
Towards Cloudware Paradigm for Cloud Computing
Dong Guo1, 2, Wei Wang1, 2*, Jingxuan Zhang1, 2, Guosun Zeng1, 2, Qiao Xiang3, Zerong Wei

1. Department of Computer Science and Technology, Tongji University, Shanghai 200092, China

1, 2

2. The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Shanghai 200092, China
3. Department of Computer Science, Yale University

* corresponding author: wwang@tongji.edu.cn

Abstract—The rise of cloud computing and the Internet not
only bring change on the data center, but also lead to
transformation in software development, deployment, operation
and maintenance. With the continuous improvement of the
current cloud computing and the internet environment, how to
make better use of cloud computing platform, and how to serve
the users is a popular field of computer software is a big
challenge. In recent years, with the further development of
concepts like micro-services and containers, software will further
step forward to the Cloudware. This paper discusses how to
deploy Cloudware in cloud environment, and proposes a new
method to construct the PaaS platform which can directly deploy
software on the cloud without any modification, while achieving a
new model by the browser services. By using micro-service
architecture, we achieving good performance of extension,
scalable deployment, faults tolerance and flexible configuration.
Finally, we evaluate this method by constructing a complete
framework and carrying out an interactive delay experiment that
directly focuses on users’ experience, which also shows the
effectiveness of this method.

Keywords—Cloud computing; Cloudware; Container; User
experience

I. INTRODUCTION

The rapid development of cloud computing and Internet
technology not only promotes the progress of computer
software and hardware, but also makes people change the way
of using software. The concept of cloud computing makes the
Internet technology reach its climax, and a lot of traditional
industries are in the transition to the Internet mode to improve
social efficiency, and further affecting people's work and life
[1]. In this environment, the traditional software deployment
paradigm will also requires transition.

How such a transition should proceed is currently an
important research direction of software evolution and software
engineering. First, the idea of IT services as resources is
becoming more and more popular, showing the trend of
everything as a service (XaaS). Users can easily enjoy the
different levels of software as a service through networks, and
such services have become the essence and core concept of
cloud computing. IaaS, PaaS and SaaS are some representative
service models, which have been widely studied and deployed
[2]. At the same time, with the continuous deepening of
virtualization and container technology, e.g., Docker[3], on
behalf of the containers, gradually infiltrated into cloud
computing at all levels of the system from the development to
the operation and maintenance of the whole process. The micro
services architecture has become an architectural style and

design patterns. It advocates the mode to split the application
into a series of small services, in which each service focuses on
a single business function, running in a separate process, thus
making the service operating with clear boundaries. Light
communication mechanisms can also be adopted, such as
HTTP/RESTful, to meet the needs of business and users.
Micro-service, as an architecture model of transformation, is
not accidental. It is a reflection of the architecture model,
development, operation, and the maintenance methodology.

On the other hand, with the continuous optimization of the
network environment, especially the rising of 4G/LTE related
wireless communication technology, it is easier for users to
gain high-speed access to the Internet[4], making it easy for
traditional software gradually migrating to the cloud. For users,
the browser is the main entrance to the Internet and browser
technology is also in rapid development, from the simple
analysis of the HTML file to the new HTML 5, CSS 3[5] and
web OS[6] etc. This provides a solid foundation for software in
cloud migration and web access. Access to software services
through the browser will be an important direction of future
software development, and the cloudlization of software will
also become one of the important forms of software in the
future.

In summary, cloud computing provides environment for
micro services to build a software and the runtime environment.
Meanwhile, utilizing the advanced Internet technology to
realize web-based software will be the direction of software
development and the tendency. In the cloud, the software will
no longer be a simple code entity, but a series of services
delivered to the users through the Internet. In this paper, we
refer this paradigm of Internet plus software as Cloudware. We
believe it will become the main form of future software
paradigm.

In order to verify the feasibility of Cloudware, this paper
proposes and develops a PaaS platform based on the micro
service architecture and container technology. In this platform,
the traditional software can be directly deployed on the cloud.
And users can connect to the cloud through the Internet
technology, using the browser to interact, achieving the
Internet + software completely.

Section 2 introduces the concept and features of Cloudware.
Section 3 illustrates the details of our proposed Cloudware
PaaS architecture. Section 4 describe a QoE testing framework
for the Cloudware PaaS platform. Section5 describe the
experiments and result analysis of our method, and Section 6
concludes this paper.

2016 IEEE 9th International Conference on Cloud Computing

2159-6190/16 $31.00 © 2016 IEEE

DOI 10.1109/CLOUD.2016.29

164

Authorized licensed use limited to: Yale University. Downloaded on March 12,2022 at 07:01:47 UTC from IEEE Xplore. Restrictions apply.

II. BASIC CONCEPT OF CLOUDWARE

Software are everywhere nowadays. With the development
of cloud computing and virtualization, more and more software
tend to be deployed on cloud, making it free for the local
resource. This is actually a form of service, and we call this
diagram of software Cloudware. It is a specific form of SaaS,
but the idea is different in that Cloudware relocates the local
OS and runtime environment to the cloud without modification,
and the users can communicate with it through a unified
interacted platform.

Definition 1: Cloudware is a software paradigm suiting for
scalability and on-demand service under cloud environment,
which makes direct transportation of software in the cloud in a
convenient way, and users can get access to it through any
browsers.

A. Features of Cloudware

To be specific, Cloudware has the following features:

Running on the cloud. All the traditional software on
desktops and the necessary resource are deployed on the cloud.

Flexible resource configuration. Cloudware can adjust its
using of resource at any time based on the type of the service,
like offering multi-cores for computing-intensive tasks.

Rendering on the cloud. Cloudware renders the graphic
tasks on the cloud and send the outcome back to the local users.
The process is independent on the local hardware.

Fast boot. The time for starting a Cloudware should be
short enough, and it is possible to boot large software in
seconds.

Interaction with internet. All the services are interacted by
internet, making sure that all the data and runtime status are
saved on cloud. The only thing for terminals to do is to set
catch system.

Unified platform. Cloudware need a unified platform to
communicate with each other on any local terminal, making
sure that different hardware can run the same Cloudware.

The transparent communication. Because of all the data
and status are saved on cloud, a transparent communication
system should be built to connect different terminal file system.

B. Key techniques in Cloudware

In the early time of cloud computing, the characteristics we
proposed above are almost impossible. However, with the
rising of the container technology, GPU virtualization
technology, 4G network technology and HTML 5 front-end
interactive technology, achieving such functions becomes
possible. In particular, the functionality of Cloudware depends
on the following related technologies:

Virtualization. Virtualization can provide a virtual running
environment on the cloud, offering a different platform for the
cloud operating system, its dependent libraries and components
services.

Cloud interactive rendering technology. Cloud interactive
rendering technology is putting the rendering processes one the

cloud, which will generate the RGBA image coding for
streaming data format. The data then transmitted to the
terminal through network and decoded directly after the
process. Terminal interaction events such as mouse and
keyboard events are sent to the cloud through network to
realize the interaction between clouds rendering, which is
shown as Figure 1.

Container. Container is a popular lightweight virtualization
technology in recent years, which launches a mirrored
instances within a few millimeters and occupies only a few
additional resources. The container can be achieved by
applying the rapid deployment with the local desktop software.
At the same time, using containers such as Docker can easily
realize micro service, and further improving the cloud
deployment flexibility.

Media stream data compression. In order to improve users’
experience, to reduce the delay of interaction as far as possible,
and to ensure remote rendering output frame quality, the real-
time interaction and streaming media data compression are
necessary. Techniques such as widely used H.264[9], H.265[10]
and Webm[11], is the key technology to improve the cloud
interaction user experience.

Terminal interaction. The Cloudware mainly running on
the cloud, thus the terminal only needs a unified interactive
platform. The best choice to achieve this is to use the browser,
which can adapt to the different platforms. At the same time,
with the development of HTML5, CSS3 and other technologies,
browser's processing and interactive capabilities has greatly
expanded, laying a solid foundation for the construction of a
unified interactive platform for Cloudware.

Fig. 1 Rendering
interactive architecture

Fig. 2 Interactive
principle of Cloudware

C. The development, deployment and operation mode of
Cloudware

Development. In traditional software development process,
developers need to build their own corresponding software
development environment, such as IDE and compiler tool
chain. With the rising of GIT and task management systems,

165

Authorized licensed use limited to: Yale University. Downloaded on March 12,2022 at 07:01:47 UTC from IEEE Xplore. Restrictions apply.

Cloudware development can follow cloud development
processes, which using cloud based IDE and compiler to
complete the entire development services. At the same time,
the cloud collaborative software is used to carry out the
tracking task, from the view of code writing and software
engineering to cloudalize the software development process.

Cloud development should also follow the concept of
micro-service software style, which is to divide the software
into different components, and to make it convenient for
testing process of continuous integration. The container, like
Docker, can provide a reusable operating environment, flexible
resource allocation and convenient integration test method
especially for the teamwork. In the development process of
Cloudware, calls of the function is no longer like traditional
software as the library operating system calls, but to the micro
service. Cloudware development should be oriented to micro
service component form, and should not depend on the specific
operating system and hardware architecture.

Deployment. The deployment of Cloudware is actually
micro service deployment. Currently Docker, as the
representative of the micro service container technology, is
becoming more and more mature. Docker provides a series of
container deployment tools for developers to carry out a novel
and convenient software integration test method.

The cloud deployment should be carried out as the form of
service, which means that different component can be deployed
separately, providing downward compatible service. This
ensures the continuous operation which is a basic idea of cloud
computing.

Operation mode. Cloudware reflects as micro service in the
design process. The difference between Cloudware and
traditional software is that the body of Cloudware runs on the
cloud, and that of traditional software on the client. Thus for
the Cloudware, how to interact with users is a key problem
here, especially for the desktop software. Because the main
body of the cloud is running on the cloud, with computing and
storage on the cloud server, the client only needs an interactive
environment. In recent years, software Weblization is a kind of
trend of software evolution. Cloudware can be regarded as a
browser to provide interactive services components, but its
operation is on the client side. Thus the client is only dependent
on the browser, and it does not need to install GL, JDK, .Net,
and other similar runtime.

Browser interaction is actually an input and output
visualization process, which only need things like mouse and
keyboard. Input is sent to the cloud server and return to the
client for rendering [5], which can achieve the same effect as
the local software. The specific interaction process is shown in
Figure 2.

Cloud services mainly consists of three separate micro-
services constitute: X broker, Xserver and Application.
Application can also be constituted by a plurality of additional
micro-services. Application and Xserver communicate through
X11 protocol, which will render the request to Xserver. Then
Xserver will send mouse and keyboard events to the
application, maintaining a window state synchronized to the

client's browser and achieving browser and Xserver event and
rendering synchronization.

In this way, users can use the same software as using local
Cloudware, but they do it with the browser window manager.
At anytime, anywhere it can return to the last state, without
depending on the client's operating system and running state.

III.CLOUDWARE PAAS PLATFORM ARCHITECTURE

In order to verify the technical conditions on the current
cloud, this paper presents a Cloudware of PaaS platform based
on micro-service architecture. It is a platform for the
Cloudware development, testing, deployment and maintenance,
both for developers and users. The Cloudware PaaS platform
overview architecture is shown in Figure 3.

Fig. 3 The overall architecture of Cloudware

A. The architecture of Cloudware PaaS

From Figure 3, we can see that three main parts make up
the whole Cloudware PaaS platform architecture: Container
Service, X Service and Web Service. Container Service
provide environment of applications. Each application is
encapsulated as an image of Docker, which will get storage in
Container Pool. C broker is responsible for managing the
lifetime of different containers and for communicating with X
Service; X Service provides Xserver services, and
communicates with both Container Service upward through
X11 protocol and Web Service downward through TCP
protocol. X broker is responsible for Xserver’s lifetime; Web
Service provides interaction and data service, which can be
divided into two independent parts: Frontend web and Backend
API. The Frontend web will call interface which is in the form
of Restful, supported by the Backend API. Data interaction is
done by Backend API and database. Moreover, because
interactions of applications have its own status while Http does
not, the WebSocket [7] Server in Web Service realizes the
communications between X Service and explorers.

166

Authorized licensed use limited to: Yale University. Downloaded on March 12,2022 at 07:01:47 UTC from IEEE Xplore. Restrictions apply.

B. The control plane and data plane

The communication process of different services of
Cloudware PaaS platform is shown as Figure 4.As the figure
shown, c1-c5 is the tunnel of control plain, and d1-d6 is that of
data plain. The main goal of control plain is to control the
lifetime of Cloudware such as running and restart. C1 is
responsible for calling Backend API for users which is based
on Http Restful API [6]. For Cloudware PaaS platform, the
main request includes X Service requests (events like adjust
resolution or keyboard) and Container Service requests (events
like running application and so forth). It communicates with X
manager and C manager through c2 and c3 that is based on
TCP. X manager controls Xorg [8] programs through libraries
like Xlib or XCB, while C manager controls Docker by using
API offered by Docker and corresponding language binding.

Fig. 4 Control plain and data plain

The data plain mainly focus on data flow in interaction
level. D1 is responsible for communications between explorers
and Websocket Server. It sends input from keyboard and
mouse to Websocket Server through Websocket protocol and
Websocket Server send output from Cloudware to the display.
D2, which is based on TCP protocol, is the interaction between
Websocket Server and X Service. It sends events and images to
X Transmitter for further process.

D3 is interaction between X Transmitter and Xorg. X
Transmitter sends events form mouse and keyboard to Xorg,
using libraries like XCB and Xtest extension, meanwhile send
changed images from caches which have been compressed to
Websocket Server. And Websocket Server send it to the
terminal display. For faster getting images, X Transmitter
shares its memory With Xorg to get corresponding bit images.
D4 is the data tunnel between X11 client and Xorg, which is
realized by X11 protocol. D5 is the data tunnel of clipboard
extension, which is used to realize the data copy between client
and Cloudware. Data of client can be sent through d5 to

clipboard broker, finally send to the clipboard caches of
corresponding Cloudware through d6.

C. Internal protocols

Since Cloudware Hub itself has taken the design of micro-
service architecture, the communication problems between
micro-services is the key to the achieve service portfolio. To
achieve high efficiency under loosely coupled communication,
this paper design many sets of communication protocols
between Cloudware components, including CDP (Cloudware
Display Protocol) and Webftp agreement as shown in Figure 5.

Fig. 5 Cloudware micro-service communication protocol

Different services communicate with each other mainly
through TCP, UDP, HTTP, and Websocket communication
protocol. TCP protocol is mainly used for two-way
communication services internally; UDP protocol is used to
transmit H.264 compression; HTTP protocol is used to access
the API and external files; Finally Websocket agreement is
used to implement two-way communication process between
browser and server.

In the whole protocol architecture, CDP protocol and
Webftp agreement is special for the Cloudware, where CDP-
compatible binary protocol is a set of cloud-piece display
protocol X11 protocol, whose main task is to carry out UDP
encapsulation, and Webftp agreement is set of file transfer
protocol running on the Websocket protocol, achieving
transparent access to the cloud and local system [14].

D. The advantages of Cloudware PaaS

Due to the adoption of the micro-service architecture, the
Cloudware decomposes a single application into a set of
focused services, each of which is according to a component

167

Authorized licensed use limited to: Yale University. Downloaded on March 12,2022 at 07:01:47 UTC from IEEE Xplore. Restrictions apply.

with the function of independent compilation, deployment and
extension. Cloudware PaaS platform has some advantages
when compared with the single architecture:

The limited complexity. The decomposition in the
application reduces the complexity of the original endless
accumulation. Each micro-services focus on a single function,
and articulate the service boundary through well-defined
interfaces. Due to small size and low complexity, each micro-
services can be controlled by a small development team, which
is easy to maintain.

Independent deployment. Since the micro-services have an
independent running processes, each micro-services can also
be deployed independently. When a cloud service are changed
without compiling, there is no need to deploy the entire
application. Composed by the micro-service application
making it more efficient and with less risks, ultimately shorten
the delivery cycles.

Flexible technology selection. By micro-services
architecture, technology selection is decentralized. Each team
can make their decision according to the status and
development of its own service industry, having the freedom to
choose the most suitable tools for the development. Since each
Cloudware is relatively simple and low-risk when you need to
upgrade the face, or even completely reconstructing it is also
feasible.

Faults tolerance. When a failure occurs in the traditional
architecture of a single process, it is likely result in diffusion,
making the global application crashed. In the micro-services
architecture, the fault will be isolated in a single Cloudware
service. If designed well, other members can retry to achieve
application-level fault tolerance.

Scalability. Single application architecture can achieve
scale by copying the entire application to a different node.
When different components of Cloudware elements are
different in expansion needs, micro-service architecture will
reflect its flexibility because each Cloudware can be expanded
independently

While the micro-services architecture brings many
advantages, it must be admitted that to build, to deploy and to
maintain a distributed micro-services system is not easy. Based
on the proposed pieces of PaaS cloud micro-services, the light
containers provided by application-oriented virtualized runtime
environment provide an ideal environment for the micro-
services. Similarly, the cloud services based on container
technology will greatly simplify the integration, deployment,
operation and maintenance of the entire process, so as to
promote large-scale Cloudware element in the cloud-based
practice.

IV.QOE TEST FRAMEWORK AND USER EXPERIENCE MODEL

In order to evaluate and optimize the Quality of Experience
(QoE) of the Cloudware systems, we must be able to measure
the performance of Cloudware elements. Performance analysis
for Cloudware systems mainly have following challenges: 1)
objectivity, some of the traditional performance measurement
methods only concerned part of the system, not the

performance of the overall objective response; 2) accuracy,
some measurements are usually performed to measure system
performance, but not considering the user's sensory
experiences.

Similar performance evaluation method focused on the
study of virtual desktop infrastructure (VDI) system [16], but it
is always poor at the users’ experience because of too many
factors affecting its performance. Previous studies focus on
thin client [17, 18]. It cannot be applied to the proposed cloud
member systems because of differences in application
scenarios.

To solve this problem, and to get more objective and more
accurate reflection from the users, this section starts with the
Cloudware client, modeling the user experience and putting
forward a kind of new test methods for the cloud element
system performance. The method uses means of an user
behavior control language, simulating directly on the client.
This paper also use this method to build a Cloudware
performance testing framework and to test the Cloudware
client performance. Through a number of qualitative and
quantitative analysis, the method will be proved to be valid and
feasible.

A. Simulation of user behaviors and collection of system
status

This paper presents a User Motion Controlling Language
(UMCL) reference by the concept of distributed computing
load simulation, generating Desktop Input controlling stream to
simulate user behavior. This is divided into four parts: the
application task definition, mouse smoothing, random thinking
delay and operation repeatability. The user's behavior consists
of a sequence of application tasks, and each event may be a
mouse movement, keyboard input, etc. Mouse events are the
most important Cloudware system events. The definition of
mouse events are of two kinds: moving operation and key
operation. Moving operation sends screen coordinate point to
the mouse device file, so the mouse can move to the specified
location on the screen. According to Fitt's Law, the users’
moving mouse, the target object, the time it takes to move from
the T and D and the target's size S has the following
relationship:

 � = � log(
�

�
+ 1) (1)

A is a constant number. Thus we have the relationship
between D and T:

 � = e
�

� 	 1 (2)

On the other hand, during the execution of the application,
this article also monitors the network and the resource
utilization of Cloudware system. These data reflect the real-
time status of Cloudware systems, and they will indirectly
reflect the client performance. For the information, the test
framework can examine the following three parts: network
monitoring, system monitoring, system resource utilization and
hardware related information monitoring.

Network Monitoring is the main method for measuring
Cloudware system performance. In this test, the network traffic

168

Authorized licensed use limited to: Yale University. Downloaded on March 12,2022 at 07:01:47 UTC from IEEE Xplore. Restrictions apply.

is monitored by a proxy agent. The flow agent monitors two
things through socket proxy: monitoring the flow generated by
the protocol transmission, and the operation type of analytical
protocol.

Monitor system resource utilization is mainly responsible
for the collection of present status, which is a commonly used
measurement of system performance. Resource utilization
monitoring the following three points: CPU utilization,
memory utilization, and I / O access request (including disk
read and write conditions and network literacy situation). This
article also records the system resource utilization of both
client and server hosts. These information requested by the
timing controller program to a shorter interval periodic
feedback from the host to the controller. The controller
behavior of data recording is to ensure the consistency of the
clock interval. This ensures that the state information on
different hosts can be simultaneously requested. Resource
monitoring service uses a Restful architecture on the client
operating system and server operating system, which are open
to provide resources to monitor the XML-RPC service, and
then timed XML-RPC requests issued by the monitoring thread
controller, obtaining system resources utilization of data. This
design has a good scalability because developer can easily
monitor service through RPC resources.

B. Interactive influence model

In order to modeling user interaction events, this paper
models the Cloudware systems based on task driven and
respond time. Here are the explanation of these two basic
model.

Task driven modeling. This paper argues that in the
computer interactive system, user's behavior is driven by tasks.
It is also applicable in Cloudware systems. To build this model,
we first introduce the following concepts:

Application: we consider user's behavior is always made up
by a series of application session. We call the complete session,
namely from the start to the end of a program, an Application.

Task: a logical related action series in a session is called
Task. Application is always made up by tasks that can be
divided into simpler task.

Motion: The smallest task is made up by actions that cannot
be divided, which is according to a direct event, including
mouse moving, mouse clicking and keyboard event, what we
call a motion.

Thinking delay: the time used by user on thinking is called
thinking delay.

Reaction delay: when doing motion, the intervals between
these motions are called reaction delay.

The model should satisfied the following two principle: 1)
Operations of different Applications should be logical and time
independent. 2) The reaction time of users are always fixed.
We can see that Application is always self-closed. After a
session of an Application, the desktop status should be the
same as before so that the operation independence can be
ensured. Every Application forms a tree in task context, whose
root is the session of Application and the node is a task. We

call it an Application Task Tree. Figure 6 show such tree of a
web task.

Fig. 6 Web task tree

This tree shows a session called Surfing which do a series
of simple task: starting the browser, opening the link, browsing
the web, submitting the table and finally closing the browser.

Reaction time modeling. This need to record the time
point of interactive event. The whole process is shown as
Figure 7.

Fig. 7 User interaction process

t0 ~ t1 and t4 t5 is the dealing time of client; t1 ~ t2 and t3
~ t4 is the transmission time; t2 and t3

����� = �� 	 �� (3)

is computing time of
servers. The reaction time is a key factor affecting users’
experience, which can be calculated as follow:

The model above can only describe a simple user
interaction, like mouse double-clicking and so on. In fact, a
user’s event request will generate a request series on server, as
shown in Figure 8.

Fig. 8 Server interaction process
In this case, only calculating Latency is meaningless. We

should monitor the following three indexes: The frequency of
screen updates (FPS) that reflect the smoothing, the longest
delay between two images(LatencyMax) that reflect the
waiting time and the total update latency (LatencyTotal) that
reflect the total waiting time. The model above is not good
enough in all the cases, but it is satisfied in performance testing.

V. PERFORMANCE EVALUATION

This section uses the testing framework built on the above
section to test the Cloudware platform for the actual user
behavior simulation and we carry out statistical analysis and
modeling based on these results, the cloud file system delay
interactive performance analysis. Finally we analyze the delay
performance of interactive events.

169

Authorized licensed use limited to: Yale University. Downloaded on March 12,2022 at 07:01:47 UTC from IEEE Xplore. Restrictions apply.

A. Running environment of Cloudware PaaS

Cloudware PaaS platform itself provide micro services
environment. To achieve scalable deployment, faults tolerance
and flexible configuration, we base our system on IaaS. To test
the validity, we make our Cloudware PaaS Platform prototype
system, namely CloudwareHub, run on two cloud hosts with
two cores, 4GB memory and 20GB disk. Web Service runs on
one of them and can be accessed by www.cloudwarehub.com.

X Service and Container Service runs on another hosts to
improve the efficiency of communication between Container
and Xorg, as shown in Figure 9.

Fig. 9 Web Service runtime architecture

Container Service is based on Linux with Ubuntu
Server14.04, Docker tools, Xorg devices and programming
libraries. Parts of Cloudware brokers consist of C manager and
X manager, managing the Xorg and Docker internally and
providing TCP externally. All the systems above are deployed
on Ucloud[15], as shown in Figure 10.

Fig. 10 X Service and Container Service runtime

B. Experiments Evaluation Framework based on UMCL

The test process based on the above ideas can be divided
into three parts: user behavior modeling, experiment data
collecting and quantity analysis of user experience.

In a conventional Cloudware system, the client's behavior
can be abstracted into independent application tasks sequence.
Due to mutual independence between applications, we can
model user behaviors separately for different types of
application and can characterize the performance of the main

Metrics. This section examines several common scenarios of
Cloudware: Web browsing Cloudware, video player
Cloudware and text editor Cloudware. These three application
are of the largest proportion among users choices. Therefore,
we test them to get description of user behaviors. We use
UMCL method proposed in Section.4 to describe different
types of applications, as shown in Figure 11 which represents a
text edit task tree structure.

Fig. 11 Text edit task tree structure

With the UMCL tools, after testing user behavior, the paper
collected for incident response time for statistics proposal. The
main elements of the statistical process is to record the
response time. By analyzing it, we may learn the response time
variety made by the Cloudware system.

C. Experiments Study of Interactive delay

To test the experience of Cloudware, we carry out the
interaction delay experiment in this section. Because of the fact
that Cloudware is based on the internet, which means that the
internet environment is highly related with the experience. Bad
internet environment will lead in poor user experience.

We record the average delay from the click of keyboard to
the complete rendering to browser, as shown in Figure 12.

Fig. 12 Delay in different bandwidth

We can see that the delay is fixed when the amount of data
is not big and TCP contribute most to the delay because of the
memory copy. The delay can be ignored when the bandwidth is
larger than 5Mbps.

Meanwhile, we choose five Cloudware with different
rendering complexity to test the average delay including Gedit,
Eclipse, Rstudio, Libreoffice Impress and Supertuxkart, getting
the average frame size in one minute, as shown in Figure 13.
Figure 13 shows that rendering complexity contributes to the
delay, but not the lineal relations primarily because the
rendering time and the delay caused by data compression on
the cloud do not lineally related with the final frames. But in a

170

Authorized licensed use limited to: Yale University. Downloaded on March 12,2022 at 07:01:47 UTC from IEEE Xplore. Restrictions apply.

bigger context, delay will be larger with more complex render
process.

Fig. 13 Interactive delay(ms) in different rendering
complexity and different server network

Therefore, we further test the delay of rendering in different
terminal internet bandwidth. We choose three Cloudware as
Gedit, Eclipse and Rstudio, shown as in Figure 14.

Fig. 14 Interactive delay(ms) in different rendering
complexity and different terminal network

Figure 14 shows that the internet environment of terminal
affect the user experience a lot. A bad internet environment and
large amount of data will lead in TCP delay.

We can see that the user experience is decided by multiple
factors, and the key is to improve internet quality and to reduce
rendering data transmission. How to solve the original delay
and keep a satisfied user experience is the key direction of
future research.

VI.CONCLUSION

The development of cloud computing not only leads the
reformation of data center, but also affects the traditional
methods on developing, deploying and running software, and
further on the way of using it. Under this circumstance,

deploying software as Cloudware will be the main stream. The
thinking that cloud is service will promote the micro-service
design model and make it easy to be adjusted for cloud. From
the users’ perspective, Cloudware is the trend, which can
directly offer services to them. We believe that Cloudware will
be the main application and developing model in the future.

VII. ACKNOWLEDGMENTS

This work was supported by the Program of Shanghai
Academic/Technology Research Leader (15XD1503600), the
Open Project Program of the State Key Laboratory of
Computer Architecture (Institute of Computing Technology,
Chinese Academy of Sciences, CARCH201408).

REFERENCES

[1] Serrano N., G. Gorka, H. Josune, Infrastructure as a Service and Cloud
Technologies, IEEE Software, 2015, 32(2): 30-36.

[2] Stefan W., Eddy T., Wouter J., Comparing PaaS offerings in light of
SaaS development, Computing, 2014, 96(8): 669-724.

[3] Boettiger C. An introduction to Docker for reproducible research[J].
ACM SIGOPS Operating Systems Review, 2015, 49:71-79.

[4] Mei H., Huang G., and Xie T., Internetware: A Software Paradigm for
Internet Computing, IEEE Computer, 2012, 45(6): 42-47.

[5] Mei H., Huang G., Xie C. T. Internetware: A Software Paradigm for
Internet Computing, IEEE Computer[J]. 2012, 45(6): 26-31.

[6] Vahdat A., Anderson T., Dahlin M., et al. Webos: Operating System
Services For Wide Area Applications[J]. Proceedings of the Seventh
IEEE Symposium on High Performance Distributed Systems, 1997:52 -
63.

[7] CloudwareHub, http://www.cloudwarehub.com [OL], 2015.
[8] Stefan W., Eddy T., Wouter J., Comparing PaaS offerings in light of

SaaS development, Computing[J], 2014, 96(8): 669-724.
[9] Gary J. Sullivan, , Jens-Rainer Ohm, , Woo-Jin Han, et al. Overview of

the High Efficiency Video Coding (HEVC) Standard [J]. IEEE
Transactions on Circuits and Systems for Video Technology, 2012,
22(12): 1649 - 1668.

[10] Lu Y, Zhang Q, Wei B. Real-time CPU based H.265/HEVC encoding
solution with x86 platform technology[C]// Computing, Networking and
Communications (ICNC), 2015 International Conference on. IEEE,
2015: 418 - 421.

[11] Bankoski J. Intro to WebM.[C]// International Workshop on Network &
Operating Systems Support for Digital Audio & Video. ACM, 2011: 1-2.

[12] Bansal N, Harchol-Balter M, Schroeder B. Size-Based Scheduling to
Improve Web Performance.[J]. ACM Transactions on Computer
Systems, 2003, 21(2): 207-233.

[13] Richardson L, Ruby S. RESTful Web Services[B]. O’reilly Media Inc,
2007.

[14] FUSE. https://github.com/libfuse/main [OL], 2015. 9.
[15] Ucloud. http://www.ucloud.cn [OL], 2015.
[16] Wang J, Liang. Survey of Virtual Desktop Infrastructure System, IEFT,

2011.
[17] Albert M. Lai , Jason Nieh, On the Performance of Wide-Area Thin-

Client Computing[J], ACM Transactions on Computer Systems, 2006,
24(2): 175–209.

[18] Nieh J, Yang S J, and Novik N. Measuring thin-client performance using
slow-motion benchmarking[J]. ACM Transactions on Computer
Systems, 2003, 21: 87–115.

171

Authorized licensed use limited to: Yale University. Downloaded on March 12,2022 at 07:01:47 UTC from IEEE Xplore. Restrictions apply.

