.0.4};
3 flow_set: {flow_1, flow_2};
4 req_1: flow_2.bandwidth >= 100 Mbps;
5 req_2: flow_2.bandwidth >= 100 Mbps;
6 select bandwidth from flow_set
7 where req_1 and req_2;

Figure 4: An example resource discovery query.

set of logical constraints (Step 2), and then leverages state-of-

the-art solvers (e.g., the Z3 SMT solver) to search for quali-

fied configurations that satisfy the application requirements.

Specifically, given a resource query, a qualified configuration
is defined as the network paths (i) that can be used to route

the traffic of the packet space specified in the query, and (ii)

along which available resources to the specified packet space

satisfy the resource predicates in the query.

To preserve the privacy of network, in PED the network

has the flexibility of deciding how many qualified configura-

tions to search for and how many of them can be returned to

the application. This can be achieved by tuning correspond-

ing options in problem solvers.

Topologies of networks, especially data center networks,

have a large number of possible paths for each source-destination

pair, resulting in a large search space and a higher latency

for finding qualified configurations. As such, we develop

the SSD algorithm to decompose the compiled constraint

programming problem on the whole network into multiple

sub problems on smaller, disjoint partitions of the network

(Step 3). These sub problems can be solved efficiently and

in parallel. In this way, the efficiency of finding qualified

configurations for application is substantially improved.

After qualified configurations are found (Step 4), PED

encodes the resource information of the configurations (e.g.,
bandwidth sharing) in a set of mathematical programming

constraints and sends to the application (Step 5). For example,

from the bandwidth availability query in Figure 4, PED will

provide the linear inequality 𝑥1 + 𝑥2 ≤ 100 indicating that

both flows share a common resource and thus, the sum of

their bandwidths can not exceed 100 Mbps.

After receiving the network information, the application

can then optimize resource allocation for its flows using the

retrieved information, together with its private constraints.

Preliminary evaluation. We evaluate our design proposal

in different scales of fat-tree topologies [23] using different
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Figure 5: The resource discovery latency of PED w/ and w/o SSD:
(a) 4-ary fat tree with varying numbers of flows; (b) 40 flows with
varying fat tree sizes.

workloads. Specifically, we study the performance of two

versions of our design: (i) SSD: the full version of PED where

the SSD algorithm is enabled; (ii) Baseline: a simplified

version of PED where the SSD algorithm is disabled. We

measure the resource discovery latency of both versions as

the elapsed time from the time when the compiler finishes

the compilation to the time when a feasible configuration of

the original search problem is found.

We generate different application workloads by randomly

selecting different amounts of end host pairs to compose

different flow sets, and divide them 3 different cases, each

of which has a different ratio of resource sharing require-

ments (e.g., QoS metrics) in the original logical constraints.

For example, baseline-100% indicates that all original logical
constraints are QoS metric requirements for all flows.

Figure 5a plots the resource discovery latency of two PED

versions in a 4-ary fat tree topology as the number of flows

changes. Results show that the PED with SSD enabled al-

ways has a lower discovery latency than the one with SSD

disabled, regardless of the ratio of resource sharing require-

ments.When this ratio is fixed, the improvement of discovery

latency increases as the number of flows does. Specifically,

when there is no resource sharing requirement, SSD im-

proves the discovery latency by up to 15 times (i.e., 30000 ms

vs. 2000 ms with 80 flows), demonstrating the efficiency of

the first phase of search space decomposing in SSD. When

all constraints are resource sharing ones, SSD improves the

latency by 2-4 times, demonstrating the efficiency of the

second phase of search space decomposing. Similar results

can also be observed in Fig. 5b.

5 FUTURE RESEARCH DIRECTIONS
Multi-domain information exposure. Many novel appli-

cations require the orchestration of multiple resources across

multiple domains (technological or administrative) where

dynamics and topologies are completely different. Exposing

network information for a multi-domain setting introduces

a basic challenge because each domain can have its own

representation of the same network infrastructure. To fully

benefit from the network awareness in applications, it is nec-

essary to design multi-domain composition mechanisms, so
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that network information in multiple domains are adapted

together to a single and consistent "virtual" abstraction.

Control exposure for NAI. A programmable network can

provide opportunities to both applications to optimize E2E

routing control and network service providers to increase

business offering. However, traditional inter-domain routing

protocols (e.g., using the traditional BGPmodel) provide very

limited mechanisms for network operators and applications

to achieve flexible, E2E route control. Thus, more research

efforts in this direction are required to expose more control

(ultimately programmability) beyond just information.

Computation complexity optimization. As already men-

tioned, resource discovery techniques are characterized by

increased optimal resource allocation but at the cost of com-

munication and computation overhead of resource discovery.

Therefore, solutions to reduce the delay as well as number

of messages for resource discovery are necessary. A possible

optimization consists in proactively discover the resource

information. Another alternative to explore is to use those

pre-computed abstractions to quickly project to get the re-

source abstraction for application’s requests.

Security/privacy preserving. PED may rise to privacy and

security issues. Therefore, it is necessary to ensure that

queries to the network can provide enough information with-

out compromising the privacy of clients/applications. To deal

with the network information exposure issues, mechanisms

to ensure that information is transformed and aggregated

need to be also developed.

6 CONCLUSIONS
The collaboration between networks and applications brings

benefits to both parties, yet realizing it is non-trivial. In

this paper, we review huge possibilities in designing and

implementing NAI by application-aware networking and

network-aware applications. We design PED, an NAI pos-

sibilities discovery and exposure framework to address the

key challenges of systematically realizing NAI. Preliminary

experiments show the potentials of this framework. Besides,

we also discuss future research directions toward deep NAI.
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