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Abstract—Integrating software defined networking into mil-
itary coalition to realize a software defined coalition (SDC)
infrastructure is non-trivial due to the stringent requirements
(e.g., real-time, efficiency and reliability) of SDC applications in
highly dynamic tactical network environments. Recent designed
SDC datapaths improve the performance of SDC applications
by offloading complex, stateful operations from the SDC control
plane to data plane devices. However, they have two limitations.
First, results of offloaded operations (referred to as local state) are
not shared between data plane devices, resulting in substantial
performance issues in SDC networks. Second, configuring low-
level SDC datapaths is time-consuming and error-prone. To
address these two issues, in this paper, we design Dandelion, a
novel, high-level SDC programming system that allows users to
specify the behavior of SDC data plane devices and the datapath
configurations can be automatically generated with the local state
sharing to efficiently utilize the network resources. We implement
a prototype of Dandelion and demonstrate its efficiency and
efficacy using experiments. Results show that with Dandelion,
the total throughput is two times higher than that of without
Dandelion.

I. INTRODUCTION

The recent success of software defined networking (SDN)
systems [1]–[3] motivates the efforts to integrating SDN into
military coalitions to realize an efficient, agile, and optimal
software-defined coalition (SDC) infrastructure [4]. In SDC,
autonomous coalition members operate under highly dynamic
tactical network environments with resource constraints, such
as limited power and processing capability, and dynamic
connectivity.

One may think that the integration of SDN into SDC is
straightforward, because SDN allows coalition members to
realize efficient, flexible control over the coalition networks
through flexible packet match-action processing on the data
plane and logically centralized in the control plane [5], [6].
Despite these promising features, they are insufficient for
supporting SDC.

The fundamental reason behind this insufficiency is that
SDC applications (e.g., flexible load-balancing and detection
of DNS amplification attack) have stringent performance re-
quirements (e.g., real-time, efficiency and reliability) under
highly dynamic tactical network environments. Implement-
ing SDC applications using the above SDN architecture in
such environment would incur high communication overhead
between the data and control planes of SDC applications,
resulting in significant delay, efficiency and reliability issues.

Some SDC datapaths are recently proposed, which offload
complex, stateful operations on packets (e.g., counting, flow
security inspection and congestion control) from the control
plane to data plane devices to improve the performance of SDC
applications [7], [8]. Different datapath primitives, such as
state counter, packet buffer and packet in-network processing
block, are designed in these systems to support various SDC
applications, e.g., stateful firewall, proactive routing protec-
tion, and resilient routing.

However, these systems suffer from two limitations. First,
results of offloaded stateful operations at data plane devices,
which we refer to as local state in the remaining of the
paper, are not shared between data plane devices, resulting
in substantial resource under-utilization in SDC networks. For
example, a firewall middlebox is usually a bottleneck in an
SDC network due to its limited processing speed. As such,
once a data flow is identified as secure, non-sensitive by a
firewall, all future packets of this flow should be forwarded
along a path with higher reliability and throughput, without
the need of passing the firewall again. However, the security
state of this flow is only stored in the firewall and not
shared with other devices. Without knowing that this flow
is non-malicious, an upstream device (e.g., a gateway router)
in the SDC network still has to forward all the packets of
this flow to the firewall. Second, although some distributed
update primitives provide interfaces for sharing of local state
between data plane devices [9], configuring such low-level
SDC datapaths still requires time-consuming and error-prone
manual efforts.

Toward addressing these two limitations, in this paper,
we design Dandelion, a novel, high-level SDC programming
system. Specifically, Dandelion introduces a series of novel
programming primitives for users to model and specify the
behavior of SDC data plane devices. In addition, we design
a novel data structure called decision graph and an efficient
configuration framework to translate high-level SDC programs
into efficient SDC datapath configurations. The translated
configurations allow data plane devices in SDC to exchange
local states with the goal of efficiently utilizing the resources
in SDC networks (e.g., the packet processing capability of
devices and the data transmitting capability between devices).

The rest of this paper is organized as follows. Section II
discusses related work and gives an motivating example.
Section III gives an overview of Dandelion and Section IV
presents the details of how Dandelion translates a high-level
SDC program into data plane configurations. We evaluate the
performance of Dandelion in Section V before concluding the
paper in Section VI.

II. RELATED WORK AND MOTIVATION

Related work: Some SDN/SDC datapaths are recently pro-
posed to offload complex, stateful operations on packets (e.g.,
counting, flow security inspection and congestion control)
from the control plane (e.g., a base station) to data plane
devices (e.g., mobile devices) to improve the performance of
SDN applications [7], [8], [10]–[17] under dynamic tactical
environments. In these designs, results of offloaded operations
are stored by each data plane device independently. We refer
to them as local states. SOL [11] and Merlin [12] tackle
the placement and configuration of data plane devices by
solving constrained path computation problems. P4CEP [17]
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and OpenSDC [8] focus on expanding the capability of data
plane devices from packet processing to event processing.
SNAP [10] designs a high-level programming system that
translates a high-level program to the configuration of stateful
operations in data plane devices. Despite these substantial ef-
forts on stateful SDC datapath, one major, common limitation
of these systems is that the local states of each data plane
device are not shared with others. As we will show shortly in
the motivating example, this would lead to substantial resource
under-utilization in SDC networks, impairing the performance
of SDC applications.

To allow local state sharing between data plane devices,
DDP [9] designs some primitives for distributed datapath
update. Hula [14] and MP-HULA [13] also design probing
mechanisms for data plane devices running load balancing
applications to update their local states. However, manually
configuring such low-level primitives on an application-by-
application basis is time-consuming and error-prone.
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Fig. 1: Motivating example: a data collection SDC application in a
network with firewall.
Motivation: We give an example to demonstrate the limitation
of existing systems, and the benefit of local state sharing. In
particular, we consider a tactical network in Fig. 1(a), which
consists of a ground sensor (h1), a middebox firewall (fw),
a computing server (h2), a gateway switch gw, and other
forwarding switches (a-d). The bandwidth of links gw ! fw,
and fw ! a is 10 Kbps, while the bandwidth of all other links
is 100 Kbps. The data collected by the sensor h1 should first
be sent to the firewall fw, which identifies whether the data
is sensitive or not based on the 5-tuple of the packet carrying
the data (i.e., srcAddr, dstAddr, srcPort, dstPort and protocol).
An SDC data collection application is running to send data
collected from the sensor to the server. The network operator
wants to enforce the following policy: For any data sent from
h1 to h2, if it is sensitive, the data should be forwarded along
a route passing switch b, otherwise passing switch c.

To enforce such a policy, state-of-the-art stateful datapath
systems (e.g., SNAP [10]), which do not support local state
sharing between data plane devices, would compute the config-
uration as shown in Fig. 1(b). Specifically, the gateway switch
gw forwards all packets to the firewall fw. fw identifies if it is
sensitive or not, and appends a tag on each packet to indicate
the identification result before sending to switch a. Switch a

then matches the tag of each arrival packet and forwards them
to b (path1) or c (path2) based on the matching result.

Though this configuration is correct, it does not fully utilize
the resources in SDC network, impairing the performance of
the data collection application. Once the sensitivity of a data
flow is identified by the firewall fw, no future packet of this
flow needs to pass fw again. Instead, they can be forwarded
along path gw, a, c, d, or gw, a, b, d with a higher transmission
bandwidth. However, such a new forwarding configuration

cannot be realized without local state sharing between the
firewall fw, the gateway gw and the switch a.

The above example demonstrates the benefits of local state
sharing between data plane devices in SDC. However, man-
ually setting up the low-level configuration for local state
sharing is too time-consuming and error-prone. As such,
we design Dandelion, a novel SDC programming system to
automatically translate high-level SDC programs into datapath
configurations with local state sharing.

III. DANDELION OVERVIEW

In this section, we first give the programming model of
Dandelion, followed by its architecture, and the workflow to
transform a high-level SDC program to datapath configurations
with local state sharing.
A. Programming Model

Dandelion adopts an omnipotent programming model
proposed in high-level SDN programming systems (e.g.,
Maple [18]), which logically programs every single packet
with an onPacket function. In addition to the primitives
that read and test on packet headers, Dandelion designs the
following primitives for users to model and specify middle-
boxes in SDC network. The first is to specify a middlebox
in the network (m = middlebox(name, property)) where
the property indicates the middlebox is stateless or not; The
second is to invoke the packet handling of a middlebox
(m.handle(pkt)). Specifically, we consider a middlebox as
a packet handling function that can return the result for the
incoming packet. For the stateless middlebox, if two packets
have the same 5-tuple match fields, they always have the same
results. For the stateful middlebox, this cannot be guaranteed
as the packet processing depends on the state in the middlebox
and the state is updated when processing packets.

In Dandelion, the interaction between switch and middlebox
is bi-directional. A switch can send a packet to a middlebox
for the processing through a tunnel. (Here we use tunnels to
distinguish them from the generated datapath configuration.
And tunnels can be out-of-band that use the controller as a
relay.) After the processing, the middlebox can send the packet
back and share its local state of the packet with switches. In
Dandelion, such interaction is transparent to the user so that
the user does not need to manually configure the local state
sharing between data plane devices. Instead, as we will show
in the next section, Dandelion automatically translates high-
level SDC programs into data plane configurations with local
state sharing.

In addition to the middlebox primitives, Dandelion also
adopts the route algebra primitive [19] for the user to specify
path constraints for packets forwarding in SDC network. The
abstract syntax of the Dandelion programming model is shown
in Fig 2.
Example Dandelion program: Revisit the motivating exam-
ple in Section II, the network operator can specify the policy
to forward packets of sensitive and non-sensitive data along
different paths using the Dandelion program in Fig. 3.

Specifically, line 2 (3) specifies a path constraint that starts
from h1 to h2 and must pass through b (c) (Note that it does not
represent a concrete path but a path constraint). And the return
statements use any function (defined in route algebra [19])
that picks any path satisfying the constraint. Although the
programming model is quite simple, as involving middleboxes
which physically map to nodes in the network, the system
needs to guarantee the correctness for the program.
Correctness: We denote the correctness as the following: For
any packet pkt, the real forwarding path for pkt in the network

2
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p ::= onPacket(pkt) {I}, d1, . . . , dn (program)
d ::= xr = r (route algebra decl)

| xm = middlebox(n, s) (middlebox decl)
I ::= x = e

| I; I (sequencing)
| x = xm.handle(pkt) (middlebox operation)
| if eb : I then : I (conditional)
| return xr | return r (func return)

e ::= c | x (consts, vars)
| xm (middlebox vars)
| pkt.a (packet fields)

er ::= e == e | e  e . . . (relational)
eb ::= er | er & er | er | er . . . (boolean)
(r 2 route algebra expressions)
(c 2 strings) (consts)
(a 2 {macSrc, ipDst . . . }) (packet fields)
(n 2 strings) (middlebox names)
(s 2 {stateless, stateful}) (properties)
(x 2 {x1, x2, . . . , y1, . . . }) (variables)

Fig. 2: Dandelion abstract syntax.

L1: mFW = middlebox("firewall", "stateless")
L2: PATH1 = h1 -> b -> h2 //b: waypoint
L3: PATH2 = h1 -> c -> h2 //c: waypoint
L4: //any: picking any path
L5: def onPacket(pkt):
L6: if pkt.srcAddr == h1 & pkt.dsrAddr == h2:
L7: if mFW.handle(pkt) == SENSITIVE:
L8: return any(SPC.stable + PATH1)
L9: else:
L10: return any(SPC.stable + PATH2)
L11: else: return DROP

Fig. 3: The Dandelion program for the policy in the motivating
example. For line 8 (9), the correct versions are in their comments.

must comply with the returned path for pkt in the program.
For example, if the programmer uses opt function to pick the
shortest hop count path with the constraint (i.e., opt(PATH1)),
then the returned path is gw, a, b, d. However, as the (first)
packet must access the firewall, the real path must include fw

which does not comply with the returned path in the program.
One simple solution to guarantee the correctness is to let the

programmer explicitly include the necessary middlebox nodes
in the path constraint. In this case, it should be PATH1 = h1
-> fw -> b -> h2. However, this can add extra burden to
programmers that they should make sure the path constraints
comply with the traces of packets in the network.
System Path Constraint: To resolve the issue, we introduce
the System Path Constraint (SPC) which is a global variable
storing path constraints that must be complied with when
computing a path at any location in the program. The intuition
is that when a packet going through the program, some state-
ments can add path constraints for the packet. For example, in
Fig. 3, line 6 adds a constraint that the path should start from
h1 to h2; Line 7 adds a constraint that the path must include
the firewall. Then, after line 7, the SPC variable includes
constraints that the path starts from h1 to h2 and includes fw.
If the line 8 uses the opt function, then it should be return
opt(SPC + PATH1) where the “+” means connecting the
waypoints constraints in SPC and PATH1, and its result is
gw, fw, a, b, d. (Note that the definition of SPC.stable will
be given in the next section.)
B. Architecture and Workflow

Fig. 4 presents the architecture and workflow on how
Dandelion translates high-level Dandelion SDC programs to
low-level configurations of data plane devices with local
state sharing. Given a high-level Dandelion SDC program,
Dandelion first computes a decision graph that captures the

forwarding decisions process of packets and stateful operations
on packets. Second, Dandelion computes optimal paths for
packet forwarding in the network with a system defined
objective (e.g., maximizing total throughput). Note that the
system computes paths when the returned paths are not
concrete (e.g., using any function), and in the remaining
part of the paper, we assume these paths are not concrete to
introduce the path computation part. Third, the device-level
data plane configurations are generated, which include local
state sharing configurations, so that devices can exchange local
state to forward the packets along the computed optimal paths.
Dandelion leverages the stateful switch for local state sharing
which includes two match-action tables: one is a state table
(i.e., match ! state) and the other is a match table (i.e.,
match+state ! action). Given a switch, a packet first enters
the state table to get its corresponding state (by matching its
packet fields) and then enters the match table to get the action.

Fig 2
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Fig. 5: The configuration translated by Dandelion from the program
in Fig. 3.
Example configuration with local state sharing: Fig. 5 gives
the data plane configuration with local state sharing translated
from the SDC program in Fig. 3. Specifically, by allowing
the local state sharing, the firewall fw can share its local
identification state for a flow with the gateway switch gw. For
example, it can send the state: srcAddr = h1, dstAddr =
h2, srcPort = 12345, dstPort = 22, protocol = tcp !
PROCESSED to gw, which can insert it into its state table.

With this configuration, the first packet p arrives at the
gateway gw is forwarded to fw by getting a state NOT-

PROCESSED at gw (Step 1). Assume fw identifies p as
SENSITIVE. It first sends this local state p ! SENSITIV E

to a (Step 2). Next, fw forwards p to a (Step 3), where p is
forwarded to b because its state is SENSITIVE. Then fw sends
the local state p ! PROCESSED to gw (Step 4). As such,
all future packets with the same match fields as p entering gw

will be forwarded directly to a (Step 5).

IV. DESIGN DETAILS

In this section, we present the details of Dandelion. We
first give the details of decision graph, followed by the path
computation and the data path generation.

3
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A. Decision Graph

The Decision Graph (DG) is used to capture the forwarding
decisions process of packets and stateful operations on packets,
and then generate the datapath configurations. We define a
DG as a directed acyclic graph (with a single root) that has
three types of nodes: packet-test nodes, middlebox-operation
nodes, and action nodes. The first two nodes are the internal
nodes of DG while the last one is the leaf node. An out-edge
of a node can specify a range of packets (if the node is a
packet-test node) or a result from a middlebox (if the node
is a middlebox-operation node). For example, the DG of the
motivating program is shown in Fig. 6. Note that we do not
focus on the computation of DG from a program which can
be achieved by existing (compiler) work [10] [20].

Fig 3

126

pkt.srcAddr 
== h1

pkt.dstAddr 
== h2

mFW.handle(pkt) 

path1 path2

srcAddr == h1

srcAddr != h1

dstAddr == h2
dstAddr != h2

mFW.handle(pkt) == SENSITIVE mFW.handle(pkt) == NORMAL

DROP

Packet-test node

Middlebox-operation node

Action node

Fig. 6: Example of DG.
Given a DG, we denote the sequence of nodes and edges

from the root to an action node (i.e., path constraint pc) as the
trace of pc (T (pc)). Then, given a trace T (pc), we denote
the middlebox-operation nodes of T (pc) as M(pc) (i.e., a
sequence of nodes). As middlebox-operation nodes represent
the packet handling of middleboxes, to not form loops, every
middlebox-operation node can only appear once in M(pc).
Also, by extracting middlebox-operation nodes that represent
stateful middleboxes from M(pc), we have a subsequence of
M(pc) that every node is for stateful middlebox operations
(denoted by M

s(pc)). Given a T (pc), the SPC for its action
node can be easily computed as the T (pc) gives the trace of
the packet enters the action node.
B. Path Computation

As the leaf nodes in DG are path constraints, path com-
putation targets to compute the concrete paths for these leaf
nodes with a system performance objective. (And if leaves are
concrete paths, the path computation just skips them.)
Packet forwarding model: Before path computation, we first
give a packet forwarding model with DG in the network as
the following. As shown in Fig. 7, given a path (gw, a, b) in
the motivating example, logically we consider every switch
in the path has the DG of the example program where
P indicates a packet-test node, M indicates a middlebox-
operation node, and A indicates an action node. The A node
with red color represents the corresponding constraints for
the path. The first packet of the flow (arriving at gw) starts
to traverse the DG as the red line in the figure. When the
packet meets a middlebox-operation node, it will be sent to
the corresponding middlebox through the tunnel. After the
processing, the middlebox will send the packet back and share
its local state (i.e., by installing/modifying rules in the state
table) for the flow with the corresponding middlebox-operation
nodes (each node can be viewed as a pair of state table and
match table) at switches along the path. (If the middlebox is
stateful, then it does not set any state but makes the packet
carry the state.) After the traversal of the DG (i.e., arriving at
the leaf node along the red line), the packet will get the path
and should be forwarded along the path. As local states have
been shared with corresponding middlebox-operation nodes
(or carried by the packet for stateful middleboxes) at other

Variable Description
ui, vi The source and destination nodes of path constraint pci
E All edges (an edge e: (e.src, e.dst)) in the network
me The maximum bandwidth of e
Wi A set of node pairs of pci
zi
e The edge e is selected by pci

bi The bandwidth of flows using the path for pci

TABLE I: Notation.

Constraint Description
8i, 8(x, y) 2 Wi, Path(x, y, E) Path constraints
8i, Path(ui, vi, E) Path exists in E
8e 2 E,

P
i bi ⇤ zi

e  me Bandwidth constraints for edges

TABLE II: Constraints.

switches, the packet does not need to be sent to the middlebox
again at the next switch. We denote a forwarding of a packet
as stable forwarding if the packet does not pass through any
stateless middlebox (compared with the first packet that should
pass through them). For example, the path gw, a, b/c, d is
stable forwarding compared with gw, fw, a, b/c, d. Based on
the stable forwarding, we can extend original SPC variable
to SPC.stable which means the system path constraints
only for stable forwarding paths (i.e., remove the stateless
middleboxes). Then, to allow the state sharing, SPC.stable
should be used as SPC includes the whole constraints for all
packets including the first packet that must pass through all the
middleboxes, which is not efficient when the state is shared
among devices.

Fig 4
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System objective: Based on the model, as the forwarding of
the first few packets has little influence on the performance of
the flow, a simple path computation (that only considers the
stable forwarding) would be the following. We consider the
objective of the network is to maximize the total throughput,
i.e., maximize

P
i bi where i is the index of the path constraint

pci and bi is its throughput. The definition of variables can be
found at Table I. And the constraints can be found at Table II
(where Path(x, y, E) means there exists a simple path starting
from x to y in E). In this paper we focus on the waypoints
constraints for the path constraints (as they may complicate the
path computation) and we consider the waypoints constraint
as a set of node pairs where a pair has the form (x, y) which
indicates packets must pass through x before y. (Note that x
and y can be source/destination nodes.)

As the system path constraints have been added into the
path constraints (by using the SPC.stable), the correctness
can be guaranteed. And it enforces a packet must get results
of stateful middleboxes and then select the correct path.

Fig 5
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Fig. 8: An example to show the excessive constraints. Both datapath
configurations (red and green) are complied to the constraints.

However, the current path constraints may cause excessive

constraints for paths. For example, as shown in Fig. 8, a state-
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ful middlebox-operation node (M ) has two path constraints
A1 and A2 as its children in a DG. And, A1 specifies a path
must pass through switches a, b, d; A2 specifies a path must
pass through switches a, c, d. Then, the path constraints have
(M,a) for both A1 and A2 as it simply connects the waypoints
constraint in SPC.stable and a, b, d (also a, c, d). However,
this is only a sufficient condition as some other conforming
paths are excluded (e.g., a ! M ! b (c), d).
Waypoints constraints computation: Instead of simply con-
necting two waypoints constraints, now we give an algorithm
to compute the waypoints constraints that enforces all the
paths are correct and no conforming paths can be excluded.
The high-level structure of the algorithm is to do a depth-first
traversal for a DG. The traversal only considers the stateful
middlebox-operation nodes and action nodes (and processes
a stateful middle operation node only after all its children
are finished). When traversing a stateful middlebox-operation
node, we can get all possible waypoints constraints under
its decision. Then, the processing of the node is to update
these constraints (each of which can be modeled as a directed
acyclic graph, DAG). As discussed before, we do not want to
add excessive constraints. And the solution is simple: When
processing a middlebox node M , if all the no-incoming-edge
nodes of M ’s possible constraints (i.e., DAGs) are the same,
then skip these nodes until they are not the same and then add
edges (M , x) to each of DAGs where x is the node of the
location that the skipping process stopped at. The insight is
that, skipping a node is safe if the node is the next waypoint
node for all the possible paths. For the example in Fig. 9,
the node M has four possible path constraints (DAGs) and a

should be skipped when updating them.

Fig 6
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Fig. 9: Skip the same nodes.

C. Datapath Generation

Remove redundant nodes of DG: After the path computation,
there are concrete paths for all the leaf nodes in DG. We
follow the packet forwarding model described previously that
all the switches in the network have the same DG. It is easy
to observe that if a switch does not belong to a path, then the
corresponding leaf node of the path can be removed (and then
the no-out-edge internal nodes). Also, by converting the path
in a leaf node to the next hop in the network, we may still
remove redundant nodes. Still consider the firewall example.
After we convert the paths to next hops, we find that the two
leaf nodes of the middlebox node are the same, i.e., switch a

in the network. This means the middlebox-operation node has
no meaning for the gateway gw since whatever the result of
the node is, the next hop does not change. Therefore, we can
remove the node and replace with the leaf node with the next
hop a. Fig. 10 illustrates the process.

Then, for the switch side, based on the updated DG, it
can generate tables and flow rules easily with the multi-table
pipeline structure. Note that a middlebox-operation node can
be viewed as a state table following a match table. As for
the middlebox side, if it is a stateless middlebox, then for
the datapath it only needs to care about is switch-middlebox
tunnels which also can be easily generated. For the stateful
middleboxes, as they belong to computed paths, they can be
viewed as switch nodes with stateful functions that can embed
the results to the packets. When a packet meets a stateful

middlebox node in DG of a switch, and the node cannot be
replaced with a leaf node, then any next hop under the node
is acceptable since it must eventually arrive at the middlebox
and any path from the switch to the middlebox must follow
the path constraints.

Fig 7
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Order of messages: The next issue is how a stateless mid-
dlebox share local states (i.e., update states) in other switches.
It needs to guarantee that for any targeting switch, the update
message should arrive earlier than the packet. For example, in
the firewall example, only the step 2 is finished, step 3 can
be executed. Then a simple solution can be making the packet
carry the update message. Different with the state carrying for
stateful middleboxes, this message can install/modify rules in
the state table of the corresponding middlebox-operation node.

V. PERFORMANCE EVALUATION

In this section, we will first demonstrate the benefits of
Dandelion from two aspects: latency and total throughput,
and then give the evaluation for the waypoints constraints
computation part. All evaluations are run on an 3.5 GHz Intel
i7 processor with 16 GB of RAM running Mac OSX 10.13.
Methodology: First we generate a random topology with 25
nodes and 50 edges. For every edge, we set two random values
as its latency (5 - 10 ms) and bandwidth (5 - 10 Mbps). To
model a flow in the topology, we randomly choose two nodes
from the topology as the source and destination nodes of the
flow. And a flow can have a sequence of nodes in the topology
as its required ordered middleboxes for packet processing.
As a comparison of Dandelion, the traditional approach does
not distinguish whether a middlebox is stateful or stateless.
Therefore, when computing a path for a flow in the tradition
way (i.e., do not apply Dandelion), it requires the path must
pass through all the middleboxes in a correct order. And when
computing a path for a flow in the Dandelion approach, we
random choose a subset of its required middlebox nodes as
stateful middleboxes since for Dandelion approach, stateful
and stateless middleboxes are handled in different ways.
Latency: To show the benefits for the latency aspect, we
consider a single flow and differentiate its number of required
middleboxes. And the target is to find the optimal path to
minimize the latency for the flow. Then, we compare the
results (i.e., the minimal latency) between applying Dandelion
and not.
Total throughput: To show the benefits for the total through-
put aspect, we consider multiple flows and all flows have
the same required middleboxes. We also differentiate the
number of middleboxes. And the target is to find optimal paths
that have maximum total throughput. Then, we compare the
results (i.e., the maximum total throughput) between applying
Dandelion and not.
Waypoints constraints computation: To show the benefits
of the waypoints constraints computation, we set a sequence
of nodes in the topology as a flow’s waypoints constraint.
Then, we consider the minimal latency as system’s objective
and compare the results between applying the waypoints
constraints computation and not (i.e., leading to excessive
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(F=5, M=1) (F=5, M=3) (F=5, M=3 (S=1))
With Dandelion 1.3 (s) 1.4 (s) 4.2 (s)
Without Dandelion 4.5 (s) 10.8 (s) 11.5 (s)

TABLE III: The execution time of path computation to maximize
total throughput for different scenarios.

constraints). In the excessive constraints, all the middlebox
nodes should be passed through before flow’s waypoints.
Results: The results in Fig. 11(a) demonstrate that by us-
ing Dandelion, the latency can be reduced. Specifically, F

specifies the number of flows; M specifies the number of
required middleboxes for flows; S specifies the number of
stateful middleboxes for flows. As minimizing latency for a
flow does not affect the results of other flows, the experiment
only considers one flow scenario. From the results, we can see
that without Dandelion, the latency of the flow grows up when
the number of stateless middleboxes increases but if Dandelion
is applied, the latency grows up only when the number of
stateful middleboxes increases.

The results in Fig. 11(b) demonstrate that by using Dande-
lion, the total throughput can be increased. Specifically, when
there are 5 flows and 3 middleboxes, the total throughput
with Dandelion is around 3 times compared with that without
Dandelion. Eval 1
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Fig. 11: The benefits of Dandelion for latency and total throughput.

The results in Table III show the execution time of the
path computation part to maximize total throughput. Since
with Dandelion, the number of constraints is smaller than that
without Dandelion, the execution time is also reduced (from
10.8 to 1.4 seconds when F=5 and M=3).

Fig. 12 shows the latency with correct constraints (i.e., by
applying waypoints constraints computation) and with exces-
sive constraints. Specifically, the results in Fig. 12(a) consider
that the waypoints only have one node while Fig. 12(b) are
for three nodes. From the results, we can see the excessive
constraints increase the latency, i.e., lead to non-optimal path
computation result. As the number of nodes increases in the
waypoints constraint, the latency with excessive constraints
becomes larger.Eval 3
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Fig. 12: The latency with different waypoints constraints.

VI. CONCLUSION

We design Dandelion, a novel, high-level SDC program-
ming system providing novel high-level primitives for users to
specify the behavior of SDC data plane devices, and automat-
ically translates high-level SDC programs into efficient SDC
datapath configurations with local state sharing. Experiment
results demonstrate its efficiency and efficacy.
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