
Cloudware: An Emerging Software Paradigm for Cloud
Computing

Dong Guo+× Wei Wang+* Jingxuan Zhang+ Qiao Xiang+# Chenxi Huang+
Jinda Chang+ Liqing Zhang+

+Tongji University #Yale University ×Cloudware Labs

* corresponding author: wwang@tongji.edu.cn

ABSTRACT

Software paradigm is a driving force for the evolution of software
technology. With the continuous improvement in the current
cloud computing and the Internet environment, software will
develop further into Cloudware, which is emerging as a new
software paradigm. This paper defines the concept of Cloudware,
and discusses it in the context of software paradigm. Then, based
on a loosely coupled von Neumann computing model, we propose
a new method of constructing a Cloudware PaaS system which
can directly deploy software into the cloud without any
modification. By using micro-service architecture, we can achieve
high performance, scalable deployment, faults tolerance and
flexible configuration. Finally, we evaluate this method by
carrying out an interactive delay experiment that directly focuses
on users’ experience, which shows the effectiveness of our
method.

Keywords

Cloud computing; Cloudware; Software paradigm; Micro-service

1. INTRODUCTION
Software is a computer program that models the problem space of
the real world as well as its solution. Software paradigm describes
a software model and its construction theory about the perspective
of software engineers or programmers [1, 2]. It acts as the core
driven force the evolution of software technology, and always
pursues to better utilize underlying hardware capabilities or
runtime features.

With the rapid development of computer science and technology,
the application domain and runtime environment evolve as well.
Especially, the rapid development of cloud computing and
Internet technology not only promotes the progress of computer
software and hardware, but also makes people change the way of
using software. The concept of cloud computing makes the
Internet technology reach its climax, and a lot of traditional
industries are in the transition to the Internet mode to improve
social efficiency, and further affecting people’s work and life. In
this environment, the traditional software paradigm also requires a
transition.

How such a transition should proceed is currently an important
research direction of software evolution and software engineering.
First, the idea of IT services as resources are becoming more and
more popular, showing the trend of everything as a service (XaaS).
Users can easily enjoy the different levels of software as a service
through networks, and such services have become the essence and
core concept of cloud computing. IaaS, PaaS and SaaS are some
representative service models, which have been widely studied
and deployed [3, 4]. At the same time, with the continuous
deepening of virtualization and container technology, e.g.,
Docker[5], on behalf of the containers, gradually infiltrated into
cloud computing at all levels of the system from the development
to the operation and maintenance of the whole process. The
micro-services architecture has become an architectural style and
design patterns. It advocates the mode to split the application for a
series of small services, in which each service focuses on a single
business function, running in a separate process, thus making the
service operating on clear boundaries. Light communication
mechanisms can also be adopted, such as HTTP/RESTful, to meet
the needs of business and users. Micro-service, as an architecture
model of transformation, is not accidental. It is a reflection of the
architecture model, development, operation, and the maintenance
methodology.

On the other hand, with the continuous optimization of the
network environment, especially the rising of 5G wireless
communication technology, it is easier for users to gain high-
speed access to the Internet, making it easy for traditional
software gradually migrating to the cloud. For end users, the
browser is the main entrance to the Internet and browser
technology is also in rapid development, from the simple analysis
of the HTML file to the new HTML 5, CSS 3 and Web OS [6] etc.
This provides a solid foundation for software in cloud migration
and web access. Access to software services through the browser
will be an important direction of future software development, and
the cloudlization of software will also become one of the
important forms of software in the future.

In summary, cloud computing provides environment for micro-
services to build a software and the runtime environment.
Meanwhile, utilizing the advanced Internet technology to realize
web-based software will be the direction of software development
and the tendency. In the cloud, the software will no longer be a
simple code entity, but a series of services delivered to the users
through the Internet. In this paper, we refer this paradigm of
Internet plus software as Cloudware. It will become the main form
of future software paradigm [15].

In order to verify the feasibility of Cloudware paradigm, this
paper first discusses the Cloudware in the context of software
paradigm, and then proposes and develops a new Cloudware PaaS
prototype based on the micro-service architecture and container
technology. In this prototype, the traditional software can be
directly deployed on the cloud. And users can connect to the cloud

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Internetware '16, September 18 2016, Beijing, China.
Copyright 2016 ACM 978-1-4503-4829-4/16/09 …$15.00.
DOI: http://dx.doi.org/10.1145/2993717.2993718

1

through the Internet technology, using the browser to interact,
achieving the Internet + software paradigm completely.

Section 2 describe the related work. Section 3 introduces the
concept and features of the Cloudware. Section 4 discusses the
Cloudware in the context of software paradigm. Section 5
proposes the loosely coupled von Neumann computing model.
Section 6 illustrates the details of our proposed Cloudware PaaS
prototype architecture. Section 7 describes the experiments and
result analysis of our method, and Section 8 concludes this paper.

2. RELATED WORK
The Internet, once a network of networks, has become not only
the platform of choice for delivering services to increasingly
mobile users, but also the connective tissue between people,
information and things. Almost all new and popular computing
and application paradigms were born in the Internet, or at least
motivated by it, including Web 2.0, Social Networking, Mobile
Internet, Cloud Computing [3], Internet of things, and big data.
Software has played a central part in the evolution of the Internet.
The open, dynamic, evolving environment of Internet computing
continues to demand new software technologies in order to realize
its rapid paradigm shifts.

To support Internet computing from a software engineering
perspective, Internetware [1, 2] has been proposed as a software
paradigm that enables developers to construct new applications or
evolve legacy systems to include new characteristics. After 10
years of research and practice involving hundreds of researchers,
professionals and students from China, the USA, Japan and
Europe, the fundamental challenges to Internetware have been
thoroughly investigated.

In addition, since the Web advent as an Internet portal, browsers
have become a kind of indispensable tool to our lives. More and
more people use browsers perform commercial activities and
access business applications on the Internet. As working with a
browser continues to gain acceptance, an emerging strategy for
software providers is to publish their applications online,
especially for those applications that were previously distributed
in a desktop environment. This is so called Desktop Software
Virtualization (DSV).

One straightforward solution to DSV is to directly port these
desktop applications to Web applications. But porting requires
substantial effort, and the results are sometimes below
expectations. An alternative solution is to host a desktop
application on a Web server and display its GUI in a browser.
Users can manage desktop applications through standard Web
protocols and interact with the applications using a browser.

Researchers have attempted to realize this DSV concept in several
ways. One solution is to create a Web user interface (UI) for a
desktop application and providing a wrapper to mediate the
interaction between the UI and the application [7, 8, 9]. However,
software companies would need to implement a dedicated Web UI
and wrapper for each desktop application. A simpler solution is to
design a library for desktop applications to generate Web UIs
dynamically [10, 11]. This provides a generic way to publish
desktop applications on the Web, but there’s little support for
managing the execution of applications. Other research has
deployed applications in a desktop environment and adopted a
Web-based remote desktop method to support users in interacting

with the applications through a browser [12, 13]. Although users
can manage applications directly in a desktop environment,
sharing the whole desktop is inefficient, especially in a network
environment with low bandwidth. In recently, Chen and Hsu [14]
introduced a desktop application service (DAS) framework that
lets a Web server provide services based on existing desktop
applications. The DAS framework augments desktop applications
with browser-access capability, allowing an application to display
its window in a browser without any modification. But, in
essential, this method is still a virtual desktop based methodology,
and cannot utilize the resource efficiently, such as underline
computing and storage. It cannot deploy the specific software
application in a massive and scalable way, which cannot utilize
the current Cloud computing infrastructure efficiently.

To solve the problems above, this paper proposed a Cloudware
paradigm based method which can directly deploy software on the
cloud. With the emerging of the Cloudware, software paradigm
will further evolve to its next generation which will be described
in this paper in detail.

3. BASIC CONCEPT OF CLOUDWARE
Software are everywhere nowadays. With the development of
cloud computing and virtualization, more and more software tends
to be deployed on cloud, making it free for the local resource.
This is actually a form of service, and we call this diagram of
software Cloudware. It is a specific form of SaaS, but the idea is
different in that Cloudware relocates the local OS and runtime
environment to the cloud without modification, and the users can
communicate with it through a unified interacted platform.
Cloudware is a software paradigm suiting for scalability and on-
demand service under cloud environment, which makes direct
transportation of software in the cloud in a convenient way, and
end users can get access to it through any browsers [15, 16].
Obviously, Cloudware distinguishes from traditional software in
terms of forms, structures and behaviors. To be specific,
Cloudware has the following features:
Running on the cloud. All the software on desktops and the
necessary resource are deployed on the cloud, including native
cloud software and traditional on-premises software.
Flexible resource configuration. Cloudware can adjust its using of
resource at any time based on the type of the service, like offering
multi-cores for computing-intensive tasks.
Rendering on the cloud. Cloudware renders the graphic tasks on
the cloud and send the outcome back to the local users. The
process is independent on the local hardware.
Fast boot. The time for starting a Cloudware should be short
enough, and it is possible to boot large software in seconds.
Interaction with the Internet. All the services are interacted by the
Internet, making sure that all the data and runtime status are saved
on cloud. The only thing for terminals to do is to set catch system.
Unify platform. Cloudware needs a unified platform to
communicate with each other on any local terminal, making sure
that different hardware can run the same Cloudware.
The transparent communication. Because of all the data and status
are saved on cloud, a transparent communication system should
be built to connect different terminal file system.

2

In the early time of cloud computing, the characteristics we
proposed above are almost impossible. However, with the rising
of the container technology, GPU virtualization technology, 5G
network technology and HTML 5 front-end interactive technology,
achieving such characteristics becomes possible. In particular, the
characteristics of Cloudware depend on the following related
technologies:
Virtualization. Virtualization can provide a virtual running
environment on the cloud, offering a different platform for the
cloud operating system, its dependent libraries and components
services.
Cloud interactive rendering technology. Cloud interactive
rendering technology is putting the rendering processes one the
cloud, which will generate the RGBA image coding for streaming
data format. The data then transmitted to the terminal through
network and decoded directly after the process. Terminal
interaction events such as mouse and keyboard events are sent to
the cloud through network to realize the interaction between
clouds rendering.
Container. Container is a popular lightweight virtualization
technology in recent years, which launches a mirrored instances
within a few millimeters and occupies only a few additional
resources. The container can be achieved by applying the rapid
deployment with the local desktop software. At the same time,
using containers such as Docker can easily realize micro-services ,
and further improving the cloud deployment flexibility.
Media stream data compression. In order to improve users’
experience, to reduce the delay of interaction as far as possible,
and to ensure remote rendering output frame quality, the real-time
interaction and streaming media data compression are necessary.
Techniques, such as widely used H.264 [17], H.265 [18] and
Webm [19], is the key technology to improve the cloud
interaction user experience.
Terminal interaction. The Cloudware mainly running on the cloud,
thus the terminal only needs a unified interactive platform. The
best choice to achieve this is to use the browser, which can adapt
to the different platforms. At the same time, with the development
of HTML5, CSS3 and other technologies, browser's processing
and interactive capabilities has greatly expanded, laying a solid
foundation for the construction of a unified interactive platform
for Cloudware.

Table 1 Differences between Cloudware and Web application

 Cloudware Web application
Computing Completely on cloud Partialy on terminal
Output Windows interactive images HTML, CSS, Image
Input Mouse and keyboard event HTTP request
Storage Copletely on cloud Partialy on terminal
Recovery Yes No

Table 2 Differences between Cloudware and cloud desktop

 Cloudware Cloud desktop
Computing Completely on cloud Partialy on terminal
Service type Only sofware service

(SaaS)
Desktop system service
(DaaS)

Install Immediately used Download and install
Output Windows interactive

images
VRAM rendering
information

At the same time, we can also compare the differences between
the Cloudware and desktop application as well as the cloud
desktop, as shown in Table 1 and Table 2 separately.

4. CLOUDWARE AS A PARADIGM
This section discusses the Cloudware in the context of software
paradigm. A software paradigm usually concerns four aspects [2]:
what is to be constructed and executed; how to develop the
resulted software artifacts or entities (development techniques);
how to run the artifacts or entities (runtime system supports); and
how well the constructed and executed software can perform (the
promised software qualities).

4.1 Cloudware software model
The Cloudware model should specify the form, structure and
behavior of the software entity as well as the user interaction.
These will determine the principles and features of the
corresponding software technologies (programming languages,
development approaches and runtime mechanisms). The
Cloudware software model should leverage both legacy software
and new features. The basic Cloudware can be built upon current
popular technologies, such as object-oriented technologies or
services computing technologies. But new capabilities should also
be provided.
The Cloudware software model concerns three aspects: client,
cloud and interaction channel, as well as their relationships, as
shown in Figure 1.

Fig. 1 Cloudware interactive architecture

4.2 Cloudware operating platform
Software operating platform realizes the elements and their
relationships of the software model. Cloudware operating
platform should provide a runtime space to operate Cloudware
entities and their interaction. It should equip legacy software
systems with Cloudware features, and should also manage the
applications and itself in a more intelligent and automatic manner.

Cloudware reflects as micro-services in the design process. The
difference between Cloudware and traditional software is that the
body of Cloudware runs on the cloud, and that of traditional
software on the client. Thus for the Cloudware, how to interact
with users is a key problem here, especially for the desktop
software. Because the main body of the cloud is running on the
cloud, with computing and storage on the cloud server, the client

3

only needs an interactive environment. In recent years, software
weblization is a trend of software evolution. Cloudware can be
regarded as a browser to provide interactive services components,
but its operation is on the client side.
Browser interaction is actually an input and output visualization
process, which only need things like mouse and keyboard. Input is
sent to the cloud server and return to the client for rendering,
which can achieve the same effect as the local software. The
specific interaction process is shown in Figure 2.

Fig. 2 Interactive principle of Cloudware

Cloud services mainly consists of three separate micro-services
constitute: X broker, Xserver and Application. Application can
also be constituted by a plurality of additional micro-services.
Application and Xserver communicate through X11 protocol,
which will render the request to Xserver. Then Xserver will send
mouse and keyboard events to the application, maintaining a
window state synchronized to the client's browser and achieving
browser and Xserver event and rendering synchronization.

In this way, users can use the same software as using local
Cloudware, but they do it with the browser window manager. At
anytime, anywhere it can return to the last state, without
depending on the client's operating system and running state.

4.3 Cloudware engineering approach
The engineering approach should systematically control the whole
lifecycle of Cloudware development, including requirements
specification, design, implementation, deployment, maintenance
and evolution. The Cloudware engineering approach follows the
core principle of "Software Architecture of the Whole Lifecycle".
Software architecture acts as the blueprint and controls every
stage of Cloudware development. To support the online
development of Cloudware applications, the Cloudware and their
on-demand interaction are implemented and governed based on
software architecture.

Development. In traditional software development process,
developers need to build their own corresponding software
development environment, such as IDE and compiler tool chain.
With the rising of Git systems (such as GitHub) and task
management systems, Cloudware development can follow the
cloud development processes, which using cloud based IDE and
compiler to complete the entire development services. At the same

time, the cloud collaborative software is used to carry out the
tracking task, from the view of code writing and software
engineering to cloudalize the software development process.
Cloud development should also follow the concept of micro-
service software style, which is to divide the software into
different components, and to make it convenient for testing
process of continuous integration. The container, like Docker, can
provide a reusable operating environment, flexible resource
allocation and convenient integration test method especially for
the teamwork. In the development process of Cloudware, calls of
the function is no longer like traditional software as the library
operating system calls, but to the micro-services . Cloudware
development should be oriented to micro-services component
form, and should not depend on the specific operating system and
hardware architecture.
Deployment. The deployment of Cloudware is actually micro-
services deployment. Currently ,Docker as the representative of
the micro-service container technology, is becoming more and
more mature. Docker provides a series of container deployment
tools for developers to carry out a novel and convenient software
integration test method.
The cloud deployment should be carried out as the form of service,
which means that different component can be deployed separately,
providing downward compatible service. This ensures the
continuous operation which is a basic idea of cloud computing.

4.4 Cloudware quality assurance
Software on the Cloud usually serves a large number of users in
an online and simultaneous style via Internet. Cloudware quality
framework should not only define quantitative and qualitative
measurement methods for various quality attributes such as
performance, reliability and usability, but also make
comprehensive tradeoffs among these attributes. To promise the
Cloudware quality, it requires the quality assurance mechanisms
by both engineering approach at development time (e.g., testing,
verification and validation) and software running at runtime (e.g.,
online evolution, autonomic system management).

As Cloudware paradigm emerges at it's very early age, we mainly
focus on its performance aspect of the quality, such as Cloudware
boot time, networking low latency, and user experience in this
paper. The research of the whole quality assurance mechanism for
Cloudware will be carried out in the near future.

5. LOOSELY COUPLED VON NEUMANN
MODEL FOR CLOUDWARE
Since the computer science appeared, the scientists represented by
John von Neumann dominates the main stream of computing
paradigm, and these theories are called von Neumann
Architecture which is used by the majority of computer
architecture researchers. It indicates that computer is made by five
components, namely storage, operator, controller, input and
output device, as shown in Figure 3. We can see a tight
relationship between these five components, and all of these parts
are necessary.

The traditional von Neumann architecture can be represented by
the following tuple:

 φ≠= OIMACOIMACVC ,,,,),,,,((1)

4

Fig. 3 von Neumann Architecture

in which C represents for the controller, A for the operator, M for
storage, I for input, and O for output.
On the other side, in the Cloudware computing model, the input,
output, storage and computing do not locate in a single computer
system. They may be in different areas and be connected to the
Internet. For examples, the input and output for cloud are
deployed on the terminal while storage, controlling and
computing on the cloud, and they communicate with each other
through networks. And this article calls this kind of model the
Loosely Coupled von Neumann computing model, which is the
basic theory of Cloudware computing model.

5.1 Loosely coupled von Neumann model
The key Loosely Coupled von Neumann computing model is to
decouple the five components and to make them into complete
systems which can run separately and can communicate with each
other through networks. A typical loosely coupled von Neumann
computing model is shown in Figure 4 (solid line represents for
data stream while the dotted line for controlling stream).

Fig. 4 Loosely Coupled von Neumann computing model

We can see that input, output, computing, storage and controlling
are all connected by networks. Their external communication is
achieved by the correspondent interface. This makes it possible
for those components to extend themselves.
The Loosely Coupled von Neumann computing model can be
represented by the following tuple:

φ≠= NMiMAiACNOiOIiIMiMAiACLVC ,,,,,),,,,,,,,,((2)

in which C represents for the controller, A for operator, Ai for the
calculating interface, M for storage, Mi for storage interface, I for
input, Ii for Input interface, O for output, Oi for output interface,
N for the network. We can see that input and output are not
necessary, which can be immediately achieved through networks.
In addition, the network devices include those physics connection
or wireless connection devices which support the Internet or other

bus architecture, not only IP network. N can be represented as the
following tuple:

),,(RoutedWirelessWireN = (3)

in which Wire represents the physics connection; Wireless for the
wireless connection like LAN; Routed for those devices who can
communicate with indirectly passed route like WAN.
In the Loosely Coupled von Neumann computing model, Interface
is the key for the communication among different components to
achieve the protocol in distinct level. In the Cloudware system,
different components are abstracted into services while Interface
becomes the interface of the external services.
The module features of Loosely Coupled von Neumann
computing model are very typical, endowing every component
with high flexibility, which are listed as below:
Infinite extension of the component through the network. Because
the network introduced in every component of Loosely Coupled
von Neumann computing model, it is easy for the model to extend
to the whole network.
The independent component system. For the single component in
Loosely Coupled von Neumann computing model, it must be able
to run separately and to provide an external interface, ensuring its
validity even in the case that external component failed to work.
The hot plug components. The loosely coupled von Neumann
computing model supports hot plug. For instance, any display
devices with different resolution can be immediately replaced
with no break during the process.
Infinite storage. Because the storage is deployed behind the
interface, the physics storage is not transparent to the computer
system. Therefore the logical storage information can only be
accessed by the storage interface. It is easy to establish the
backend distributed storage in this sense, namely the infinite
storage space.
Networking self-adaption. The networking in Loosely Coupled
von Neumann computing model does not refer to the present IP
network, but the network devices of physics or wireless
connection. The protocols in the lower level dependent on the
unified controller.

5.2 Application of loosely coupled von
Neumann computing model in Cloudware
The typical features of Cloudware reflect the loosely coupled von
Neumann computing model, the computing, storage and
controlling are deployed on the cloud while the input and output
on the terminal. The communications between the components are
achieved by network， and the input and output are hot-pluggable,
as shown in Figure 5.
Cloudware model use the terminal environment to achieve the
independent system of input and output, and to interact with each
other through TCP(UDP)/IP protocol. The programs on cloud can
utilize the storage resource, and they can also use the system call
of OS to achieve storage function. That of the computing
component is supported by the CPU of the Physics machine, and
that of the controller is supported by the correspondent with the
related Cloudware application. In Cloudware computing model,
every module is abstracted as service, and the interactive service
of Cloudware is deployed on the terminal while the computing
and storage on the cloud.

5

Fig. 5 Loosely Coupled von Neumann model of Cloudware

6. CLOUDWARE PAAS ARCHITECTURE
6.1 Architecture
In order to verify the technical conditions on the current cloud,
this paper presents a Cloudware of PaaS platform prototype based
on micro-service architecture: CloudwareHub. It is a platform for
the Cloudware development, testing, deployment and maintenance,
both for developers and users. The Cloudware PaaS platform
overview architecture is shown in Figure 6.

Fig. 6 The overall architecture of Cloudware

From Figure 6, we can see that three main parts make up the
whole Cloudware PaaS platform architecture: Container Service,
NAT Service and Web Service. Container Service provide
environment of applications. Each application is encapsulated as
an image of Docker, which will get storage in Container Pool. C
broker is responsible for managing the lifetime of different
containers; NAT Service provides Network Address Translation
services, and achieves reverse proxy poll. NAT Manager is
responsible for managing NAT rules of Iptables and exports
restful APIs; Web Service provides interaction and data service,
which can be divided into two independent parts: Frontend web
and Backend API. The Frontend web will call interface which is
in the form of Restful, supported by the Backend API. Data
interaction is done by Backend API and database. Moreover,
because interactions of applications have its own status while
HTTP does not, the WebFTP Service use WebSocket [7] protocol
in Web Service realizes the communications between files in
cloud with client.

6.2 The control plane and data plane
The communication process of different services of Cloudware
PaaS platform is shown in Figure 7, which shows that c1 to c5 is
the tunnel of control plane, and d1 to d6 is the tunnel of data plane.
The main goal of control plane is to control the lifetime of
Cloudware such as running and restart. C1 is responsible for
calling Backend API for users which is based on Http Restful API.
For Cloudware PaaS platform, the main request includes X
Service requests (events like adjust resolution or keyboard) and
Container Service requests (events like running application and so
forth). It communicates with X manager and C manager through
c2 and c3 that is based on TCP. X manager controls Xorg
programs through libraries like Xlib or XCB, while C manager
controls Docker by using API offered by Docker and
corresponding language binding.

Fig. 7 Control layer and data layer

The data plane mainly focus on data flow in interaction level. D1
is responsible for communications between browsers and
Websocket Server. It sends input from keyboard and mouse to
Websocket Server through Websocket protocol and Websocket

6

Server send output from CIP Server to the browser. D2, which is
based on TCP protocol, is the interaction between Websocket
Server and CIP Server. It sends client input events and to CIP
Server for further process.

D3 is interaction between CIP Server and Xserver. CIP Server
sends mouse and keyboard events to client to Xserver, using
libraries like XCB and Xtest extension, meanwhile send changed
images from Xserver which have been compressed to H.264
stream to Websocket Server, using Xdamage extension to get
image change notify. And Websocket Server send it to the
terminal display. For faster getting images, CIP Server shares its
memory With Xserver to get corresponding bit images. D4 is the
data tunnel between software and Xserver, which is realized by
X11 protocol. D5 is the data tunnel of Webftp, which is used to
realize the data share between client and Cloudware. Data of
client can be sent through d5 to share storage, finally shared
storage is mounted to Cloudware container and do I/O through D6.

6.3 Internal protocol architecture
Since Cloudware PaaS prototype itself has taken the design of
micro-service architecture, the communication problems between
micro-services is the key to the achieve service portfolio. To
achieve high efficiency under loosely coupled communication,
this paper design many sets of communication protocols between
Cloudware components, including CIP (Cloudware Interacting
Protocol) and Webftp protocol as shown in Figure 8.

Different services communicate with each other mainly through
TCP, UDP, HTTP, and Websocket communication protocol. TCP
protocol is mainly used for two-way communication services
internally, UDP protocol is used to transmit H.264 compression,
HTTP protocol is used to access the API and external files, and
Websocket protocol is used to implement two-way
communication process between browser and server.

Fig. 8 Cloudware micro service communication protocol

In the whole protocol architecture, CIP protocol and Webftp
protocol is special for the Cloudware, where CIP-compatible
binary protocol is a set of cloud-piece display protocol X11
protocol, whose main task is to carry out UDP encapsulation, and
Webftp protocol is set of file transfer protocol running on the
Websocket protocol, achieving transparent access to the cloud and
local file system [9].

6.4 The advantages of Cloudware PaaS
Due to the adoption of the micro-service architecture, the
Cloudware decomposes a single application into a set of focused
services, each of which is according to a component with the
function of independent compilation, deployment and extension.
Cloudware PaaS platform has some advantages when compared
with the single architecture:

The limited complexity. The decomposition in the application
reduces the complexity of the original endless accumulation. Each
micro-services focus on a single function, and articulate the
service boundary through well-defined interfaces. Due to small
size and low complexity, each the micro-services can be
controlled by a small development team, which is easy to
maintain.

Independent deployment. Since the micro-services have an
independent running processes, each micro-services can also be
deployed independently. When a cloud service are changed
without compiling, there is no need to deploy the entire
application. Composed by the micro-service application making it
more efficient and with fewer risks, ultimately shorten the
delivery cycles.

Flexible technology selection. By micro-services architecture,
technology selection is decentralized. Each team can make their
decision according to the status and development of its own
service industry, having the freedom to choose the most suitable
tools for the development. Since each Cloudware is relatively
simple and low-risk when you need to upgrade the face, or even
completely reconstructing it is also feasible.

Faults tolerance. When a failure occurs in the traditional
architecture of a single process, it is likely to result in diffusion,
making the global application crashed. In the micro-services
architecture, the fault will be isolated in a single Cloudware
service. If designed well, other members can retry to achieve
application-level fault tolerance.

Scalable. Single application architecture can achieve scale by
copying the entire application to a different node. When different
components of Cloudware elements are different in expansion
needs, micro-service architecture will reflect its flexibility because
each Cloudware can be expanded independently

While the micro-services architecture brings many advantages, it
must be admitted that to build, to deploy and to maintain a
distributed micro-services system is not easy. Based on the
proposed pieces of PaaS cloud micro-services, the light containers
provided by application-oriented virtualized runtime environment
provide an ideal environment for the micro-services. Similarly,
the cloud services based on container technology will greatly
simplify the integration, deployment, operation and maintenance
of the entire process, so as to promote large-scale Cloudware
element in the cloud-based practice.

7

7. DEMOSTRATION AND EVALUATION
This section first demonstrates the proposed Cloudware PaaS
platform prototype, and then evaluates its performance by
carrying out an interactive delay experiment that directly focuses
on users’ experience, which shows the effectiveness of our
method.

7.1 Running environment and demonstration
Cloudware PaaS platform provides the micro-services
environment. To achieve scalable deployment, faults tolerance
and flexible configuration, we implement our system with the
support of commercial IaaS. To test the validity, we make our
Cloudware PaaS Platform prototype system, namely
CloudwareHub1, run on several cloud hosts with two cores, 4GB
memory and 20GB disk. The Web Service runtime architecture is
shown in Figure 9.

Fig. 9 Web Service runtime architecture

X Service and Container Service runs on another host to improve
the efficiency of communication between Container and Xorg.
The X Service and Container Service runtime is shown in Figure
10.

Fig. 10 X Service and Container Service runtime

Container Service is based on Linux with Ubuntu Server 14.04,
Docker tools, Xorg devices and programming libraries. Parts of
Cloudware brokers consist of C manager and X manager,
managing the Xorg and Docker internally and providing TCP

1 http://www.cloudwarehub.com/

externally. All the systems above are deployed on Ucloud 2 ,
offering Cloudware service.

On CloudwareHub platform, you can first find a specific
Cloudware in the Cloudware base, as shown in Figure 11, and
then you can add your Cloudware in your workspace. Finally, you
can run your Cloudware from your workspace by double clicking
the Cloudware icons, as shown in Figure 12 (Running a Matlab
Cloudware service). We also developed a Web desk style
environment for the Cloudware service, named OpenWebDesk.
Users can use the OpenWebDesk environment like a traditional
desktop, as shown in Figure 13.

Fig. 11 Find Cloudware in the Cloudware base

Fig. 12 Running a Matlab Cloudware service

Fig. 13 OpenWebDesk environment

2 https://www.ucloud.cn/

8

7.2 Experiments evaluation
Finally, to evaluate the user experience of Cloudware, we carry
out the interaction delay experiment in this section. Because of the
fact that Cloudware is based on the Internet, which means that the
Internet environment is highly related to the experience. Bad
internet environment will lead in poor user experience. Based on
these results, we can further analyze the most influential
interactive delay of Cloudware system.

There are two ways for video streaming transmission of
CloudwareHub: FFRM (Fixed Frame Rate Mode) and EDM
(Event Driven Mode). And we test them respectively and list the
results below.

7.2.1 Influence from network bandwidth

Three specific Cloudware including gedit, rstudio, supertuxkart,
are separately tested again to get delay in different terminal
network, as shown in Figure 14. We can see that the delay is fixed
when the data is of a small amount, the main cause of delay is not
data or bandwidth, but the TCP process and memory copy.
Rendering complexity has influence, but not the linear
relationship. But in general, complexity increases the delay. In
addition, the terminal network influent a lot to the experience. In a
serious case of poor network and a large amount of data, TCP
timeout will happen.

Fig. 14 The interactive delay(ms) of different Cloudware in

different terminal network

7.2.2 Influence form GPU

To test the influence from GPU, we add cloud machine with GPU
function on Ucloud, with four logical cores, 8GB memory, 20GB
storage, 2Mbps public network bandwidth and Tesla K80 GPU
which has two cores. We only use one of it to launch the
experiment. Based on the hardware environment above, we run
the Supertuxkart respectively in GPU Enabled and GPU Disabled
environments. By simulated keyboard input, we collect delay
every 2 seconds, as shown in Figure 15.

We can see that GPU can largely reduce the interactive delay
mainly because the powerful 3D rendering ability of GPU. To
further research the influence from GPU, we test the CPU
utilization rate respectively in GPU Enabled and GPU Disabled,
as shown in Figure 16.

We can see that GPU makes CPU free from computing intense
tasks. Without GPU, CPU is responsible for all the rendering tasks,

and its average utilization rate is higher than 350%, leading to a
serious delay. While GPU reduces it to 70%, makes it possible to
rapidly run the Cloudware and video streaming compression tasks.

Fig. 15 Influence from GPU

Fig. 16 Influence to cloud CPU from GPU

7.2.3 Influence from different transmission pattern

To test the delay of FFRM(Fixed Frame Rate Mode) and
EDM(Event Driven Mode), we run Eclipse Cloudware in 50FPS
and 20FPS. We collect delay every 2 seconds of the whole
process from the terminal continuous input event to the terminal
rendering , as shown in Figure 17.

Fig. 17 Influence from different transmission pattern

9

We can see that in low FPS FFRM, the delay is not stable mainly
because the rendering event is random while the compression
program runs in a fixed cycle. While EDM has a relatively low
and stable delay. Theoretically, FPS in high frame rate should has
a lower delay than that of EMD, but the results show that this is
not true. That’s mainly due to the complex video compression
programs, especially in the case of multiple windows. Its
computing is complex, leading to the increasing system workload
and therefore, the increasing delay. Comprehensive considerations
of cloud and network should be taken to choose the most suitable
transmission pattern in the real Cloudware system.

To sum up, the user experience of Cloudware is determined by
many factors. Improving the performance of the cloud, and adding
the GPU rendering tasks can significantly improve the Cloudware
performance. In addition, improving network quality and reducing
the amount of rendering data transmission is the key to improving
the user experience of cloud. While how to solve the inherent
problem of network latency and how to guarantee user experience
in the jitter network situation are critical to future research.

8. Conclusion
The development of cloud computing not only leads to the
reformation of data center, but also affects the traditional methods
of developing, deploying and running software, and further on the
way of using it. Under this circumstance, deploying software as
Cloudware will be the main stream. Regarding various kinds of
cloud resource as services will promote the micro-service design
model and make it easy to be adjusted for cloud. From the users’
perspective, Cloudware paradigm is the trend, which can directly
offer services to them. We believe that Cloudware paradigm will
be the main application and develop model in the future.

The idea of Cloudware paradigm model largely relies on the
structure of the cloud and the Internet. The user experience is also
dependent on multiple factors. The key to improving the quality is
to improve the internet quality and to reduce the data transported.
Similarly, how to solve the fixed delay of the internet is the
critical issue in further research. Under present circumstance, even
though the containers and the video compression can meet the
need of the majority of users, technological challenges also exist
including further using rate increase, video stream cross-
compression, self-adaptive network compression, real-time
network, interactive terminal unified platform, GPU virtualization
and transparent storage technology, etc. Because of the limited
space, only parts of the challenges and problems are listed. Now
the technology and theory of Cloudware are still in their early
development, and the authors will continue to focus on researches
and improvements in related fields.

9. Acknowledgments
This work was supported by the National Natural Science
Foundation of China (Grant NO. 61672384), the Program of
Shanghai Academic/Technology Research Leader
(15XD1503600), the Open Project Program of the State Key
Laboratory of Computer Architecture (Institute of Computing
Technology, Chinese Academy of Sciences, CARCH201408).

10. REFERENCES
[1] Mei H., Huang G., and Xie T., Internetware: A Software Paradigm

for Internet Computing, IEEE Computer, 2012, 45(6): 42-47.
[2] Mei H., Liu X., Internetware: An Emerging Software Paradigm for

Internet Computing, J. Computer Science and Technology, 2011,
26(4): 588-599.

[3] Serrano N., G. Gorka, H. Josune, Infrastructure as a Service and
Cloud Technologies, IEEE Software, 2015, 32(2): 30-36.

[4] Stefan W., Eddy T., Wouter J., Comparing PaaS offerings in light of
SaaS development, Computing, 2014, 96(8): 669-724.

[5] Boettiger C. An introduction to Docker for Reproducible Research,
ACM SIGOPS Operating Systems Review, 2015, 49:71-79.

[6] Vahdat A., Anderson T., Dahlin M., et al. Webos: Operating System
Services For Wide Area Applications, In Proceedings of the Seventh
IEEE Symposium on High Performance Distributed Systems,
1997:52 - 63.

[7] Grechanik M. et al., Creating Web Services from GUI-Based
Applications, In Proceedings of IEEE Int’l Conf. Service-Oriented
Computing and Applications, 2007, pp. 72–79.

[8] De Lucia A. et al., Developing Legacy System Migration Methods
and Tools for Technology Transfer, Software: Practice and
Experience, 2008, 38(13): 1333-1364.

[9] Meng X. et al., Legacy Application Migration to Cloud, In
Proceedings of 2011 IEEE Int’l Conf. Cloud Computing (CLOUD),
2011, pp. 750–751.

[10] Lord J., The W12 Network Window System, Master’s thesis, School
of Computer Science, McGill Univ., 2012.

[11] Karampaglis Z. et al., Secure Migration of Legacy Applications to
the Web, Information Technology and Open Source Applications for
Education, Innovation, and Sustainability, Springer, 2014, pp. 229-
243.

[12] Zhang B. et al., A Black-Box Strategy to Migrate GUI-Based Legacy
Systems to Web Services, In Proceedings of 2008 IEEE Int’l Symp.
Service-Oriented System Eng., 2008, pp. 25-31.

[13] Wang S.T. et al., Development of Web-Based Remote Desktop to
Provide Adaptive User Interfaces in Cloud Platform, Int’l J.
Computer, Information, Systems and Control Eng., 2014, 8(8): 1195-
1199.

[14] Chen B., Hsu H., Huang Y., Bringing Desktop Applications to the
Web, IT Professional, 2016, 18(1): 34-40.

[15] Guo D., Wang W., Zhang J.X., et al., Towards Cloudware Paradigm
for Cloud Computing, In Proceedings of The 9th IEEE International
Conference on Cloud Computing (CLOUD), 2016, San Francisco,
USA, June 27 - July 2, 2016.

[16] Guo D., Wang W., Zeng G.S., et al., Microservices Architecture
based Cloudware Deployment Platform for Service Computing, In
Proceedings of 2016 IEEE Symposium on Service-Oriented System
Engineering (SOSE), Oxford, UK, 29 March - 2 April, 2016, pp358-
364.

[17] Sullivan J., Ohm J., Han W., et al., Overview of the High Efficiency
Video Coding (HEVC) Standard, IEEE Transactions on Circuits and
Systems for Video Technology, 2012, 22(12): 1649-1668.

[18] Lu Y., Zhang Q., Wei B., Real-time CPU based H.265/HEVC
Encoding Solution with x86 Platform Technology, In Proceedings of
Computing, Networking and Communications (ICNC), 2015
International Conference on. IEEE, 2015: 418 - 421.

[19] Bankoski J., Intro to WebM, In Proceedings of International
Workshop on Network & Operating Systems Support for Digital
Audio & Video. ACM, 2011: 1-2.

10

