
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021 571

Optimizing in the Dark: Learning Optimal Network
Resource Reservation Through a Simple

Request Interface
Qiao Xiang , Member, IEEE, Haitao Yu, James Aspnes, Franck Le, Chin Guok,

Linghe Kong , Senior Member, IEEE, and Y. Richard Yang , Senior Member, IEEE

Abstract— Network resource reservation systems are being
developed and deployed, driven by the demand and substantial
benefits of providing performance predictability for modern
distributed applications. However, existing systems suffer limita-
tions: They either are inefficient in finding the optimal resource
reservation, or cause private information (e.g., from the network
infrastructure) to be exposed (e.g., to the user). In this paper,
we design BoxOpt, a novel system that leverages efficient oracle
construction techniques in optimization and learning theory to
automatically, and swiftly learn the optimal resource reservations
without exchanging any private information between the network
and the user. In BoxOpt, we first model the simple reservation
interface adopted in most reservation systems as a resource
membership oracle. Second, we develop an efficient algorithm
that constructs a resource separation oracle by a linear number of
calls on resource membership oracle. Third, we develop a generic
framework to construct a resource optimization oracle by iter-
atively calling the resource separation oracle, and then develop
three novel, efficient algorithms under this generic framework,
the best of which computes the optimal resource reservation by
a linear number of calls on resource separation oracle. As such,

Manuscript received March 25, 2019; revised January 28, 2020 and July 31,
2020; accepted November 16, 2020; approved by IEEE/ACM TRANSAC-
TIONS ON NETWORKING Editor R. Elazouzi. Date of publication January 6,
2021; date of current version April 16, 2021. This work was supported in
part by NSFC under Grant 61702373, Grant 61672385, Grant 61701347,
Grant U190820096, and Grant 72061127001; in part by the NSF awards
under Grant CCF-1637385, Grant CCF-1650596, and Grant OAC-1440745;
in part by the Key-Area Research and Development Program of Guangdong
Province (No.2019B121204009), Guangdong Institute of Chinese Engineering
Development Strategies (No. 2019-GD-13), FANet: PCL Future Greater-
Bay Area Network Facilities for Large-scale Experiments and Applications
(No. LZC0019), and the Guangdong Basic and Applied Basic Research
Foundation (No. 2019B1515120031); in part by the Facebook Research
Award; and in part by the U.S. Army Research Laboratory and the U.K. Min-
istry of Defence under Grant W911NF-16-3-0001. (Corresponding author:
Qiao Xiang.)

Qiao Xiang is with the School of Informatics, Xiamen University, Xiamen
361005, China, and also with the Department of Computer Science, Yale
University, New Haven, CT 06520 USA (e-mail: qiao.xiang@cs.yale.edu).

Haitao Yu is with the Peng Cheng Laboratory, Shenzhen 518066, China,
and also with the Department of Computer Science and Technology, Tongji
University, Shanghai 200092, China (e-mail: haitao.yu@tongji.edu.cn).

James Aspnes is with the Department of Computer Science, Yale University,
New Haven, CT 06520 USA (e-mail: james.aspnes@yale.edu).

Franck Le is with the IBM T. J. Watson Research Center, New York,
NY 10562 USA (e-mail: fle@us.ibm.com).

Chin Guok is with the Lawrence Berkeley National Laboratory, Berkeley,
CA 94720 USA (e-mail: chin@es.net).

Linghe Kong is with the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
linghe.kong@sjtu.edu.cn).

Y. Richard Yang is with the Peng Cheng Laboratory, Shenzhen 518066,
China, and also with Department of Computer Science, Yale University, New
Haven, CT 06520 USA (e-mail: yry@cs.yale.edu).

Digital Object Identifier 10.1109/TNET.2020.3045595

BoxOpt can discover the optimal resource reservation with
O(n2) calls on the resource membership oracle. We implement
a prototype of BoxOpt with and demonstrate its efficiency and
efficacy via extensive experiments using real network topology
and a 7-day trace from a large operational federation network.
Results show that (1) BoxOpt has a 100% correctness ratio by
comparing with a state-of-the-art optimization solver, and (2) for
90% of requests, BoxOpt learns the optimal resource reservation
within 10 seconds.

Index Terms— Machine learning, network optimization,
resource orchestration, bandwidth reservation.

I. INTRODUCTION

MANY modern distributed applications (e.g., [1], [2])
construct complex data flows between end hosts, e.g.,

in data center networks. The key to supporting these appli-
cations is the ability to provide guaranteed network resources
(i.e., bandwidth) for performance predictability [3]. As such,
many network resource reservation systems are developed
and deployed [4]–[9]. One representative network reservation
system deployment, and the targeted deployment network of
this paper, is the Large Hadron Collider (LHC) [10], where an
On-Demand Secure Circuits and Advance Reservation System
called OSCARS [11] is deployed to support the large-scale
dataset transfer in the LHC experiments. Such reservation
systems are usually inelastic, i.e., once a network resource
reservation is made, the resources are dedicated to the applica-
tion/user till the end of the reservation period specified by user,
unless it is terminated by the network earlier due to emergency
(e.g., link failure). Depending on specific applications, typical
reservation periods range from hours to days [10], [12]. As
such, applications/users prefer to reserve the optimal amount
of network resources when they make the request.

However, because of the underlying networks’ concern of
revealing sensitive information, existing reservation systems
do not provide applications with an interface to access infor-
mation of the underlying network infrastructure (e.g., topology,
links’ available bandwidth). Instead, networks only offer a sim-
ple reservation interface for applications to submit requests for
reserving a specific amount of bandwidths for a set of flows:
request(flow_set, bw_values)), and returns either success or
failure. A major concern of this design is its inefficiency for
the applications/users to find the optimal amount of network
resources to reserve. To further illustrate the issues, consider
the example in Figure 1, where a user (e.g., application) wants
to determine and reserve the maximum achievable bandwidth
for two flows from S1 to D1, and S2 to D2, respectively.

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3394-6279
https://orcid.org/0000-0001-9266-3044
https://orcid.org/0000-0001-7460-8164

572 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Fig. 1. An example network topology: the routes of two flows share
bottleneck links, i.e., l3 and l4, hence they can only collectively get a
bandwidth of 100 Mbps.

Using existing solutions (e.g., [4], [5]) that offer only a simple
reservation interface, finding the constraint that both flows can
collectively get only 100 Mbps of bandwidth is already an
instance of the NP-hard membership-query based constraint
acquisition problem [13], letting alone finding the optimal
reservation for both flows (e.g., 50 Mbps for each flow).

To address this problem, researchers have proposed several
solutions, but all of them suffer limitations, and violate privacy
requirements. For example, to determine optimal bandwidth
reservations, recent proposals depart from the simple reserva-
tion interface, and require either networks to reveal sensitive
information to users [12], [14]–[16], or vice versa [17]–[20].
These solutions are therefore limited to settings where the level
of trust between the applications and the underlying network
is high. These solutions cannot be deployed in general settings
as malicious parties may use the exposed network information
to identify vulnerable links and launch attacks (e.g., DDoS).

In this paper, we explore the feasibility and benefits of
learning the optimal network resource reservation for the
user without exposing the private information of the network
(i.e., bandwidth capacity region) and the user (e.g., resource
orchestration policy) to each other. In particular, we tackle
the following problem: Given a user’s objective function and
the available resources in the network, how can a user learn
the optimal network resource reservation using only the simple
reservation interface? In this problem, we use the term “learn”
to refer to the process that given a user’s objective function and
the network’s available resources, how to exploit and explore
different reservation requests, based on the binary feedback
(i.e., success/failure) provided by the simple request interface,
to find the optimal resource reservation.

This task is non-trivial due to the extremely limited feed-
back (i.e., success/failure) provided by the simple reservation
interface. Existing studies on optimization with unknown
constraints are not suitable for addressing this problem. For
example, Bayesian optimization based methods either require
tens of thousands samplings to solve a problem with even a
single unknown constraint (e.g., [21]), or require additional
knowledge on the number of constraints to scale (e.g., [22]).
Reinforcement learning based solutions (e.g., [23]–[25]) are
not appropriate candidates, either, for several reasons. First, the
binary feedback provided by the simple reservation interface
(i.e., success/failure) makes it difficult to find a suitable
reward function to ensure the convergence of the learning
process. Second, the raw state space of the corresponding
network resource reservation problem is exponential in terms
of the number of flows the user wants to reserve resources
for, resulting in complex, error-prone hyperparameter tuning
process.

Our solution to this problem is BoxOpt, a novel learn-
ing system that automatically, and efficiently learns the

optimal resource reservations for the user through the simple
reservation interface, without exchanging any private infor-
mation between the network and the user (e.g., bandwidth
feasible region of the network and the resource orchestra-
tion policy of the user). Specifically, BoxOpt allows users
to include their resource reservation objectives as concave
utility functions of the requested resources (e.g., bandwidths)
in the reservation requests. Upon receiving a reservation
request, BoxOpt models the simple reservation interface of
network resource reservation systems as a membership oracle
over a polytope. It then expands oracle construction tech-
niques [26], [27] from optimization and learning theory to
construct a separation oracle through invoking the membership
oracle in a linear number of iterations (n being the number
of flows), which when called upon will accurately infer a
search space in which the optimal reservation vector lies.
With such a separation oracle, BoxOpt then constructs an
optimization oracle, which can learn the optimal reservation
vector through a polynomial number of calls on the separation
oracle. The design of BoxOpt is modular so that different
cutting-plane-based algorithms can be developed and plugged.
Specifically, in this paper, we develop a generic optimization
framework based on cutting plane methods, and develop three
algorithms under this framework, each of which computes
the optimal resource reservation by a linear or quadratic
number of calls on resource separation oracle, respectively.
Overall, given a user’s objective function on network resource
reservation and a network’s bandwidth feasible region, BoxOpt
not only can learn the optimal resource reservation efficiently
(i.e., with a polynomial total number of membership oracle
calls), but also is privacy-preserving in that (1) the net-
work does not know the objective function of the user, and
(2) the user cannot reconstruct the bandwidth feasible region
of the network because finding it via a membership oracle is
NP-hard [13].

The main contributions of this paper are as follows:
• We study the important problem of learning the opti-

mal network resource reservation through the simple reser-
vation interface of network resource reservation systems.
In particular, we design BoxOpt, a novel, fast, automatic,
privacy-preserving learning system. To the best of our knowl-
edge, BoxOpt is the first working system that solves this
problem, can be extended to other optimization problems.
• In BoxOpt, we model the simple reservation interface

as a membership oracle over a polytope, and expand ora-
cle construction techniques from optimization and learning
theory to develop an efficient algorithm that constructs a
separation oracle in O(n) calls on the membership oracle,
and a series of algorithms, the best of which constructs an
optimization oracle in O(n) calls on the constructed separation
oracle. As such, BoxOpt can discover the optimal resource
reservation with O(n2) calls on the resource membership
oracle.
• We implement a prototype of BoxOpt and demonstrate

both its efficiency and efficacy through extensive experiments
using real topologies and traces. Results show that (1) BoxOpt
has a 100% correctness ratio by comparing with a state-of-
the-art optimization solver (i.e., CPLEX [28]), and (2) for 90%
cases, it can learn the optimal reservation within 10 seconds.

The remaining of this paper is organized as follows.
We present an overview of BoxOpt in Section III. We give

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

XIANG et al.: OPTIMIZING IN THE DARK: LEARNING OPTIMAL NETWORK RESOURCE RESERVATION 573

details on how BoxOpt efficiently learns the optimal network
resource reservation only using the simple reservation interface
in Section IV. We present the evaluation results of BoxOpt in
Section V. We discuss related work in Section II and conclude
the paper in Section VI.

II. RELATED WORK

Network Resource Reservation Systems: Many network
resource reservation systems have been developed and
deployed [4]–[9], [12], [14]–[16]. Early systems mainly
adopt a “blackbox-request” approach [4]–[9]. In particular,
the user determine the amount of network resources (e.g.,
bandwidth) needed for data flows based on their own con-
straints and objectives and submit requests for reserving the
computed amount of resources through a simple interface (i.e.,
request(flow, bw_req)); and the network examines its own
resource availability and returns success if the reservation
request succeeds, or failure otherwise. This design is simple,
but often makes it impossible for the user to find the optimal
resources reservation.

One alternative to this design is called the “network-
does-all” design. Specifically, systems using this design [12],
[14]–[16] let the user submit their requirements, in terms
of both constraints and objectives, on network resources to
the network, and have the network compute and enforce
the optimal network resource allocation for applications. One
major concern of this design is, by sending all constraints and
objectives to the network, the user expose her / his proprietary
information (e.g., internal data flow orchestration policy) to the
network. For example, if a user submits a requirement that all
data flows must have the same bandwidth, the network can
infer that the user internally uses fairness policy. In addition,
it requires the network to have the capability for solving the
optimization problems specified by the user’s requirements,
which can be computationally expensive and time-consuming.

In addition, a third design called “resource-discovery”
design was recently proposed [17], [19]. In this design, the
user specify the endpoints of different data flows and submit
to the network, and the latter returns the user with the resource
availability and sharing information of these data flows using
mathematic constraints as abstraction. As such, the user can
perform their own resource orchestration algorithms to select
the optimal amount of resources to reserve without reveal-
ing their internal constraints and objectives to the network.
However, even though mathematic constraint is a compact
abstraction, it still exposes the private information of the
network (e.g., the bandwidth feasible region) to the user.

Different from existing resource reservation systems, Box-
Opt adopts a novel approach to efficiently learn the optimal
resource reservation through the limited feedback from the
simple interface provided by the “blackbox-request” reser-
vation systems. BoxOpt enables the user to find the opti-
mal amount of network resources to reserve without without
exchanging any private information between the network and
the user.

Machine Learning: Different machine learning techniques
have been developed to solve optimization problems with
unknown constraints [13], [21]–[25], [29]–[32]. However, they
are not suitable for finding the optimal resource reservation
via only the simple request interface. For example, Bayesian

Fig. 2. The architecture and workflow of BoxOpt.

optimization based methods either require tens of thousands
samplings to solve a problem with even a single unknown
constraint (e.g., [21]), or require additional knowledge on
the number of constraints to scale (e.g., [22]). Reinforcement
learning based solutions (e.g., [23]–[25]) are not appropriate
candidates, either. This is because the binary feedback pro-
vided by the simple reservation interface (i.e., success/failure)
makes it difficult to find a suitable reward function to ensure
the convergence of the learning process. In addition, the raw
state space of the corresponding network resource reservation
problem is exponential in terms of the number of flows the
user wants to reserve resources for, resulting in complex,
error-prone hyperparameter tuning process.

Another area in machine learning that is closely related
to our problem is constraint learning [13], [29]–[32]. For
example, [13] studies constraint acquisition via different
types of membership queries, and show that this problem
is in general NP-hard. [30], [32] study the membership
problem of parameterized linear systems. We refer readers
to [29] for a comprehensive survey. Instead of learning
all linear inequalities that compose the bandwidth feasible
region, as will be shown in the next few sections, BoxOpt
leverages several powerful tools from optimization theory [26],
[27], [33]. We expand the recent theoretical progress on
efficient oracle constructions to a broader scenario. To the
best of our knowledge, BoxOpt is the first working system
that demonstrates the feasibility and benefits of learning the
optimal solution of an optimization problem with only mem-
bership oracle. In addition to network resource reservation,
it also sheds light for other areas such as multi-domain traffic
engineering and collaborative data analytics.

III. OVERVIEW OF BOXOPT

In this section, we first present the architecture and the
workflow of BoxOpt. We then give a formal, mathematical
formulation of the key technical challenge in BoxOpt: how
to find the optimal network resource reservation through the
simple reservation interface.

A. Architecture

BoxOpt is composed of two components: an automatic
reservation optimization (ARO) module for the user, and a
network resource reservation (NRR) module for the network
(Figure 2). The two components interact with each other
through the simple reservation interface commonly used in
traditional network resource reservation systems.

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

574 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Automatic Reservation Optimization Module: The ARO
module is a private component belonging to the user, and is
composed of two sub-components: an ARO controller, and an
ARO scout.

The ARO controller is the main interface for the user to
submit the resource reservation requests. A request consists of
a set of n flows, F = {f1, f2, . . . , fn}, to reserve the resources
for, and a concave utility function util(x) to maximize, with
x = [x1, x2, . . . , xn] and each xi representing the available
bandwidth that can be reserved for flow fi ∈ F . Example
utility functions include total throughput and priority-based
total throughput. Given a user resource reservation request,
the objective of the ARO controller is to infer the optimal
resource reservation to maximize util(x). The ARO controller
achieves it with the assistance of the ARO scout. Specifically,
the ARO controller iteratively selects a vector x̌ of bandwidth
values for F (called reservation vector) and sends it to the
ARO scout. For each reservation vector, the ARO scout returns
a search space where the optimal reservation vector lies in.
With the inferred search spaces returned by the ARO scout, the
ARO controller gradually converges to the optimal reservation
vector that maximizes util(x).

The ARO scout is the main user entity interacting with the
NNR. For each x̌ from the ARO controller, the ARO scout
infers a search space where the optimal reservation vector lies
in, and returns the inferred search space back to the ARO
controller. To infer the search space where the the optimal
reservation vector lies in, the ARO scout sends a sequence of
reservation vectors to the NRR through the simple reservation
interface. As further described in Section IV and Section V,
for each reservation vector submitted from the ARO controller,
the ARO scout might submit tens or hundreds of reservation
vectors to the NNR to get an accurately-inferred search space,
potentially, leading to a high overhead. As such, to reduce
the total latency to find the optimal reservation vector, we
design the ARO scout as a lightweight process that can be
placed in the network (e.g., a container instance), instead of
with the user. This design decision reduces the user-network
communication latency by over 220 times as demonstrated in
the evaluation section. More importantly, this design does not
expose the private information of the user (i.e., util(x)) to the
network, as the ARO controller does not send such information
to the scout.

Network Resource Reservation Module: The NRR module
is a private component belonging to the network. Its primary
role is to verify whether the reservation vectors submitted by
the ARO scout can be satisfied. Upon receiving a reservation
vector from the ARO scout, the NRR extracts the relevant
constraints from the network. The constraints include both
physical network constraints (e.g., if two flows share a same
link, their allocated bandwidths cannot exceed the link’s
available bandwidth), and network policies (e.g., rate limiting,
etc.) The constraints are captured as an abstraction of linear
inequalities [17]–[19]. For example, to capture the physical
network constraints, the NNR first retrieves the routes (i.e.,
sequence of traversed links) for each flow. Then, for each
link l in the network, the NNR generates the following linear
inequality to ensure that the allocated bandwidths to the flows
do not exceed the link’s available bandwidth:∑

xi ≤ wl, ∀fi that uses l in this route,

where wl is the available bandwidth on link l. Considering the
example in Figure 1, the NRR module generates the following
linear inequalities:

x1 ≤ 100 ∀lu ∈ {l1, l2, l5, l6},
x2 ≤ 100 ∀lu ∈ {l7, l8, l11, l12},

x1 + x2 ≤ 100 ∀lu ∈ {l3, l4},
x1, x2, x3 ≥ 0. (1)

Then, the NRR generates additional linear inequalities to
represent the network’s internal traffic engineering policies,
such as load-balancing and bandwidth limiting. For example,
suppose the network wants to limit the total bandwidth of
flows f1 and f2 to be no more than 80 Mbps even if there is no
common link in their routes. Then a linear inequality x1+x2+
x3 ≤ 80 is generated to represent this policy. Geometrically,
the abstraction of linear inequalities represents the bandwidth
feasible region of the network for providing bandwidths to a
set of flows.

Finally, for each generated linear inequality, the NRR
checks if it is satisfied by the bandwidth values specified in
the reservation vector. If any inequality is violated, it returns
a FAILURE signal. Otherwise, it returns SUCCESS.

To handle concurrent reservation requests, the NRR module
instantiates multiple threads, each of which maintains a soft
state of available network bandwidths and interacts with the
ARO module of one request. When two requests want to
reserve the same resources (e.g., all bandwidth of a same
link), only the earliest request will be satisfied. As such,
when the network has high dynamics (e.g., large number
of simultaneous reservation requests and short reservation
duration), BoxOpt may not be able to find the optimal resource
reservations for concurrent requests. However, as we will show
in Section V, given the long lasting time of reservations and
the short time of BoxOpt to find the optimal reservation,
the probability of many reservations competing the same
resources is low (e.g., none in the production trace used in the
evaluation).

B. Workflow

Having presented the basic components of BoxOpt, we now
briefly present its workflow to automatically compute and
reserve the optimal network resources for a set of flows as
follows (Figure 2):
• Step 1: The user submits a resource reservation request

for a set of flows F to the ARO controller. The request also
includes a concave utility function util(x) of the bandwidths
of F .
• Step 2: In an outer loop, the ARO controller itera-

tively selects reservation vectors to send to the ARO scout.
The selection of the reservation vectors is described in
Section IV-D. In return, for each reservation vector, the
ARO scout determines and replies with an inferred search
space.
• Step 3: In an inner loop, upon receiving a reservation

vector from the controller, the ARO scout interacts with the
NRR, according to Algorithm 1 from Section IV-C, to infer
the next search space and send it back to the ARO controller.

The nested iteration of Step 2 and 3 stops when the
ARO controller converges to the optimal reservation vector
maximizing util(x).

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

XIANG et al.: OPTIMIZING IN THE DARK: LEARNING OPTIMAL NETWORK RESOURCE RESERVATION 575

• Step 4: The ARO controller sends the optimal reservation
vector to the NRR module to reserve the optimal resources for
the user.
• Step 5: The ARO controller confirms with the user

that the optimal network resource reservation has been
successful.

C. Key Challenge

Through the introduction of its architecture and workflow,
we show that the key challenge for BoxOpt lies in Step 2 and
3: how can the ARO module interact with the NRR module
through the simple reservation interface to compute the opti-
mal network resource reservation?. To address this challenge,
we first give a formal, mathematical formulation.

Specifically, we first model the NRR module as a resource
membership oracle. Without loss of generality, we use
Ax ≤ b to denote the set of linear inequalities generated
by the NRR module, and use K : {x|Ax ≤ b,x ≥ 0} to
represent the bandwidth feasible region for a set of flows F .
In this way, we give the definition of resource membership
oracle:

Definition 1 (Reservation Membership Oracle (ReMEM)):
Given a reservation vector x̌, return YES if x̌ ∈ K , and
return NO otherwise.

ReMEM(x̌) accurately captures the interaction between
the ARO scout and the NRR module. Next, we formally define
the problem of network resource reservation optimization via
simple reservation interface.

Problem 1 (Optimization via Membership Oracle): Find
the optimal solution to the following optimization problem

maximize util(x), (2)

subject to,

Ax ≤ b, (3)

x ≥ 0, (4)

without the knowledge of A and b, but only using ReMEM
defined in Definition 1.

Maximizing util(x) subject to K : {x|Ax ≤ b,x ≥ 0}
is a classic convex optimization problem. There has been a
rich body of literature on how to efficiently solve such prob-
lems [33]. However, most of the existing algorithms require
the knowledge of the feasible region (in our case Ax ≤ b).
One may think of a strawman to learn K through the ReMEM
oracle, and apply the standard optimization techniques to find
the optimal x. However, finding the feasible region through
a membership oracle is NP-hard [13], making this strawman
impractical.

In contrast, as we will present next, BoxOpt resorts to
efficient oracle transformation techniques in optimization and
learning theory [26], [27] to solve this problem efficiently, i.e.,
learn the optimal resource reservation via a polynomial number
of calls on the ReMEM oracle. In addition, we also show
that given a user’s objective function on network resource
reservation and a network’s bandwidth feasible region, BoxOpt
is privacy-preserving: (1) the internal objective function of
the user is not exposed to the network, and (2) with the
NP-hardness of finding the feasible region through a mem-
bership oracle [13] and the polynomial total number of calls
on the ReMEM oracle by BoxOpt, the user cannot reconstruct
the bandwidth feasible region of the network.

IV. OPTIMIZING NETWORK RESOURCE RESERVATION

VIA SIMPLE RESERVATION INTERFACE

Having formally defined the key challenge for BoxOpt
as a problem of optimization via membership oracle, this
section discusses how we solve this problem. For presentation
clarity, this section starts by reviewing some concepts in
optimization theory. Then, it presents the basic idea of our
solution, followed by its details.

A. Notations

Unless explicitly noted, we use v to denote a scalar and
v to denote a vector of n dimensions, where n is the
number of flows the user wants to reserve bandwidth for
(see Section III-A). We use ‖v‖2 =

√∑
v2

i to denote the
Euclidean norm of v, and use ‖v‖∞ = max |vi| to denote the
maximum norm of v. We use B+

2 (m, η) = {x|‖x −m‖2 ≤
η,x ≥ 0} to denote the set of all positive vectors whose
Euclidean distance to m is at most η, and use B+

∞(m, η) =
{x|‖x −m‖∞ ≤ η,x ≥ 0} to denote the set of all positive
vectors whose maximum norm distance to m is at most η.

B. Basic Idea

Our approach to solve Problem 1 utilizes the equivalence
and polar relationships between different oracles in optimiza-
tion theory [26]. In particular, we focus on the relationships
between ReMEM with the following two oracles:

Definition 2 (Resource Separation Oracle (ReSEP)):
Given a reservation vector x̌, return YES if x̌ ∈ K , and
otherwise return a half space {y|pT (y − x̌) ≤ δ} that
contains K but not x̌.

Definition 3 (Resource Optimization Oracle (ReOPT)):
Given a reservation request for a set of flows F and the
utility function util(x), find x∗ ∈ K that maximizes util(x).

Given that there exist efficient algorithms (e.g., ellipsoid
method) that can construct an optimization oracle through
invoking a separation oracle with a polynomial number of
iterations, if we can construct a separation oracle through a
polynomial number of calls to a membership oracle, we will
be able to solve Problem 1.

One may think classic half space learning techniques can
achieve such a construction of separation oracle via member-
ship oracle. However, the problems are different. In half space
learning, the goal is to compute a hyperplane to separate a set
of given samples (in our case, the reservation vectors) from
two predefined classes. In contrast, the goal of ReMEM to
ReSEP construction is to compute a hyperplane separating K
and a reservation vector not belonging to K by strategically
choosing a minimal number of reservation vectors to send to
ReMEM.

Specifically, we develop our solution to Problem 1 in
two phases. First, we leverage recent progress on geomet-
ric algorithms [27] to develop an efficient algorithm that
constructs ReSEP through invoking ReMEM for a polyno-
mial number of times. Specifically, our algorithm expands
the weak membership/separation oracle construction in [27]
to strong membership/separation oracle construction. Second,
we develop a generic framework, which constructs ReOPT
through local feasibility checks and invoking ReSEP for a
polynomial number of times, and develop three novel, efficient

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

576 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Algorithm 1 Resource Separation Oracle ReSEP (x̌)

1 Select � ∈ (0, r], ρ ∈ (0, 1);
2 κ← R

r ;
3 if ReMEM returns YES for x̌ then
4 return x̌ ∈ K ;

5 else if x̌ /∈ B2(0, R) then
6 return the half space {y|x̌T (y − x̌) ≤ 0};
7 else
8 r1 ← rR− 1

3 �
1
3 ;

9 g̃← Subgradient(0, r1, 4�, 3κ);
10 return the half space

{y|g̃T (y − x̌) ≤ (40n + 1)ρ−1R
2
3 κ�

1
3 };

Fig. 3. An illustration of the auxiliary functions αx̌(d) and hx̌(d).

algorithms under this framework, each of which, computes the
optimal resource reservation by a linear or quadratic number
of calls on resource separation oracle, respectively. Mapping
these two phases to Step 2 and 3 in the workflow of BoxOpt,
we see that the ARO scout is essentially the separation oracle
ReSEP, and the ARO controller is the optimization oracle
ReOPT (Figure 2). Next, we give the details of each phase.

C. From Resource Membership Oracle to Resource
Separation Oracle

To construct ReSEP from ReMEM, we first define two
auxiliary functions on vector d ∈ K given a reservation vector
x̌:

αx̌(d) ← max
d+αx̌∈K

α, (5)

hx̌(d) ← −αx̌(d)‖x̌‖2 (6)

As illustrated in Figure 3, given a vector d ∈ K , d +
αx̌(d) is the last vector on the line from d to d+ x̌ that is in
K , and that −hx̌(d) is the Euclidean distance from d to this
point. Without loss of generality, we assume that B+

2 (0, r) ⊂
K ⊂ B+

2 (0, R) for some positive numbers r, R and such an
assumption can be trivially satisfied in practice. Extending the
proof technique in [27] for an n-dimensional ball to only a
partial ball on the first orthant, we get

Lemma 1: Given x̌, hx̌(d) is convex on K , and is R+θ
R−θ

Lipschitz in B+
2 (0, θ) for 0 < θ < r.

With these auxiliary functions and a theorem that for any
Lipschitz function, it is linear on a small ball [34], we can
construct ReSEP by computing the subgradient of hx̌(d) at
d = 0, which can be computed by binary search and invoking
ReMEM. The constructed separation oracle is presented in

Algorithm 2 Computing the Subgradient of hx̌(d)
Subgradient(d, r1, τ, L)

1 r2 ←
√

τr1√
nL

;

2 Randomly select y from B∞(d, r1) following a uniform
distribution;

3 Randomly select z from B∞(y, r2) following a uniform
distribution;

4 for i← 1, . . . , n do
5 Define line segment B∞(y, r2) ∩ z + sei, where

s ∈ R and ei is a vector whose elements are all zeros
except the ith one;

6 Denote the endpoints of this line segment as si and ti,
respectively;

7 Evaluate hx̌(ti) and hx̌(si) using binary search and
ReMEM;

8 g̃i = hx̌(ti)−hx̌(si)
2r2

;

9 return g̃;

Algorithm 1, and the computation of the subgradient of hx̌(d)
is presented in Algorithm 2.

A key insight in Algorithm 1 is that it expands the
applicability of similar construction process from weak mem-
bership/separation oracles to strong membership/separation
oracles (i.e., ReMEM and ReSEP). In particular, we have

Lemma 2: There is a random variable φ with expectation

E(φ) ≤2 n
√

τL
r1

such that ∀q ∈ K ,

hx̌(q) ≥ hx̌(d) + g̃T (q− d)− φ‖q− d‖∞ − 4nr1L.
With this lemma, we show the correctness of Algorithm 1 in
the following theorem.

Theorem 1: If x̌ /∈ K , Algorithm 1 yields a half space
containing K but not x̌ with probability 1− ρ.

Proof: When x̌ /∈ B+
2 (0, R), it is easy to see that the

returned half space {y|x̌(y)−x̌ ≤ 0} (Line 6 of Algorithm 1)
contains K but not x̌. When x̌ /∈ K but x̌ ∈ B+

2 (0, R), from
Lemma 1, we know that hx̌(d) has a Lipschitz constant of
3κ on B+

2 (0, r
2). By selecting � ∈ (0, r] and setting r1 =

rR− 1
3 �

1
3 (Line 1 and 8 of Algorithm 1, respectively), we can

get B+
∞(0, 2r1) ⊂ B+

2 (0, r
2). As such, we can apply Lemma 2

and get that ∀q ∈ K

hx̌(q) ≥ hx̌(0) + g̃T · q− φ‖q‖∞ − 12nr1κ. (7)

Next, because x̌ ∈ B+
2 (0, R), we have − 1

κ x̌ ∈ K and
hx̌(− 1

κ x̌) = hx̌(0)− ‖x̌‖2
κ . Then we use Lemma 2 to get

hx̌(− 1
κ
x̌) ≥ hx̌(0) + g̃T · − 1

κ
x̌− φ

κ
‖x̌‖∞ − 12nr1κ, (8)

As such, we then get

g̃T · x̌ ≥ ‖x̌‖2 − φ‖x̌‖∞ − 12nr1κ
2. (9)

Next, because � ∈ (0, r], x̌ /∈ K and B+
2 (0, r) ⊂ K , we have

(1− ε
r)K ⊂ K . By definition of hx̌(d), we have

hx̌(0) ≥ −(1− �

r
)‖x̌‖2 ≥ −‖x̌‖2 + �κ. (10)

Adding Equations (9) and (10) and then subtracting 2�κ on
the right hand side, we get

hx̌(0) + g̃T · x̌ ≥ −φ‖x̌‖∞ − 12nr1κ
2 − �κ. (11)

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

XIANG et al.: OPTIMIZING IN THE DARK: LEARNING OPTIMAL NETWORK RESOURCE RESERVATION 577

Next, we add Equation (11) to Equation (7) and get that
∀q ∈ K ,

hx̌(q) ≥ g̃T (q− x̌)− φ‖q‖∞ − φ‖x̌‖∞
−12nr1κ− 12nr1κ

2 − �κ

≥ g̃T (q− x̌)− 2φR − 24nr1κ
2 − �κ. (12)

∀q ∈ K , we have hx̌(q) ≤ 0, and then we can have φ̃ ≥
g̃(q − x̌), where φ̃ is a random scalar independent of q that
satisfies

E(φ̃) ≤ 4
√

12�κ

r1
nR + 24nr1κ

2 − �κ. (13)

Putting r1 = rR− 1
3 �

1
3 into Equation (13), we get

E(φ̃) ≤ 40n�
1
3 R

2
3 κ + �κ. (14)

Further leveraging � ≤ r ≤ R, we get

E(φ̃) ≤ (40n + 1)�
1
3 R

2
3 κ. (15)

Then we can finish the proof using Equation (15) and Markov
inequality.

In addition, observing Algorithm 1 and Algorithm 2, we see
that the bottleneck to construct ReSEP is to compute hx̌

using binary search and ReMEM (Line 4-8 in Algorithm 2).
As such, we give the following theorem on the complexity of
Algorithm 1.

Theorem 2: Algorithm 1 constructs the reservation sepa-
ration oracle (ReSEP) through an O(n log R) calls on the
reservation membership oracle (ReMEM).

D. From Resource Separation Oracle to Resource
Optimization Oracle

Having constructed ReSEP from ReMEM, we next focus on
how to construct the resource optimization oracle ReOPT from
the resource separation oracle ReSEP. To this end, we first
develop a generic optimization framework, and then develop
a series of algorithms to accomplish this goal under this
framework.

Generic Framework: We build our generic ReOPT construc-
tion framework based on a cutting-plane-method based frame-
work. The cutting-plane method is a family of optimization
methods that iteratively refine the feasible region by means
of a half space [26]. Specifically, the framework involves two
main steps in each iteration:

1. Select a center from a bounding box;
2. Invoke a separation oracle to exam if the chosen center

is a feasible solution, and find a new cutting plane based
on the feedback from the separation oracle to refine the
bounding box in the next iteration.

In each iteration, the bounding box is refined into a smaller
one. And the iteration process stops when the bounding box
becomes smaller than a predefined size (i.e., predefined error
range). Different cutting-plane methods have different ways
to select the bounding box and the center, yet most of them
use the same approach to find a new cutting plane. And
we summarize it in the FINDCUTTINGPLANE algorithm (i.e.,
Algorithm 3).

Specifically, this approach starts by sending the chosen
center p to a separation oracle (i.e., the ARO scout running
the ReSEP developed in Section IV-C) (Line 1-2). If p is not
in the feasible region K , it chooses the returned half space

Algorithm 3 FindCuttingPlane(p,p∗, ubest)

1 if ReSEP (p) returns a half space H ′ then
2 H ← H ′;

3 else
4 if util(p) > ubest then
5 p∗ ← p;
6 ubest ← util(p∗);

7 H ← {x|(∇util(p))T (x− p) >= 0};
8 return H,p∗, ubest

Algorithm 4 ReOPT-EL: A Resource Optimization Oracle
Using Ellipsoid as Bounding Box and Its Center to Find
New Cutting Plane

1 Given an initial ellipsoid E0 as B+
2 (0, R), the initial

center of E0 is 0;
2 p∗ ← 0, ubest ← −∞;
3 i← 0;
4 while V ol(Ei) ≥ Vε do
5 p is the center of Ei;
6 H,p∗, ubest ← FindCuttingPlane(p,p∗, ubest);
7 Ei+1 ← the minimum-volume ellipsoid containing

Ei ∩H ;
8 i← i + 1;

9 return p∗;

from ReSEP as the new cutting plane (Line 2). Otherwise,
it update the current optimal value ubest by comparing it with
util(p), and computes the subgradient of the chosen center as
the new cutting plane (Line 4-7).

Having presented the basic framework, we next design a
series of different ReOPT algorithms.

ReOPT-EL: Our first ReOPT algorithm uses ellipsoid as the
bounding box, and the center of the ellipsoid as the chosen
center sent to the FINDCUTTINGPLANE algorithm, as shown
in Algorithm 4. At the beginning, it initializes a large ellipsoid
that contains the feasible region K (Line 1). Then it follows
the basic framework to iteratively find a new cutting plane to
shrink the bounding ellipsoid until the volume of the bounding
ellipsoid becomes smaller than Vε, the volume of a predefined
error box (Line 4-8). Specifically, this is accomplished by
constructing the smallest ellipsoid containing the intersection
of the current bounding ellipsoid Ei and the cutting plane H in
each iteration (Line 7). When the algorithm stops, it returns the
vector p∗ that gives the best utility value ubest as the optimal
resource reservation vector (Line 9).

We present the following theorem on the optimality and
efficiency of Algorithm 4.

Theorem 3: Algorithm 4 finds the optimal resource reser-
vation vector x∗ that maximizes util(x) subject to K through
an O(n2 log R

ε) calls on the reservation separation oracle
(ReSEP).

Proof: The proof of this theorem can be derived by
integrating the complexity of the classic ellipsoid method for
feasibility problems [26] and Theorem 2.

As stated in Theorem 3, the running time of ReOPT-EL
increases nonlinearly as the number of flows in a request

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

578 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Algorithm 5 ReOPT-RW: A Resource Optimization Ora-
cle Using Polytope as Bounding Box and the Center
of Samples Chosen by Random-Walk to Find the New
Cutting Plane

1 given an initial polytope P0 as B+
∞(0, R), pick N

random points v1,v2, . . . ,vN in P0;
2 p∗ ← 0, ubest ← −∞;
3 i← 0;
4 while V ol(Pi) ≥ Vε do
5 p← 1

N

∑N
i=1 vi;

6 H,p∗, ubest ← FindCuttingPlane(p,p∗, ubest);
7 Pi+1 ← Pi ∩H ;
8 randomly select a point v from
{vi ∈ H, i = 1, 2, . . . , N} and random walk in Pi+1

by hit-and-run method to generate another N random
points v1,v2, . . . ,vN;

9 i← i + 1;

10 return p∗;

increases (i.e., O(n2)). As such, finding optimal resource
reservation for a reservation request with a large number
of flows using ReOPT-EL may be very slow. To improve
the scalability of BoxOpt, we develop two other resource
optimization oracle algorithms.

ReOPT-RW: Different from ReOPT-EL, the ReOPT-RW
algorithm uses a polytope as the bounding box, and the center
of a set of random points in the polytope as the chosen center
sent to the FINDCUTTINGPLANE algorithm [35], as shown in
Algorithm 5. It starts from a large polytope that contains the
feasible region K (Line 1) and a set of random points in this
polytope. Then it follows the basic framework in Algorithm 3
to iteratively find a new cutting plane to cut the polytope
into a smaller one, until the volume of the bounding polytope
becomes smaller than Vε, the volume of a predefined error
box (Line 4-9). In each iteration, the new polytope Pi+1 is
computed as the intersection of the current polytope Pi and
the new cutting plane H (Line 7), and a set of points in
Pi+1 is chosen using hit-and-run method (Line 8) to compute
the chosen center in the next iteration (Line 5). When the
algorithm stops, it returns the vector p∗ that gives the best
utility value ubest as the optimal resource reservation vector
(Line 9).

The ReOPT-RW algorithm finds the optimal resource reser-
vation vector much faster than the ReOPT-EL algorithm.
This is because comparing with an ellipsoid bounding box,
a polytope bounding box approaches to the optimal solution
faster. Formally, we present its complexity and optimality as
follows.

Theorem 4: Algorithm 5 finds the optimal resource reser-
vation vector x∗ that maximizes util(x) subject to K through
an O(n log R

ε) calls on the reservation separation oracle
(ReSEP).

Proof: The proof of this theorem can be derived by
integrating the complexity of the random walk method for
feasibility problems [35] and Theorem 2.

From Theorem 4, we observe that the running time of
ReOPT-RW increases linearly as the number of flows in a

Algorithm 6 ReOPT-VC: A Resource Optimization Oracle
Using Polytope as Bounding Box and Volumetric Center
to Find the New Cutting Plane

1 given an initial polytope P0 as B+∞(0, R), the volumetric
center of P0 is 0;

2 p∗ ← 0, ubest ← −∞;
3 i← 0;
4 while V ol(Pi) ≥ Vε do
5 p→ the volumetric center of Pi computed using

Newton method;
6 H,p∗, ubest ← FindCuttingPlane(p,p∗, ubest);
7 denote the H as {x|cTx ≥ β}, choose β′ such that

Equations (16)(17) are satisfied;
8 Pi+1 ← Pi ∩ {x|cTx ≥ β′};
9 i← i + 1;

10 return p∗;

request increases (i.e., O(n)), which is much lower than the
O(n2) complexity of the ReOPT-EL algorithm. As we will
show in Section V using real-world topology and trace, the
ReOPT-RW algorithm outperforms the ReOPT-EL algorithm
by reducing the number of ReSEP calls by 64% on average,
and by 95% in the best case.

In addition to ReOPT-RW, we also develop another resource
optimization oracle algorithm in the following, which also uses
polytopes as bounding boxes, but with a different mechanisms
to find the cutting plane in each iteration.

ReOPT-VC: Similar to ReOPT-RW, the ReOPT-VC algo-
rithm also uses a polytope as the bounding box. However,
instead of the center of a set of random points in the bounding
box, the ReOTP-VC algorithm chooses to send the volumetric
center of the bounding box to the FINDCUTTINGPLANE

algorithm to get the new cutting plane [36]. More specifically,
given a bounded polytope P = {x|Ax ≥ b,A ∈ R

m×n,b ∈
R

n}, its logarithmic barrier is −∑m
i=1 ln((aT

i x − bi)2). The

Hessian of this barrier is computed as Φ(x) =
∑m

i=1
aia

T
i

(aT
i x−bi)2

where aT
i denotes the ith row of A. Denote F (x) =

1
2 ln(det(Φ(x))). The volumetric center of P is defined as
the point that minimizes F (x) over P .

Algorithm 6 describes the ReOPT-VC algorithm. It fol-
lows the same basic framework as the ReOPT-EL and the
ReOPT-RW algorithms, with two key improvements. First,
in each iteration, the algorithm computes the volumetric center
of a polytyope Pi computed using Newton method (Line 5).
Second, to avoid the subgradient of F (x) at the p in the
next iteration becomes infinite, it adjusts the cutting plane
{x|cTx ≥ β} computed from the FINDCUTTINGPLANE

algorithm to {x|cTx ≥ β′} such that

cTp ≥ β′, (16)

and
cTΦ(p)−1c
(cTp− β′)2

=
ε

2
. (17)

Similar as the ReOPT-RW algorithm, the ReOPT-VC algo-
rithm also finds the optimal resource reservation vector much
faster than the ReOPT-EL algorithm. We present its complex-
ity and optimality in the following theorem.

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

XIANG et al.: OPTIMIZING IN THE DARK: LEARNING OPTIMAL NETWORK RESOURCE RESERVATION 579

Theorem 5: Algorithm 6 finds the optimal resource reser-
vation vector x∗ that maximizes util(x) subject to K through
an O(n log R

ε) calls on the reservation separation oracle
(ReSEP).

Proof: The proof of this theorem can be derived by
integrating the complexity of the volumetric center based
method for feasibility problems [36] and Theorem 2.

Though the ReOPT-VC algorithm has the same linear
complexity as the ReOTP-RW algorithm, as we will show
in the next section using real-world topology and trace, the
ReOPT-VC algorithm outperforms the ReOPT-RW algorithm
by reducing the number of ReSEP calls by 30% on average,
and by 76% in the best case.

Putting Theorems 2, 3, 4 and 5 together, we get the
following theorem on the optimality and efficiency of BoxOpt.

Theorem 6: When using the ReOPT-RW or ReOPT-VC
algorithm, BoxOpt finds x∗ that maximizes util(x) subject
to K through O(n2 log R log R

ε) calls on ReMEM.

E. Discussion

Privacy-Preserving: We first discuss the privacy-preserving
property of BoxOpt. During the operation of BoxOpt, the
user’s objective function is never exposed to the network.
In addition, Theorem 6 states that given a user’s objective
function on network resource reservation and a network’s
bandwidth feasible region, BoxOpt learns the optimal resource
reservation efficiently with a polynomial total number of
membership oracle calls. With this polynomial result and
the NP-hardness of finding the feasible region through a
membership oracle [13], it is straightforward to see that the
user cannot reconstruct the bandwidth feasible region of the
network. Formally, we give the following theorem:

Theorem 7: Given a user’s objective function and a net-
work’s bandwidth feasible region, BoxOpt learns the optimal
resource reservation without exposing the private information
of the network (i.e., the bandwidth feasible region) and the
user (i.e., the resource optimization objective) to each other.
As indicated in the theorem, the privacy-preserving of BoxOpt
for a given pair of the user’s objective function and the
network’s bandwidth feasible region. When a user adjusts
its objective functions during the interaction with the simple
interface (e.g., testing the resource availability of different
flows), whether BoxOpt can maintain privacy-preserving under
such a differential query scenario is an open question, and we
plan to investigate it as future work.

Supporting Convex Feasible Region: The problem formu-
lation of BoxOpt assumes typical cases in network resource
reservation systems, where the resource availability is repre-
sented as a set of linear inequalities [17]–[19]. However, the
algorithms presented in Section IV-C and IV-D also apply to
the cases where the feasible region is a convex set instead
of a polytope. As such, BoxOpt can be extended to other
application scenarios, such as resource allocation in wireless
networks [37] and electric car charging scheduling in smart
grid [38].

Supporting Objective Functions From Both Network and
User: The problem formulation of BoxOpt assumes repre-
sentative network resource reservation systems that do not
have an internal utility, but only provide a simple request
interface for users to reserve resources [5]–[9]. When a net-
work internally has a utility function it wants to maximize,

the actual bandwidth feasible region NRR allows for the user
may become smaller, potentially improving the efficiency of
BoxOpt. We plan to systematically investigate the extension
of BoxOpt to this scenario in future work.

Deploying BoxOpt in Large-Scale Networks: Deploying
BoxOpt in a large network may present several potential chal-
lenges. We discuss them and provide preliminary solutions one
by one. The first challenge is how BoxOpt can quickly collect
the network information (e.g., routing, bandwidth and policies)
of a large network and abstract them as linear inequalities. This
procedure requires communications between the NRR module
of BoxOpt and all routers/controllers of network, which may
cause long latency and hence is not scalable. One design we
have proposed to address this issue is precomputation and
projection [17], [19]. To use this design in BoxOpt, the NRR
module periodically collects network information from routers
and controllers to discover the abstraction of linear inequalities
for a set of flows between every pair of source and destination
routers. For example, in a network with only 10,000 pairs of
source-destination routers, one precomputed linear inequality
may be x1 + x2 + . . . , x10000 ≤ 100. When a user wants
to reserve resources for a set of flows, the NRR module
does not need to communicate with routers and controllers
for the information. Instead, it locally performs a projection
on the precomputed linear inequalities by only keeping the
variables representing the flows in the user request, and uses
the projected inequalities to interact with the ARO module for
computing the optimal resource reservation for user. In the
same example, if the user request only involves two pairs of
source-destination routers, say x1 and x3. The NRR module
can project the precomputed inequality to get x1 + x3 ≤ 100.
In our early evaluation [17], [19], we find that this design
improves the abstraction discovery delay in response to user
request by at least 2 times, and the periodic precomputation
latency is within seconds in a collaborative network with 200
member networks.

The second challenge is how BoxOpt copes with the large
number of linear inequalities to represent the network infor-
mation of a large network, since this affects the efficiency of
the membership oracle (ReMEM) in BoxOpt. One design we
have proposed to address this issue is to compress the large
set of linear inequalities into a smaller set representing the
same feasible region [17]–[19]. In particular, we develop a
polynomial-time redundant inequality removal algorithm that
given a large set of linear inequalities, computes the minimal
set of linear inequalities with the same feasible region. With
this algorithm, the NRR module can compress the projected
set of inequalities to a minimal set, so that the efficiency of the
membership oracle can be significantly improved. We evaluate
the performance of this algorithm using various real topologies
in TopologyZoo [39], and we find that it can remove over 40%
redundant linear inequalities in a large WAN network (e.g.,
∼70 routers), even when the number of flows in a request is
large (e.g., 100) [40].

The third challenge is how BoxOpt efficiently finds optimal
resource reservation for user requests when there are a large
number of requests in the network. Treating each request as
an independent one and using BoxOpt to find the optimal
resource reservation may be inefficient. To this end, we give a
couple of initial designs that use machine learning techniques
(e.g., neural network, Bayesian optimization and reinforce-

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

580 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

ment learning) to improve the efficiency of finding optimal
resource reservations of a new request by harvesting the
similarities between different requests. Although traditional
machine learning techniques are not suitable for finding the
optimal resource reservation for a given objective-resources
pair via the simple request interface (as discussed in Section I),
they have been proved useful for finding similarities between
samples and make accurate predictions [41]. First, BoxOpt can
incorporate an optimal resource prediction (ORR) module on
the network side of BoxOpt to extract features of past requests
(e.g., the source-destination pair, the users of requests, network
state, and the times of requests) and their optimal solutions as a
training dataset to train a deep neural network based classifier.
As such, when a new request comes, BoxOpt can redirect the
request to the ORR module, which uses the trained classifier
to predict the optimal resource reservation, and returns the
prediction to the user. The user can then decide whether to
accept and use this reservation or use it as a starting point for
the ARO module to search for a better reservation solution.
Second, BoxOpt can introduce a reinforcement learning based
search accelerator (SA) module on the user side. In particular,
it models the search history of the user’s previous requests
(e.g., the sequence of sampled requests before finding an
optimal resource reservation) as different state spaces, takes
an action to decide the next sample request so as to avoid
repeating similar searches for the new request, and observe the
efficiency change of finding the optimal resource reservation as
reward to further adjust the action. A systematic investigation
of applying these two machine-learning based modules to
improve the efficiency of BoxOpt is left as future work.

To summarize, in the above we discussed a series of issues
of related with deploying BoxOpt in large-scale networks
(i.e., network information collection latency, large amounts of
network information and large number of user requests), and
provided preliminary solutions to address them (i.e., precom-
putation and projection, minimal, equivalent linear inequality
compression and the use of machine learning techniques to
accelerate the processing of new requests based on request
history). We plan to investigate these designs in more detail
and integrate them into BoxOpt in future work. Moreover,
as we will show in the next section, our evaluation results
also demonstrate the potentials of BoxOpt being applied in
large-scale networks (i.e., seconds to find optimal resource
reservation vs. hours or days of large-scale dataset transfer).

V. PERFORMANCE EVALUATION

We implement a prototype of BoxOpt and evaluate its
performance on an operational federation network supporting
large-scale distributed science collaborations, and using real
traffic traces from recent science experiments. We first describe
our setup, followed by the detailed results.

A. Methodology

We implement three versions of BoxOpt, all of which use
the same ReSEP oracle presented in Algorithm 1 in the ARO
scout. The first version uses the ReOPT-EL algorithm in the
ARO controller, denoted as BoxOpt-ReOPT-EL, while the
other two use the ReOPT-RW and ReOPT-VC algorithms,
respectively, and denoted as BoxOpt-ReOPT-RW and BoxOpt-
ReOPT-VC.

We evaluate the performance of BoxOpt on the topology
from LHC Open Network Environment (LHCONE), a global
science network consisting of 62 institute and transit net-
works [42]. We randomly select a topology for each net-
work from the Topology Zoo [39]. Specifically, the topology
chosen for transit networks varies from 31 switches/routers
with 33 links to 49 switches/routers with 85 links. And
the topology chosen for institute networks (e.g., campus sci-
ence networks) ranges from 7 switches/routers with 6 links
to 21 switches/routers with 44 links. We then assem-
ble the connections and topologies from each network
to form a unified large science network, which reflects
the current practice in science data analytics federation
network.

We evaluate the performance of BoxOpt using the real
trace from the CMS experiment [43], a main source of data
traffic in LHCONE. In particular, we focus on a 7-day trace
from September 30, 2018, to October 6, 2018. This trace
consists of a total of 2215 resource reservation requests. The
number of flows in each request varies between 1 and 15.
Because the CMS experiment is one of the largest ongoing
distributed scientific experiments with complex, distributed
analytics across tens of geographically distributed locations,
we believe the trace is representative of complex data flow of
modern distributed applications.

B. Results

In our experiments, we set R as the maximum of link
bandwidth in the network topology (i.e., 10 Gbps) and r =
0.0001R. We run extensive experiments by choosing different
values of � and ρ and different utility functions. In what
follows, we present the results of one setting: maximizing total
throughput when ρ = 0.001 and � = 1

5r. Results of other
settings are highly similar as this setting, hence are omitted
due to page limit.

Correctness of BoxOpt: For each reservation request,
we compare the optimal resource reservation computed by
BoxOpt with the optimal solution to the problem util(x)
subject to K computed by a state-of-the-art optimization solver
(i.e., CPLEX [28]). We find that in all 2215 requests, all three
versions of BoxOpt output the same optimal solution as the
CPLEX solver does, i.e., we verify that BoxOpt has a 100%
correctness ratio.

Efficiency of BoxOpt: As illustrated in Figure 2 (Section III),
two critical bottlenecks deciding the efficiency of BoxOpt are
communication latency between the optimization oracle at the
ARO controller invoking the separation oracle at the ARO
scout, and the large number of invocations on the membership
oracle at the NRR module. In our experiment, we find that even
though the membership oracle is invoked for a large number of
times, its total invocation latency is negligible when compared
with the communication latency. As such, we use the total
communication latency to find the optimal resource reservation
for each request to represent the efficiency of BoxOpt, and
study the invocations times of ReMEM in later experiments.
Specifically, we assume the user is located at New York and the
network is in Los Angeles. For each invocation of ReSEP at
the ARO scout from the ARO controller, we assign it a round
trip time (RTT) randomly chosen from the statistic RTT data
collected in [44]. Then the communication latency to find the

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

XIANG et al.: OPTIMIZING IN THE DARK: LEARNING OPTIMAL NETWORK RESOURCE RESERVATION 581

Fig. 4. CDF of the communication latency of BoxOpt.

optimal resource reservation for a given request is the sum of
all RTTs incurred by corresponding ReSEP invocations.

Figure 4 plots the CDF of communication latency of all
requests in the experiment. We observe that for around 90% of
the requests, BoxOpt-ReOPT-EL is able to learn the optimal
resource reservation within 120 seconds. This is due to the
quadratic complexity of the ReOPT-EL algorithm.

In contrast, for 90% of the requests, BoxOpt-ReOPT-RW
is able to learn the optimal resource reservation
within 13 seconds, and its worst latency is less than 22
seconds. And BoxOpt-ReOPT-VC further has an efficiency of
learning the optimal resource reservation within 10 seconds
for 90% of the request and a worst latency of only 12 seconds.
This demonstrates the efficiency of BoxOpt to swiftly learn
the optimal resource reservation via the simple reservation
interface. Considering the lasting time of network resource
reservation (e.g., hours and days) and the amount of data
being transmitted (e.g., TBs), we draw the conclusion that
when using ReOPT-VC or ReOPT-RW, BoxOpt is highly
efficient for finding the optimal resource reservation (90% 13
seconds and 90% 10 seconds, respectively). If applications
relax the requirement of optimal resource reservation to
accept sub-optimal reservations, the efficiency of BoxOpt
can be further improved. We leave the investigation of this
optimality-efficiency trade-off as future work.

Figure 5 plots the detailed statistics on the efficiency of
different versions of BoxOpt to learn the optimal resource
reservation for requests with different number of flows, with
Figure 5d compares the average latency of different ver-
sions of BoxOpt. The increasing trend of the latency is
consistent with our complexity analysis in Theorems 3, 4
and 5, i.e., the latency increases quadratically for BoxOpt-
ReOPT-EL, and linearly with BoxOpt-ReOPT-RW and
BoxOpt-ReOPT-VC. We also note that in Figure 5d, we do
not include the average latency of BoxOpt-ReOPT-EL for
requests with more than 10 flows for the purpose of illustrat-
ing the performance difference between BoxOpt-ReOPT-RW
and BoxOpt-ReOPT-VC: BoxOpt-ReOPT-VC has the lowest
average latency among all three versions of BoxOpt.

Efficiency of ReOPT: We next study the efficiency of the
ReOPT oracle to learn the optimal resource reservation. To this
end, we count the number of ReSEP invocations (i.e., the
bottleneck operation of the ReOPT oracle) for each request.

Figure 6 shows the CDF of the number of ReSEP invo-
cations in different versions of BoxOpt. We observe that
for BoxOpt-ReOPT-EL, about 90% requests can be finished
within 1200 ReSEP calls, but the remaining requests can take
as many as 3000 ReSEP calls. This indicates that BoxOpt-
ReOPT-EL is practical for request with a small number of
flows.

Fig. 5. Efficiency of BoxOpt: total communication latency to compute the
optimal resource reservation.

Fig. 6. CDF of the number of ReSEP invocations.

In contrast, for 90% requests, BoxOpt-ReOPT-RW can
learn the optimal resource reservation within 130 calls on
ReSEP, and BoxOpt-ReOPT-VC further reduces this num-
ber to only 100 ReSEP calls. This indicates that BoxOpt-
ReOPT-RW and BoxOpt-ReOPT-VC is highly efficient and
scalable even for finding the optimal resource reservation for
requests with a large number of flows.

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

582 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

Fig. 7. Efficiency of ReOPT: number of ReSEP invocations to learn the
optimal resource reservation.

Fig. 8. CDF of the number of ReMEM invocations.

Figure 7a, Figure 7b and Figure 7c present the box plot
of the number of ReSEP invocations in three versions of
BoxOpt. To compare the difference, Figure 7d further plots
the change of average number of ReSEP invocations of
three systems over the number of flows in requests. We
observe that the number of ReSEP invocations increases
quadratically in BoxOpt-ReOPT-EL, and linearly in BoxOpt-
ReOPT-RW and BoxOpt-ReOPT-VC, which is consistent with

Fig. 9. Efficiency of ReSEP: number of ReMEM invocations to learn the
optimal resource reservation.

the complexity analysis in Section IV-D and the statistics
of Figure 5d. We also note that in Figure 7d, we do
not include the average latency of BoxOpt-ReOPT-EL for
requests with more than 10 flows for the purpose of illustrat-
ing the performance difference between BoxOpt-ReOPT-RW
and BoxOpt-ReOPT-VC: BoxOpt-ReOPT-VC has the lowest
average number of ReSEP calls among all three versions
of BoxOpt.

In addition, we observe that although BoxOpt-ReOPT-VC
provides the best overall average performance over BoxOpt-
ReOPT-EL and BoxOpt-ReOPT-RW, for requests with the
same number of flows, its variances of ReSEP calls is higher
than that of BoxOpt-ReOPT-RW. This shows that BoxOpt-
ReOPT-RW has a higher performance predictability, which is
important for large data analytics networks.

Efficiency of ReSEP: In the end, we study the efficiency of
the ReSEP oracle to infer the search space for ReOPT. To this
end, we count the number of ReMEM invocations (i.e., the

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

XIANG et al.: OPTIMIZING IN THE DARK: LEARNING OPTIMAL NETWORK RESOURCE RESERVATION 583

bottleneck operation of the ReSEP oracle) for each request.
Figure 8 plots the CDF of the number of ReMEM invocations
for all requests. We observe that for 90% requests, the total
ReMEM invocations required is within 40000 with ReOPT-VC
algorithm and within 50000 with ReOPT-RW algorithm, and
even 550000 with ReOPT-EL algorithm. This large number
demonstrates the necessity and benefits of putting ReSEP
(i.e., the ARO scout) with the network. Although it does not
reduce the total number of ReMEM invocations, considering
the applications’ need to find the optimal resource reservation,
the lasting time of network resource reservations (e.g., hours
and days) and the short time BoxOpt takes to find the optimal
reservation (e.g., seconds), the high invoking number of the
NRR module is an acceptable overhead. In addition, given
the long lasting time of reservations and the short time of
BoxOpt to find the optimal reservation, the probability of many
reservations competing to invoke the NRR module is low (e.g.,
none in the production trace used in the evaluation).

Integrating this observation on the large number of ReMEM
calls with the observation on the low latency and small number
of ReSEP calls from Figure 6 and Figure 4, respectively,
we can conclude that the design to put ReSEP on the network
side improves the efficiency of BoxOpt (i.e., the commu-
nication latency) by an average over 220 times, computed
by dividing the total number of ReMEM calls by the total
number of ReSEP calls of all experiments using ReOPT-VC
algorithms.

Figure 9a, Figure 9b and Figure 9c further break down
the statistics based on the size of requests and give the
box plot of the number of ReMEM invocations with three
versions of BoxOpt. Figure 9d gives the average number of
ReMEM invocations in ReSEP request. We observe that the
almost linear increase of ReMEM invocations is consistent
with Theorem 2. This demonstrates that asymptotically the
ReSEP algorithm (Algorithm 1) is highly scalable. And we
leave how to further reduce the increasing slope of the number
of ReMEM calls as future work.

VI. CONCLUSION

We investigate the feasibility and benefits for the user
to learn the optimal network resource reservation for the
user without exposing the private information of the network
(i.e., bandwidth capacity region) and the user (e.g., resource
orchestration policy) to each other. To this end, we design
BoxOpt, a novel, automatic learning system to efficiently
learn the optimal resource reservations through the simple
reservation interface of network resource reservation systems,
without exposing the private information of network or user.
We demonstrate its efficiency and efficacy through extensive
evaluation using real network topology and trace.

ACKNOWLEDGMENT

The authors thank Christian Bessiere, Haizhou Du, Kai Gao,
Max Del Giudice, Chris Harshaw, Amin Karbasi, Yin Tat
Lee, Geng Li, Yang Liu, John MacAuley, Harvey Newman,
Lam M. Nguyen, Salvatore Ruggieri, Mudhakar Srivatsa, Xin
Wang, Jingxuan Zhang, and Yan Zhu for their help during the
preparation of this paper.

Qiao Xiang dedicates this paper to Wei Liang, a close friend
from high school who recently passed away.

REFERENCES

[1] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in Proc. NSDI. Berkeley, CA,
USA: USENIX Association, 2012, p. 2.

[2] T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA:
O’Reilly Media, 2012.

[3] J. C. Mogul and L. Popa, “What we talk about when we talk about
cloud network performance,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 5, pp. 44–48, Sep. 2012.

[4] M. Campanella et al., “Bandwidth on demand services for European
research and education networks,” in Proc. IEEE 1st Int. Workshop
Bandwidth Demand, Nov. 2006, pp. 65–72.

[5] C. Guok and D. Robertson, “Esnet on-demand secure circuits
and advance reservation system (OSCARS),” in Proc. GridNets,
vol. 92, 2006, [Online]. Available: https://www.es.net/assets/ESnet-
Research/OSCARS/oscars-gridnets-20061001.pdf

[6] W. Johnston, C. Guok, and E. Chaniotakis, “Motivation, design, deploy-
ment and evolution of a guaranteed bandwidth network service,” in Proc.
TERENA Netw. Conf., 2011, pp. 1–14.

[7] B. Riddle, “Bruw: A bandwidth reservation system to support end-user
work,” in Proc. TERENA Netw. Conf., Poznan, Poland, 2005.

[8] X. Zheng, M. Veeraraghavan, N. S. V. Rao, Q. Wu, and M. Zhu,
“CHEETAH: Circuit-switched high-speed end-to-end transport archi-
tecture testbed,” IEEE Commun. Mag., vol. 43, no. 8, pp. S11–S17,
Aug. 2005.

[9] J. Sobieski, T. Lehman, and B. Jabbari, “Dragon: Dynamic resource
allocation via gmpls optical networks,” in Proc. MCNC Opt. Control
Planes Workshop, Chicago, IL, USA, 2004.

[10] The Large Hadron Collider. Accessed: Dec. 18, 2020. [Online]. Avail-
able: https://home.cern/topics/large-hadron-collider

[11] Oscars: On-Demand Secure Circuits and Advance Reserva-
tion System. Accessed: Dec. 18, 2020. [Online]. Available:
https://www.es.net/engineering-services/oscars/

[12] J. Lee et al., “Application-driven bandwidth guarantees in datacenters,”
in Proc. SIGCOMM, 2014, pp. 467–478.

[13] C. Bessiere, F. Koriche, N. Lazaar, and B. O’Sullivan,
“Constraint acquisition,” Artif. Intell., vol. 244, pp. 315–342,
Mar. 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0004370215001162

[14] R. Soulé et al., “Merlin: A language for provisioning network resources,”
in Proc. CoNEXT, 2014, pp. 213–226.

[15] K. Subramanian, L. D’Antoni, and A. Akella, “Genesis: Synthesizing
forwarding tables in multi-tenant networks,” in Proc. 44th ACM SIG-
PLAN Symp. Princ. Program. Lang. (POPL), 2017, pp. 572–585.

[16] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using sol,” in Proc. NSDI, 2016, pp. 223–237.

[17] Q. Xiang et al., “Toward fine-grained, privacy-preserving, efficient
multi-domain network resource discovery,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 8, pp. 1924–1940, Aug. 2019.

[18] K. Gao, Q. Xiang, X. Wang, Y. R. Yang, and J. Bi, “An objective-driven
on-demand network abstraction for adaptive applications,” IEEE/ACM
Trans. Netw., vol. 27, no. 2, pp. 805–818, Apr. 2019.

[19] Q. Xiang et al., “Fine-grained, multi-domain network resource abstrac-
tion as a fundamental primitive to enable high-performance, collabora-
tive data sciences,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage, Anal. (SC), 2018, pp. 5:1–5:13.

[20] Q. Xiang et al., “Toward optimal software-defined interdomain rout-
ing,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Jul. 2020,
pp. 1529–1538.

[21] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization
with unknown constraints,” 2014, arXiv:1403.5607. [Online]. Available:
http://arxiv.org/abs/1403.5607

[22] S. Ariafar, J. Coll-Font, D. Brooks, and J. Dy, “ADMMBO: Bayesian
optimization with unknown constraints using ADMM,” J. Mach. Learn.
Res., vol. 20, no. 123, pp. 1–26, 2019.

[23] R. S. Sutton et al., Introduction to Reinforcement Learning, vol. 135.
Cambridge, MA, USA: MIT Press, 1998.

[24] S. Miryoosefi, K. Brantley, H. Daume, III, M. Dudik, and R. E. Schapire,
“Reinforcement learning with convex constraints,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 14070–14079.

[25] P. Englert and M. Toussaint, “Combined optimization and reinforcement
learning for manipulation skills,” in Robotics: Science and Systems. Los
Altos Hills, CA, USA: The RSS Foundation, 2016.

[26] L. Lovasz, M. Grotschel, and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, 2nd ed. New York, NY, USA: Springer,
1993.

[27] Y. T. Lee, A. Sidford, and S. S. Vempala, “Efficient convex optimization
with membership oracles,” 2017, arXiv:1706.07357. [Online]. Available:
http://arxiv.org/abs/1706.07357

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

584 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

[28] (2018). ILOG CPLEX. [Online]. Available: https://www.ibm.com/
analytics/cplex-optimizer

[29] L. De Raedt, A. Passerini, and S. Teso, “Learning constraints from
examples,” in Proc. 32nd AAAI Conf. Artif. Intell. (AAAI), New Orleans,
LA, USA, 2018, pp. 2–7.

[30] S. Ruggieri, “Deciding membership in a class of polyhedra,” in Proc.
ECAI, 2012, pp. 702–707.

[31] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh, “Disjoint, partition
and intersection constraints for set and multiset variables,” in Proc.
Int. Conf. Princ. Pract. Constraint Program. Berlin, Germany: Springer,
2004, pp. 138–152.

[32] S. Ruggieri, “Learning from polyhedral sets,” in Proc. 23rd Int. Joint
Conf. Artif. Intell. (IJCAI), 2013, pp. 1069–1075.

[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[34] S. Bubeck and R. Eldan, “Multi-scale exploration of convex functions
and bandit convex optimization,” in Proc. Conf. Learn. Theory, 2016,
pp. 583–589.

[35] D. Bertsimas and S. Vempala, “Solving convex programs by random
walks,” in Proc. 34th Annu. ACM Symp. Theory Comput. (STOC), 2002,
pp. 109–115.

[36] P. M. Vaidya, “A new algorithm for minimizing convex functions over
convex sets,” Math. Program., vol. 73, no. 3, pp. 291–341, Jun. 1996.

[37] D. Julian, M. Chiang, D. O’Neill, and S. Boyd, “QoS and fairness
constrained convex optimization of resource allocation for wireless
cellular and ad hoc networks,” in Proc. 21st Annu. Joint Conf. IEEE
Comput. Commun. Societies, vol. 2, Jun. 2002, pp. 477–486.

[38] J. Rivera, C. Goebel, and H.-A. Jacobsen, “Distributed convex optimiza-
tion for electric vehicle aggregators,” IEEE Trans. Smart Grid, vol. 8,
no. 4, pp. 1852–1863, Jul. 2017.

[39] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[40] K. Gao, C. Gu, Q. Xiang, X. Wang, Y. R. Yang, and J. Bi, “ORSAP:
Abstracting routing state on demand,” in Proc. IEEE 24th Int. Conf.
Netw. Protocols (ICNP), Singapore, Nov. 2016, pp. 1–2.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[42] E. Martelli and S. Stancu, “LHCOPN and LHCONE: Status and future
evolution,” J. Phys., Conf. Ser., vol. 664, no. 5, 2015, Art. no. 052025.

[43] CMS Task Monitoring. Accessed: Sep. 26, 2017. [Online]. Available:
http://dashb-cms-job.cern.ch/

[44] (2018). Global Ping Statistics—WonderNetwork. [Online]. Available:
https://wondernetwork.com/pings/.

[45] Q. Xiang, H. Yu, J. Aspnes, F. Le, L. Kong, and Y. R. Yang, “Optimizing
in the dark: Learning an optimal solution through a simple request inter-
face,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 1674–1681.

Qiao Xiang (Member, IEEE) received the bache-
lor’s degree in information security and the bach-
elor’s degree in economics from Nankai Univer-
sity in 2007, and the master’s and Ph.D. degrees
in computer science from Wayne State University
in 2012 and 2014, respectively. He is a faculty
member with Xiamen University. He was previously
an Associate Research Scientist with the Depart-
ment of Computer Science, Yale University. His
research interests include software-defined network-
ing, resource discovery and orchestration in col-

laborative data sciences, interdomain routing, and wireless cyber-physical
systems. From 2016 to 2016, he was a Post-Doctoral Fellow with the
Department of Computer Science, Yale University. From 2014 to 2015,
he was a Post-Doctoral Fellow with the School of Computer Science, McGill
University.

Haitao Yu received the bachelor’s degree in com-
puter science in 2017. He is currently pursuing the
master’s degree with the Department of Computer
Science and Technology, Tongji University, China.
His research interests include software defined net-
working, programming language, and optimization
theory.

James Aspnes received the B.S. degree in math-
ematics, the M.S. degree in computer science and
engineering from MIT, and the Ph.D. degree in
computer science from Carnegie-Mellon University.
He is currently a Professor of computer science with
Yale University. His research emphasizes the use of
randomization to solve difficult core problems in the
theory of distributed algorithms. His recent work
has concentrated on tools for managing large-scale
loosely structured systems as found in peer-to-peer
networks and wireless sensor networks. These tools

include novel distributed data structures supporting efficient range queries
over large data sets scattered across many machines, new models of distrib-
uted computation that capture the limited resources of individual nodes in
sensor systems, and mechanisms for providing security and fault-tolerance
in large-scale systems with no restrictions on the arrival of new and possibly
malevolent participants. His interests also include related problems in biology,
economics, and learning theory.

Franck Le received the Diplome d’Ingenieur degree
from the Ecole Nationale Superieure des Telecom-
munications de Bretagne in 2000, and the Ph.D.
degree from Carnegie Mellon University in 2010.
He is currently a Research Staff Member with the
IBM T. J. Watson Research Center. His current
research interests lie at the intersection of the Inter-
net of Things, artificial intelligence, and distributed
systems and networks.

Chin Guok received the B.S. degree in computer
science from the University of Pacific in 1991,
and the M.S. degree in computer science from The
University of Arizona in 1997. He joined ESnet
in 1997 as a Network Engineer, focusing primarily
on network statistics. He was a Core Engineer in
the testing and production deployment of MPLS and
QoS (Scavenger Service) within ESnet. He is the
Technical Lead of the ESnet On-demand Secure Cir-
cuits and Advanced Reservation System (OSCARS)
project which enables end-users to provision guar-

anteed bandwidth virtual circuits within ESnet. He also serves as a Co-Chair
of the Open Grid Forum On-Demand Infrastructure Service Provisioning
Working Group. His research interests include high-performance networking
and network protocols; dynamic network resource provisioning; network
tuning issues; and hybrid network traffic engineering.

Linghe Kong (Senior Member, IEEE) received the
B.Eng. degree in automation from Xidian University
in 2005, the master’s degree in telecommunication
from TELECOM SudParis in 2007, and the Ph.D.
degree in computer science from Shanghai Jiao
Tong University in 2012. He is currently a Research
Professor with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University.
Before that, he was a Post-Doctoral Researcher
with Columbia University, McGill University, and
Singapore University of Technology and Design. His

research interests include wireless networks, big data, mobile computing, and
the Internet of Things.

Y. Richard Yang (Senior Member, IEEE) received
the B.E. degree in computer science and technology
from Tsinghua University in 1993, and the M.S.
and Ph.D. degrees in computer science from the
University of Texas at Austin in 1998 and 2001,
respectively. He is currently a Professor of com-
puter science and electrical engineering with Yale
University. His research is supported by both U.S.
government funding agencies and leading industrial
corporations, and spans areas including computer
networks, mobile computing, wireless networking,

and network security. His work has been implemented/adopted in prod-
ucts/systems of major companies (e.g., AT&T, Alcatel-Lucent, Cisco, Google,
Microsoft, and Youku), and featured in mainstream media including Econo-
mist, Forbes, Guardian, Chronicle of Higher Education, Information Week,
MIT Technology Review, Science Daily, USA Today, Washington Post, and
Wired, among others. His awards include a CAREER Award from the National
Science Foundation and a Google Faculty Research Award.

Authorized licensed use limited to: Yale University. Downloaded on June 03,2021 at 11:57:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

