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Abstract

New-generation industries heavily rely on big 
data to improve their efficiency. Such big data 
are commonly collected by smart nodes and 
transmitted to the cloud via wireless. Due to the 
limited size of smart node, the shortage of ener-
gy is always a critical issue, and the wireless data 
transmission is extremely a big power consum-
er. Aiming to reduce the energy consumption in 
wireless, this article introduces a potential breach 
from data redundancy. If redundant data are 
no longer collected, a large amount of wireless 
transmissions can be cancelled and their ener-
gy saved. Motivated by this breach, this article 
proposes a compressive-sensing-based collection 
framework to minimize the amount of collection 
while guaranteeing data quality. This framework 
is verified by experiments and extensive real-
trace-driven simulations.

Introduction
The Industry 4.0 revolution is taking place in this 
big data era. Benefiting from the analysis of big 
data, customized services can be provided, pro-
duction efficiencies are optimized, and emerg-
ing industries are gradually growing. In quite a 
few modern industries, big data are collected by 
smart nodes and transmitted via wireless. For 
example, in a manufacturing plant, ubiquitous 
sensors gather environmental data to support the 
fine-grained adaptation of cooling systems; smart 
urban crowdsensing applications [1] acquire real-
time data from thousands of mobile phones to 
make local communities and cities more sustain-
able.

For the smart node, whether sensor or phone, 
wireless transmission is one of the biggest elec-
tricity burners. A field test [2] shows that the 
power consumption of WiFi in a popular smart-
phone is about 500 mW, while its battery is only 
1200 mAh and 3.7V Li-Ion. In other words, 
this smartphone could support at most 1200  
3.7/500 = 8.88-hour WiFi transmission even in 
the ideal case.

To address the dilemma between the demand 
of big data collection and the limited energy in 
smart nodes as shown in Fig. 1, it is urgent to 
design a novel green collection solution. Such a 

solution is promising to facilitate big-data-based 
modern industry.

Plenty of techniques have been developed for 
energy-efficient wireless networks, such as anten-
na gain [3] and placement strategy [4]. Consider-
ing the feature of big data, this article introduces 
a new direction: data redundancy.

Redundant data widely exist in big data, 
and they usually contribute little to the efficien-
cy improvement of next-generation industries. 
If we do not collect these redundant data and 
only collect the principal data, huge amounts of 
power consumption will be saved. Promising as it 
seems, however, one challenging problem arises: 
How can we distinguish whether a certain datum 
is principal or redundant before collecting all 
data? No wireless transmission can be saved in 
traditional methods because they have to collect 
all data and then analyze the redundancy.

To tackle the challenge, this article propos-
es a novel compressive-sensing-based collec-
tion framework. Compressive sensing [5] is an 
advanced mathematic theory for data comple-
tion using very few sampled data. The proposed 
green collection framework consists of two core 
components. First, to reduce the number of 
transmissions, an online learning component 
predicts the minimal amount of data that needs 
to be collected. These data are considered as the 
principal data, and their amount is constrained 
by compressive sensing. Second, a local con-
trol component running at every node further 
tunes the collection strategy according to the 
dynamics and unexpected situations. Combining 
these two components, this framework reduces 
power consumption and guarantees data quality 
simultaneously. Extensive real-trace-driven sim-
ulations are conducted to demonstrate the effi-
cacy and efficiency of the proposed framework. 
Open issues and future research directions on 
this green collection framework are also dis-
cussed.

The proposed solution is a general frame-
work. It is easy to add customized components 
into this framework according to the demands 
of industrial applications. We believe the green 
collection framework has wider implications and 
prospects for big-data-based industry than those 
explored in this article.
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Background
The green collection framework typically works 
at the intersection of three research areas: big 
data, energy-efficient data collection, and com-
pressive sensing.

Big Data

Both academia and industry are paying a great 
deal of attention to the explosive growth of data. 
Lynch [6] posed the open question in Nature: 
How do your data grow? This article attracted 
many scientists to start working in the area of 
big data. Baraniuk [7] reported in Science that 
the bottleneck of signal processing now is data 
deluge: the amount of data generated worldwide 
(1250 billion GB in 2010), which is dominated by 
sensory data, is growing by 58 percent per year. 
The revolution of big-data-driven industry has 
spread all over the world.

Energy-Efficient Data Collection

The energy constraint is a critical problem in big 
data collection. According to [8], battery capacity 
has only doubled in the past 35 years. Moreover, 
the hazardous sensing environment precludes 
manual battery replacement. The energy con-
straint is unlikely to be solved in the near future 
due to the size limitation of smart nodes.

However, collecting and transmitting big data 
consume a lot of power in smart nodes. For 
example, the transmission power of WiFi is up to 
500 mW, LTE is up to 200 mW, Bluetooth is up 
to 100 mW, and ZigBee is up to 5 mW.

Hence, green methods are investigated from 
the physical layer to the application layer in wire-
less networks [9–12]. Although existing solutions 
are highly diverse, none of them take data redun-
dancy into consideration.

Compressive Sensing

Compressive sensing [5] is a generic meth-
od to recover the whole condition with only 
a few sampled data. Several effective com-
pressive sensing applications have been devel-
oped in the data completion field [13] (e.g., 
traffic estimation and video streaming). It has 
been proven that the whole environment can 
be near-optimally recovered even if there are 
more than 70 percent sensory data are miss-
ing [14], which motivates us to exploit com-
pressive sensing to reduce the amount of data 
collection.

Problem Statement

In a big data collection system, smart nodes are usu-
ally distributed in the given area to sense data and 
transmit these data to the cloud via wireless commu-
nications. The cloud analyzes the collected data and 
provides customized service or production. Suppose 
there are a total of n nodes, and the period of mon-
itoring time is evenly divided into t time slots. Every 
node collects data once per time slot at most. With 
the growth of the scale in industrial applications, the 
total collected data are very big.

The big data can be represented as a large 
matrix X, where every element is the data collect-
ed by one node at one time slot. A matrix with 
no empty elements means that all data are col-
lected, which indicates 100 percent data quality 
but costs nt wireless transmissions.

On one hand, to reduce the number of trans-
missions, it is desired that only principal data 
are collected. Assume that the amount of prin-
cipal data is r and r << nt. On the other hand, 
to guarantee the data quality, it is desired that 
the principal data are adequate to represent the 
whole big data, that is, the recovered matrix   ̂X is 
close to the complete X, where   ̂X is the matrix 
computed by compressive sensing using only 
principal data.

From the above, we state the problem as fol-
lows: The green collection problem aims to min-
imize the amount of principal data r for energy 
saving and is constrained by   ̂X ≈ X for quality 
assurance.

Two main metrics are defined to measure the 
performance of green collection solutions:

•	Energy consumption ratio a: This ratio can 
be approximated as r/nt, that is, transmitting the 
amount of principal data over transmitting the 
total big data, in which we consider the consump-
tion is equal for every transmission.

•	Data error ratio e: The average error 
between recovered matrix and complete matrix, 
that is, e = ||  ̂X – X||/||X||.

Real Data Analysis
Before describing the design of a green collection 
framework, we analyze the redundancy feature 
in big data. We observe that most big datasets 
have obvious redundancy. The possible reasons 
include redundant smart nodes deployed for data 
collection, nodes in close or the same locations 
sensing similar data, and sensory data usually 
having strong correlation with time variance.

Then we introduce three real traces and vali-
date their low-rank properties, which implies the 
data redundancy in common sensory data. The 
three datasets are gathered by real projects.

The Intel Indoor experiment was gathered 
by the Intel Berkeley Research lab. There are 
totally 54 nodes placed in a 40 m  30 m room. 
Every node reports data every 30 s. From all the 
gathered data, we select 50 nodes’  4000 slots’ 
data to form a complete dataset.

The GreenOrbs project is a real-world sensor 
network for forest surveillance. More than 500 
nodes are scattered on Tianmu Mountain, China, 
and gather temperature, light, and humidity data 
once every 5 min. We select 249  500 data from 
GreenOrbs.

The OceanSense project contributes our third 

Figure 1. In wireless data collection applications, the distributed smart nodes 
sense and transmit data to the cloud. The dilemma is between the big data 
to be transmitted and the limited energy in smart nodes.
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dataset. This dataset contains 20 nodes deployed 
in the sea of Taipingjiao, China. Each node 
reports temperature and light every 2 min. We 
select 15  1000 data from OceanSense.

From the three selected datasets, we gener-
ate six complete matrices: Indoor-Temp, Indoor-
Light, Forest-Temp, Forest-Light, Ocean-Temp, 
and Ocean-Light for analysis. 

Redundancy Discovery 
Data at different locations over different times 
are usually not independent, resulting in a low-
rank structure (i.e., some data are redundant). 
In order to mine the redundancy, we analyze the 
selected matrices using singular value decompo-
sition (SVD) [14], which is an effective non-para-
metric technique for revealing a low-rank 
structure. In Fig. 2, we illustrate the cumulative 
distribution function (CDF) of top- percent sin-
gular values in the selected matrices. The X-axis 
presents the normalized number of singular val-
ues. The Y-axis presents the ratio of the cumu-
lative values of top-percent singular values. This 
figure implies that the sum of all singular values 
is always contributed by only a few top singu-
lar values in real data. For example, the top 5 
percent singular values contribute 92 percent of 
sum singular values in Indoor-Temp. The univer-
sal existence of such trends reveals the low-rank 
structures in these traces. These redundancy fea-
tures indicate that big data can be near-optimally 
recovered by compressive sensing even if only a 
few data are collected.

Green Collection Framework
Inspired by the observed feature, a novel green 
collection framework is designed in this section.

Design Overview

The architecture of our green collection frame-
work is illustrated in Fig. 3, which consists of two 
core components.

First, the online learning component runs at 
the cloud side. Leveraging the historical data and 
compressive sensing, this component predicts the 
minimal amount of data that needs to be col-
lected in the near future. Then this component 
transforms the data amount to be the collecting 
probability and reports the probability to every 
node.

Second, the local control component runs 
at every node. Since the collecting probability 
provided by the online learning component is 
an average value from the global view, it may 
not be suitable for an individual node. Resorting 
to the adaptive control theory, this component 
adaptively tunes one node’s collecting probabil-
ity according to the dynamics and unexpected 
situation.

The advantages of this framework include: 
•	This framework is easy to implement in 

practice.
•	The high-complexity compressive sensing 

and prediction are computed at the central-
ized cloud side. The distributed computing 
at the node side is low-complexity local con-
trol.

•	This framework tactfully takes advantage of 
compressive sensing to reduce the power 
consumption while guaranteeing the data 

quality by both global prediction and local 
adjustment.
Detailed designs of two components are intro-

duced in the following two subsections. More-
over, we pose open problems and discuss some 
future research directions about this framework.

Online Learning Component

As per the analysis in the previous section, data 
redundancy universally exists in big data. Existing 
mathematical tools can analyze the redundant 
data at the cloud side after collecting all data. 
However, because a certain node has no global 
view, when it senses a datum, it is not easy to 
distinguish whether this datum is principal or 
redundant. Thus, it cannot locally decide wheth-
er to transmit this datum to the cloud or not.

Leveraging the advantage of compressive 
sensing, this problem can be simplified. Note that 
compressive sensing can achieve near-optimal 
matrix completion if a minimal amount of data 
(related to the rank) are collected and these data 
are randomly distributed in the matrix. Thus, 
instead of distinguishing an individual datum, 
our design aims to acquire the minimal amount 
of data and near-optimally recover all of the data 
by compressive sensing.

The online learning component operates as 
follows.

•Predicting the minimal amount of data col-
lection for compressive sensing. First, the change 
of rank in historical data can be analyzed at 
the cloud side using SVD. Second, applying the 
prediction methods [15] on the historical ranks, 
we can estimate the rank in the next time slot. 
To achieve an accurate prediction, the classic 
ARIMA model is adopted for rank estima-
tion, which considers both trend and periodici-
ty. Third, the minimal amount of data K can be 
derived by compressive sensing theory [13].

•Adding the margin in the predicted amount. 
Since the environment is dynamic, a predicted K 
may not be adequate for near-optimal recovery. 
Hence, we introduce some margin into the pre-

Figure 2. CDF of singular values to explore the redundancy feature in real 
datasets.
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dicted amount by r = bK, where b is the margin 
coefficient, and we define r  as the amount of 
principal data in this article.

•Computing the collecting probability. The 
collecting probability P can be computed by P 
=r/nt, which indicates that the collecting prob-
ability of every node at every time slot is P. The 
cloud will broadcast this probability to all nodes 
once it has P.

Local Control Component

After receiving P from the cloud, a smart node 
could collect data at every time slot with proba-
bility P. However, this probability is an average 
result from the global view without consider-
ing the individual difference of every node. For 
example, in a noise detection application, indoor 
noise changes less frequently than outdoor noise 
does. Obviously, the collected data from an out-
door node are more important than those from 
an indoor node.

To achieve a better data quality, the local 
control component is designed. This component 
runs at every node and self-adapts the value of 
Pi according to P, dynamics, unexpected issues, 

neighbor status, residual energy, and link quality.
Dynamics: The recent sensed datum is com-

pared to the previous sensed data. If the change 
of data is stable or periodic, Pi can be decreased 
gradually. If an aperiodic and frequent change of 
data happens, Pi is gradually increased.

Unexpected Issue: If any unexpected issue 
is detected, Pi could be increased sharply. For 
example, a smartphone detects a traffic crash; if 
there is no other smartphone nearby, this smart-
phone enlarges Pi immediately.

Neighbor Status: Using the same example of 
the traffic crash, if there are many smartphones 
nearby, each one could keep its Pi for data col-
lection.

Residual Energy: When the residual energy 
in a node is not enough, it reduces its collecting 
rate Pi for energy saving and reports this condi-
tion to the cloud.

Link Quality: The transmission power 
depends on the link quality of the wireless chan-
nel. Generally, a poor channel caused by inter-
ference or mobility results in large transmission 
power and multiple retransmissions. Hence, Pi is 
reduced when the link quality becomes poor.

The local control component is not limited to 
the above aspects. More aspects can be appended 
to this control component as input.

Performance Evaluation
We implement a real testbed and conduct 
trace-driven simulations to evaluate the perfor-
mance of the proposed green collection frame-
work (GCF).

Experimental Implementation

Experimental Testbed: Our testbed includes a 
total of 51 TelosB sensor nodes. They are divided 
into three groups, A, B, and C, carrying out differ-
ent data collection methods for comparison. Each 
group has 16 nodes to sense environmental data 
and 1 sink node to gather these data. In a 7.2 m  
6 m open-air area, 4  4 = 16 positions are select-
ed to deploy nodes as a grid. As shown in Fig. 4, at 
each position, there are three sensor nodes, which 
belong to three respective groups. A total of 48 
nodes are deployed in the area. The other three 
sink nodes are connected to three laptops.

Each group with 17 sensor nodes organizes its 
own network. These nodes transmit data using 
ZigBee. There are 16 ZigBee channels in the 
2.4 GHz industrial, scientific, and medical (ISM) 
band. The three groups of WSNs work during the 
same period with three non-overlapping channels, 
so there is no interference among them.

Implementation Setting: There are some 
common configurations for the three groups. The 
duration of every time slot is set as 1 min. The 
collected data are stored in a database in the lap-
top according to our customized format includ-
ing timestamp, node ID, temperature, humidity, 
light, voltage, and received signal strength indi-
cator (RSSI).

The individual configuration for each group 
is as follows. Group A: Collection Tree Protocol 
(CTP). The TinyOS library provides the code of 
CTP. The radio is always on for data transmis-
sion. Group B: Fixed low-duty-cycle (FLDC12.5), 
one cycle is set to 4 h with 0.5-h active state and 
3.5-hour sleep state. Thus, the duty-cycle is 12.5 

Figure 3. Architecture of the green collection framework.
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percent. (Different duty cycles are also tested at 
50, 25, and 6.25 percent. We only show FLDC12.5 
here because it has the lowest power consump-
tion subject to the error ratio ≤ 5 percent.) Group 
C: GCF with the requirement of error ratio ≤ 5 
percent.

Experiment Results: The data quality and 
power consumption are compared among three 
groups. All three groups run 10 days for tem-
perature, 10 days for humidity, and 10 days for 
light collection and recovery.

The metric of data quality is the data error 
ratio e. Figure 5a plots the histogram of e in dif-
ferent groups in different environments. Group 
A: Since CTP gathers all data, it has no error, e 
= 0. Group B: FLDC12.5 loses 87.5 percent envi-
ronmental data. Although the missing data are 
estimated by compressive sensing, error ratios are 
3.1 percent in temperature, 3.6 percent in humid-
ity, and 5.4 percent in light. Group C: GCF offers 
satisfactory results on data quality. Due to the 
accurate prediction and local feedback control, 
GCF displays e = 1.8 percent in temperature, 2.1 
percent in humidity, and 4.7 percent in light after 
compressive sensing. In summary, the compari-
son result indicates that the GCF can ensure the 
accuracy requirement.

The power consumption is measured by the 
energy consumption ratio a. The results of ener-
gy consumption ratio are displayed in Fig. 5b. 
Group A: The radio keeps turning on in CTP, so 
a = 100 percent. Group B: Since the duty cycle 
is fixed in FLDC, a  =12.5 percent. Group C: 
The number of transmissions in GCF changes 
according to the dynamic environment. From Fig. 
5b, we observe that a = 5.3 percent in tempera-
ture, 5.5 percent in humidity, and 8.2 percent in 
light. The results imply that GCF is better than 
FLDC12.5 and much better than CTP in energy 
saving in our experiment.

GCF outperforms classic data collection 
methods in this experiment. Compared to CTP, 
GCF is much better on energy efficiency within 
the requirement of data quality. Compared to 
FLDC12.5, both methods can achieve the data 
quality, but GCF performs much better in power 
consumption.

trAce-drIven sImulAtIon

Simulation Setting: Although the experiment 
verifi es the effi cacy and effi ciency of GCF, it only 
carries out in an experimental scenario with some 

limitations such as small-scale sensor networks 
and small area. In order to test the extensive 
applicability of GCF, we conduct the simulations 
based on the three real datasets introduced earli-
er. These three datasets are on diverse scales (50, 
249, 15 nodes), diverse areas (40 m  30 m, 200 
m  100 m, and 300 m  100 m), and diverse sce-
narios (indoor, forest, and ocean). Every dataset is 
simulated by CTP, FLDC50, FLDC25, FLDC12.5, 
FLDC6.25, and GCF, respectively. The require-
ment of data error ratio is still set ≤ 5 percent.

Simulation Results: Figure 6 shows the data 
error and energy consumption ratios of different 
data collection methods among indoor, forest, 
and ocean datasets in our simulations.

We can fi nd in Figs. 6a, 6b, and 6c that every 
e is 0 for in CTP; for FLDC, the smaller duty 
cycles result in larger error ratios; and the error 
ratios of GCF are less than 5 percent in all three 
scenarios.

The energy consumption ratios of CTP, 
FLDC50, FLDC25, FLDC12.5, and FLDC6.25 
are 100, 50, 25, 12.5, and 6.25 in Figs. 6b, 6d, and 
6f. These values are fi xed, and are independent 
of scenarios or environments. Nevertheless, such 
ratios of GCF are dynamic corresponding to the 
diverse scenarios or environments. Most energy 
consumption ratios a of GCF are smaller than 
10 percent. For example, a in Ocean-Temp and 
Ocean-Light are only 6.0 percent, and in Indoor-
Temp 7.5 percent.

In summary, the results in the simulation are 
similar to the performance in the experiment. 
The proposed GCF guarantees the data quality 
with low energy consumption. The most import-
ant property of GCF is its self-adaptation to the 
dynamics, making it outperform existing methods 
in nearly all scenarios.

dIscussIon
Using data redundancy and compressive sensing 
to reduce power consumption is a new concept 
in wireless big data collection. Open issues and 
research directions are worth investigation in the 
future.

There are still two open issues in the pro-
posed framework. First, the current GCF can-
not achieve a minimal amount of data collection 
because it adopts random collection from a 
global view but does not optimize the collection 
amount on every individual node. A more accu-
rate collection method is desired to save more 

Figure 5. Experiment results: a) experimental performance: data factor; b) experimental performance: 
energy consumption.
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power consumption. Second, there is a trade-off 
between the recovery accuracy and the total col-
lection amount. Deriving the theoretical curve 
to present the trade-off relationship is still an 
open issue.

The GCF also produces several promising 
research directions. One valuable direction is 
to study the correlation between multi-source 
data to further reduce the amount of data col-
lection. For example, we can collect some light 
data to estimate not only the light but also the 
temperature distribution due to their high cor-
relation. The second significant direction is 
false data detection. To maintain the data qual-
ity, false data should be detected and removed 
from the collected principal data. In addition, 
this work only considers the correlation in the 
time domain. If the positions or trajectories are 
known, space correlation could further opti-
mize the amount of mobile data collection. Last 
but not least. in a multihop network, network 
coding and other data aggregation techniques 
can be taken into account to further reduce the 
total amount of data collection.

Conclusion
A green collection framework is proposed in this 
article to save energy in big-data-based smart 
industries. The core contribution of this frame-
work is to reduce the number of transmissions by 
leveraging the compressive sensing theory. The 
evaluation results demonstrate that the proposed 

framework dramatically decreases the power 
consumption compared to existing approaches 
while the data quality is guaranteed.
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