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ABSTRACT
Current data plane verification (DPV) tools employ a cen-

tralized architecture, where a server collects the data planes
of all devices and verifies them. This architecture is inher-
ently unscalable (i.e., requiring a reliable management net-
work, incurring a long control path and making the server a
single point of failure). In this paper, we tackle this scalability
challenge of DPV from an architectural perspective. In partic-
ular, we circumvent the scalability bottleneck of centralized
design and advocate for a distributed, on-device DPV frame-
work. Our key insight is that DPV can be transformed into a
counting problem on DAG, which can be naturally decom-
posed into lightweight tasks executed at network devices,
enabling scalability. Evaluation shows that a prototype of
this framework achieves scalable DPV under various settings,
with little overhead on commodity network devices.
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1 INTRODUCTION

There has been a long line of research on data plane veri-
fication (DPV). Earlier tools analyzed a snapshot of the com-
plete network data plane [1, 2, 14, 17–19, 23, 24, 28, 32, 33, 35,
36, 38–40]; and more recent solutions focus on incremental
verification [14, 16, 17, 19, 41]. State-of-the-art DPV tools
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(e.g., [41]) can achieve incremental verification times of 10s
of 𝜇𝑠 per rule update. Despite such progress, existing tools
use a centralized design, which lacks the scalability needed
for deployment in large networks. They use a centralized
server to collect the data plane from each network device and
verify the invariants. This requires a management network
to provide reliable, low-latency connections between the
server and devices, which is hard to build for large-scale net-
works [10]. Moreover, the server becomes the performance
bottleneck and single point of failure, e.g., in our test, it takes
APKeep [41] ~1 hour to verify a 48-ary fattree.

To scale up DPV, some studies propose to divide DPV into
different packet spaces [17, 40] or network partitions [16]
to achieve parallel verification in a cluster of servers. For
example, RCDC [16] partitions DPV by device to verify the
availability of all shortest paths in parallel in a cluster. How-
ever, they are still centralized designs with the limitations
above, and RCDC can only verify that particular requirement.

This paper aims to tackle how to scale DPV to be applicable
in real, large networks. Not only can a scalable DPV tool
quickly find network errors in large networks, it can also
support novel services such as convergence-free routing [20,
30], real-time control plane repair [13], fast rollback and
switching among multiple data planes [7, 21, 31], and data
plane verification across domains [8, 37].
Proposal: offloading verification to distributed com-
putations on network devices. Instead of continuing to
squeeze incremental performance improvements out of cen-
tralized DPV, we tackle the scaling issue of DPV from an
architecture perspective. In particular, we embrace a dis-
tributed design to circumvent the inherent scalability bottle-
neck of centralized design. RCDC [16] takes a first step along
this direction by partitioning DPV into local contracts of de-
vices. It gives an interesting analogy between such local con-
tracts and program verification using annotation with induc-
tive loop invariants, but stops at designing communication-
free local contracts for the particular all-shortest-path avail-
ability invariant and validating it in parallel on a centralized
cluster. In contrast, we go beyond this and show that a wide
range of requirements can be verified in a compositional
way by running lightweight tasks distributively on com-
modity network devices, achieving scalable DPV in generic
settings. To our best knowledge, this is the first step toward
distributed, on-device DPV.
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     (S.*W.*D) ∩

Requirement: all packets entering the network 
from S with a destination IP in 10.0.0.0/23 must 
be delivered to D in a simple path waypointing W. 

Topology:

10.0.0.0/23

S A

B C

D

W

∩device X (([^X]*) ∪ ([^X]*[X][^X]*))

(a) An example topology and requirement.

Match Action
10.0.0.0/24 fwd(ANY, {B, W})
10.0.1.0/24 fwd(ALL, {W})

A

Match Action
10.0.0.0/23 fwd(ALL, {C})B

Match Action
10.0.0.0/23 fwd(ALL, {C})W

Match Action
10.0.0.0/23 fwd(ALL, {D})C

Match Action
10.0.0.0/23 fwd(ALL, {A})S

(b) The network data plane.
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[…] : Updated counting when B updates its DP to forward P1 to W.

(c) The DPVNet and the counting process.
Figure 1: An illustration example to demonstrate the workflow of distributed, on-device DPV.

To be concrete, we design our distributed, on-device DPV
framework with a key insight: the problem of DPV can be
transformed into a counting problem on a DAG representing
all valid paths in the network; the latter can be decomposed
into small tasks at nodes on the DAG and distributively exe-
cuted at corresponding network devices, enabling scalability.
Scope of invariants. Our proposal can verify "single-path"
invariants that require packets’ traces should satisfy certain
patterns (e.g., reachability, waypoint, blackhole freeness, iso-
lation, multicast and anycast). We discuss how to efficiently
verify path-comparison invariants (e.g., node disjointness
and route symmetry) and other open questions in §4.
Evaluation. We implement a prototype called Coral and
evaluate it using real-world datasets in both testbed and sim-
ulations. We find Coral consistently outperforms state-of-
the-art DPV tools under various networks (WAN/LAN/DC)
and DPV scenarios, i.e., up to 813× speed up in burst update,
and up to 243× speed up on 80% quantile of incremental veri-
fication, with little overhead on commodity network devices.
Coral achieves scalable DPV for two reasons: (1) by decom-
posing DPV into lightweight tasks executed on devices, its
performance achieves a scalability approximately linear to
the network diameter; (2) when a rule update happens, only
devices whose task results may change need to incrementally
update their results, and send them to needed neighbors. As
such, its verification time can be substantially shortened.
2 DISTRIBUTED, ON-DEVICE DPV

We demonstrate the basic design of distributed, on-device
DPV by considering the network in Figure 1a and the follow-
ing requirement: for all packets entering the network from
𝑆 and destined to 10.0.0.0/23, they must reach 𝐷 via a simple
path passing𝑊 . Such a requirement can be expressed using
a regular expression based language such as FlowExp [17].
2.1 Verification Decomposition
From requirement and topology to DPVNet. The core
challenge to realize distributed, on-device DPV is how to
allocate lightweight tasks to be executed on devices, because
a device runs multiple protocols (e.g., SNMP, OSPF and BGP)
on a low-end CPU, with little computation power to spare.

To this end, we leverage the automata theory [22] to take
the product of the regular expression 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 in the re-
quirement and the topology, perform state minimization on
the product, and get a DAG called DPVNet. Similar to the
product graph in network synthesis [6, 15, 29], a DPVNet
compactly represents all paths in the topology that match
the pattern 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 . It is decided only by 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 and the
topology, and independent of the actual data plane. Figure 1c
gives the computed DPVNet. Devices in the network and
nodes in DPVNet have a 1-to-many mapping. Each node 𝑢
in DPVNet is assigned a unique identifier composed of 𝑢.𝑑𝑒𝑣
and an integer. For example, device𝐶 is mapped to two nodes
𝐶1 and 𝐶2 in DPVNet, because the regular expression allows
packets to reach 𝐷 via [𝐶,𝑊 , 𝐷] or [𝑊,𝐶, 𝐷].
Backward counting along DPVNet. A DPV problem is
transformed into a counting problem on DPVNet: given a
packet 𝑝 , can the network deliver a satisfactory number of
copies of 𝑝 to the destination node along paths in the DPVNet
consistently? "Consistently" means that should 𝑝 enter the
network multiple times, a satisfactory number of 𝑝’s copies
must be delivered each time. This notion is an extended
version of multipath consistency in Batfish [11], and allows
us to verify data planes with random forwarding actions (e.g.,
vendor-specific select-type group table [12]). In our example,
the problem of verifying whether the data plane (Figure 1b)
conforms to the requirement is transformed to the problem
of counting whether at least 1 copy of each 𝑝 destined to
10.0.0.0/23 is delivered to 𝐷1 in Figure 1c consistently.

This counting problem can be solved by traversingDPVNet
in reverse topological order. At its turn, each node 𝑢 takes as
input (1) the data plane of 𝑢.𝑑𝑒𝑣 and (2) for different packet
spaces, the number of copies that can be delivered from
each of 𝑢’s downstream neighbors to the destination, along
DPVNet, by the network data plane, to compute the number
of copies that can be delivered from 𝑢 to the destination
along DPVNet by the network data plane. In the end, the
source node of DPVNet computes the final counting result.
Figure 1c illustrates this algorithm. We use 𝑃1, 𝑃2, 𝑃3 to

represent the packet spaces with destination IP prefixes of
10.0.0.0/23, 10.0.0.0/24, and 10.0.1.0/24, where 𝑃2 ∩ 𝑃3 = ∅
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and 𝑃1 = 𝑃2∪𝑃3. Each𝑢 in DPVNet initializes a (packet space,
count) mapping, (𝑃1, 0), except for 𝐷1 that initializes the
mapping as (𝑃1, 1) (i.e., one copy of any packet in 𝑃1 will be
sent to the correct external ports). Afterwards, we traverse all
the nodes in DPVNet in reverse topological order to update
their mappings. Each node 𝑢 checks the data plane of 𝑢.𝑑𝑒𝑣
to find the set of next-hop devices𝑢.𝑑𝑒𝑣 will forward 𝑃1 to. If
the action of forwarding to this next-hop set is of 𝐴𝐿𝐿-type,
it means 𝑢.𝑑𝑒𝑣 will forward 𝑃1 to all next-hop devices in
this set. The mapping at 𝑢 can be updated by adding up the
count of all downstream neighbors of𝑢 whose corresponding
device belongs to the set of next-hops of𝑢.𝑑𝑒𝑣 for forwarding
𝑃1. For example, 𝐶1 updates its mapping to (𝑃1, 1) because
𝐶 forwards to 𝐷 , but𝑊 2’s mapping is still (𝑃1, 0) because
𝑊 does not forward 𝑃1 to 𝐷 . Similarly, although𝑊 1 has
two downstream neighbors 𝐶1 an 𝐷1, each with an updated
mapping (𝑃1, 1). At its turn, we update its mapping to (𝑃1, 1)
instead of (𝑃1, 2), because𝑊 only forwards 𝑃1 to 𝐶 , not 𝐷 .
If a node 𝑢 in DPVNet has a rule whose forwarding ac-

tion is of 𝐴𝑁𝑌 -type, it means 𝑢.𝑑𝑒𝑣 will forward packets
matching this rule to one of the next-hops in this rule. In
this case, 𝑢 may have different counts for the same packet,
depending on how 𝑢.𝑑𝑒𝑣 selects the next hop. We do not
assume any knowledge on the selection algorithm because it
is sometimes blackbox. Instead, we update the mapping at 𝑢
to record all distinct counts, to verify whether the counting
result is consistently satisfactory or not. Consider the map-
ping update at 𝐴1. 𝐴 would forward 𝑃2 to either 𝐵 or𝑊 . If 𝐴
forwards 𝑃2 to 𝐵, the mapping at 𝐴1 is (𝑃2, 0), because 𝐵1’s
mapping is (𝑃1, 0) and 𝑃2 ⊂ 𝑃1. If 𝐴 forwards 𝑃2 to𝑊 , the
mapping at 𝐴1 is (𝑃2, 1) because𝑊 3’s updated mapping is
(𝑃1, 1). As such, the mapping for 𝑃2 at 𝐴1 is (𝑃2, [0, 1]), indi-
cating both counts can happen. In the end, the mapping of 𝑆1
[(𝑃2, [0, 1]), (𝑃3, 1)] reflects the final counting results. This
means that the data plane does not satisfy the requirement
consistently, i.e., the network data plane is erroneous.
Decomposing into distributed counting. This centralized
counting algorithm in DPVNet allows a natural decomposi-
tion into on-device counting tasks. Specifically, for each node
𝑢 in DPVNet, an on-device counting task: (1) takes as input
the data plane of 𝑢.𝑑𝑒𝑣 and the results of on-device counting
tasks of all downstream neighbors of𝑢 whose corresponding
devices belong to the set of next-hop devices 𝑢.𝑑𝑒𝑣 forwards
packets to; (2) computes all possible numbers of copies that
can be delivered from 𝑢 to the destination along DPVNet
by the network; and (3) sends the result to devices where
its upstream neighbors in DPVNet reside in. In the end, the
device of the source node can easily verify the requirement.
Computing consistent counting results. Counting tasks
are event-driven. Given node 𝑢, when an event happens (e.g.,
a rule/port change at 𝑢.𝑑𝑒𝑣 , or a count update received from
its downstream neighbor) 𝑢.𝑑𝑒𝑣 updates 𝑢’s counting result,

and sends it to 𝑢’s upstream neighbors if the result changes.
As such, assuming the network becomes stable at some point,
the device of source node of DPVNet will eventually update
its count result to be consistent with the network data plane.
Why not forward propagation? We let devices back prop-
agate local counting results along DPVNet. One may wonder
whether they could be forward propagated and achieve a
better performance. Both can provide correct verification
results. However, we choose back propagation because it
allows each device to have counting results from itself to
the final destinations, which can be used by routing services
(e.g., convergence-free routing [20, 30] and fast switching
among multiple data planes [31]) to respond to network er-
rors quickly to improve network availability. In contrast,
forwarding propagation cannot provide such information.
Handling topology and requirement changes. The oper-
ator specifies requirements in the form that packets should
be forwarded along a predefined set of paths in the original
topology. After devices receive tasks, they run independently
without a centralized controller. Devices handle unplanned
topology changes (e.g., link failures) setting corresponding
counting results as 0 and propagating to upstream for con-
sistency. If the failures lead the network to select a path that
is not in the predefined set, our tool is no longer complete,
i.e., it might signal an error even when the property (e.g.,
shortest path under failure) holds. When the operator makes
planned topology changes or specifies new requirements,
we need to recompute and send devices the updated tasks.
2.2 Distributed DPV Protocol
We design a distributed DPV protocol that specifies how

devices incrementally update their on-device tasks, as well as
how they communicate task results, efficiently and correctly.
Information storage. A device 𝑋 stores two types of in-
formation: (1) a table of local equivalence classes (LECs),
where an LEC is a set of packets whose actions are identical
at 𝑋 ; and (2) a counting information base (CIB), a table of
(𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑝𝑎𝑐𝑒, 𝑐𝑜𝑢𝑛𝑡) mapping of each 𝑋 .𝑛𝑜𝑑𝑒 in DPVNet.
Information exchange and handling. Devices share their
CIB with the devices of upstream neighbors along the oppo-
site of links in DPVNet, using UPDATE messages. No loop-
prevention is needed because messages flow along a DAG.
When device 𝑋 receives an UPDATE message, it updates its
CIB with the latest downstream counts in the message, and
sends only the delta (i.e., the changed (𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑝𝑎𝑐𝑒, 𝑐𝑜𝑢𝑛𝑡)
mapping) to its upstream neighbors. Internal events (e.g.,
rule update or link down) are handled in a similar way.
Consider a scenario in Figure 1, where 𝐵 updates its rule

to forward 𝑃1 to𝑊 , instead of to 𝐶 . Figure 1c circles the
changed mappings of different nodes with boxes. 𝐵 locally
updates the results of 𝐵1 and 𝐵2 to [(𝑃1, 1)] and [(𝑃1, 0)],
respectively, and sends them to the devices of their upstream
neighbors, i.e., [(𝑃1, 1)] sent to 𝐴 following the opposite of
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P fwd(ANY, {D, E})

(a) A network for anycast.

E1

D1

S1

[P, (S.*D, 1)]
[P, (S.*E, 0)]

[P, (S.*D, 0)]
[P, (S.*E, 1)]

(b) The correct DPVNet.
Figure 2: Verifying an anycast, a requirement withmul-
tiple 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 with different destinations.
(𝐴1, 𝐵1) and [(𝑃1, 0)] sent to𝑊 . Upon receiving the update,
𝑊 need not update its mapping for𝑊 3, because𝑊 does not
forward any packet to 𝐵. So𝑊 sends no update to𝐴 along the
opposite of (𝐴1,𝑊 3). In contrast, 𝐴 needs to update the task
result for 𝐴1 to [(𝑃1, 1)] because (1) no matter 𝐴 forwards
packets in 𝑃2 to 𝐵 or𝑊 , 1 copy of each packet will be sent to
𝐷 , and (2) 𝑃2∪𝑃3 = 𝑃1. After updating the result,𝐴 sends the
update to 𝑆 . Finally, 𝑆 updates the result for 𝑆1 to [(𝑃1, 1)],
i.e., the requirement is satisfied after the update.
3 VERIFY COMPLEX REQUIREMENTS

We next discuss how to verify more complex requirements.
Anycast/Multicast. Consider an anycast requirement for 𝑆
to reach 𝐷 or 𝐸, but not both (Figure 2a). This is satisfied in
the network. One may think a natural solution is to build a
DPVNet for each destination, respectively, let devices count
along allDPVNets, and cross-produce the results at the source.
However, this is incorrect. In this example, if we build two
DPVNets, one for each destination, we get two chains 𝑆1 →
𝐷1, and 𝑆2 → 𝐸1. After counting on both DPVNets, 𝑆1 gets a
set [0, 1] for reaching 𝐷1, and 𝑆2 gets [0, 1] for reaching 𝐸1.
The cross-product computed by device 𝑆 would be [(0, 0),
(0, 1), (0, 1), (1, 1)], raising a false positive of network error.
Our solution is to construct a single DPVNet representing

all paths in the network that reach at least one destination,
by multiplying the union of all regular expressions (e.g., 𝑆.∗𝐷
and 𝑆.∗𝐸) with the topology, and specify one counting task
for one regular expression, at all nodes in DPVNet, including
all destination nodes. Consider the same anycast example.
We compute one DPVNet in Figure 2b. Each node counts the
number of packets reaching both 𝐷 and 𝐸. The count of 𝐷1
is [(𝑆.∗𝐷, 1), (𝑆.∗𝐸, 0)] and 𝐸1 is [(𝑆.∗𝐷, 0), (𝑆.∗𝐸, 1)]. Such
results are sent to 𝑆1. After 𝑆1 processes it, it determines
that a packet is always sent to 𝐷 or 𝐸, but not both, i.e., the
network is correct. This design extends to multicast as well.
Redundant delivery or waypoint inspection. We use
a slightly odd requirement to demonstrate how to verify a
complex requirement that hasmultiple regular expressions of
the same destination. Consider Figure 3a and a requirement
that specifies at least two copies of each packet in 𝑃 should be
sent to 𝐷 along a loop-free path, or at least one copy should

Match Action
P fwd(ALL, {D})

Match Action
P fwd(ANY, {A, W})

Match Action
P fwd(ALL, {B，D}) P

B

S

A

W DMatch Action
P fwd(ALL, {D})

A

B

W

S

(a) A network and its data plane.

P

B

S

A

W D1

D2

(b) The updated topology
with virtual destinations.

Figure 3: Verifying a requirement with multiple
𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s with the same destination.
be sent to 𝐷 along a loop-free path passing𝑊 for inspection.
We observe that the data plane satisfies this requirement.

Following the previous design, one may want to handle
this case by also constructing a single DPVNet for the union
of two 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s (i.e., 𝑆.∗𝐷 and 𝑆.∗𝑊 .∗𝐷). However, because
these 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s have the same destination, the counting
along DPVNet cannot differentiate the counts for different
𝑝𝑎𝑡ℎ_𝑠𝑒𝑡s, unless the information of paths are collected and
sent along with the counting results. This would lead to large
communication and computation overhead across devices.
Another strawman is to construct one DPVNet for one

regular expression, count separately and aggregate the result
at the source via cross-producing. However, false positives
again can arise. Suppose we construct a DPVNet for each
𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 , and perform counting separately. 𝑆 will receive a
counting result [1, 2] for reaching 𝐷 with a simple path, and
a counting result [0, 1] for reaching 𝐷 with a simple path
passing𝑊 . The cross-product results [(1, 0), (1, 1), (2, 0),
(2, 1)] indicate that a phantom violation is found.
To address this issue, we add virtual destination devices.

Suppose a requirement has𝑚 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s with the same des-
tination𝐷 . We change𝐷 to𝐷1 and adds𝑚−1 virtual devices
𝐷𝑖 (𝑖 = 2, . . . ,𝑚). Each 𝐷𝑖 has the same set of neighbors as
𝐷 does. We then rewrite the destination of 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑖 to 𝐷𝑖

(𝑖 = 1, . . . ,𝑚). Figure 3b gives the updated topology of Fig-
ure 3a. Next, we take the union of all 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝s, intersect
it with an auxiliary 𝑝𝑎𝑡ℎ_𝑒𝑥𝑝 specifying no any two 𝐷𝑖 , 𝐷 𝑗

should co-exist in a path. We then multiply the result with
the new topology to get one single DPVNet. Counting can
then proceed as the case for regular expressions with differ-
ent destinations, by letting each device treat all its actions
forwarding to 𝐷 as forwarding to all 𝐷𝑖s.
All-shortest-path availability.This invariant in Azure [16]
requires all pairs of ToR devices to reach each other along a
shortest path and all ToR-to-ToR shortest paths to be avail-
able in the data plane. Other than DPVNet construction and
on-device decomposition, we prove that for each𝑢 inDPVNet,
it does not need to send anything to its upstream neighbors,
reducing distributed verification to local verification. Specifi-
cally, no 𝑢 needs to compute the number of copies of packets
that can delivered from 𝑢 to destination. Instead, each 𝑢 only
checks if 𝑢.𝑑𝑒𝑣 forwards any packet to all the devices cor-
responding to the downstream neighbors of 𝑢 in DPVNet.
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If not, a network error is found and 𝑢.𝑑𝑒𝑣 can immediately
report it to the operators. This makes local contract [16] a
special case of distributed, on-switch DPV.
4 DISCUSSION
We discuss open research questions in regarding to dis-

tributed, on-device DPV and use cases it can benefit.
How to handle path-comparison invariants? To verify
invariants that require the comparison between the paths
of different packet spaces (e.g., route symmetry and node-
disjointness), one may construct the reachability DPVNet
for each packet space, let on-device verifiers collect the ac-
tual downstream paths and send them to their upstream
neighbors, and eventually perform the comparison with the
complete paths of the two packet spaces as input. One po-
tential downside, however, is efficiency, as more information
than counting is collected and propagated. Distributed graph
computation [27] may shed light for more efficient solutions.
How to handle packet transformations? Suppose a de-
vice has packet transformation rules, it can use BDD to en-
code such actions [39], and extend the CIB and the protocol
UPDATE message to record and share the count results of
packet transformation actions. Recent progress from model
checking of pushdown systems [5] could also be helpful for
encoding such rules more efficiently.
How to handle a huge number of valid paths? One con-
cern is that DPVNet may be too large to generate in large
networks with a huge number of valid paths. First, our survey
and private conversations with operators suggest that they
usually want the network to use paths with limited hops,
if not the shortest one. The number of such paths is small
even in large networks. Second, if a network wants to verify
requirements with a huge number of valid paths, a potential
solution is to partition the network into abstract one-big-
switches, construct DPVNet on this abstract network, and
perform intra-/inter-partition distributed verifications.
Does a company have to upgrade all its devices to use
this framework? Our framework can be deployed incre-
mentally in two ways. The first is to assign an off-device
instance (e.g., VM) for each device without an on-device veri-
fier, who plays as a verifier to collect the data plane from the
device and exchange messages with other verifiers based on
DPVNet. This is a generalization of the deployment of RCDC,
whose local verifiers are deployed in off-device instances.
The second is the divide-and-conquer approach above. We
deploy one verifier on one server for each partition. The
verifier collects the data planes of devices in its partition
to perform intra-partition verification, and exchanges the
results with verifiers of other partitions for inter-partition
verification. The two approaches are not exclusive.
What use cases can benefit from distributed, on-device
DPV? In convergence-free routing [20, 30], devices can use

their own counting results toward destinations to decide
the next-hops to forward packets. In a network where SDN
and distributed routing coexist [7, 31], devices can use such
information to decide which data plane to use. Fast control
plane repair [13] can use the verification results on devices
to quickly find network errors and rollback to the correct
configurations. This framework can also enable interdomain
DPV [8, 37] to improve interdomain network reliability.
5 PERFORMANCE EVALUATION

We implement a prototype called Coral to evaluate its
capability (§5.1), performance (§5.2, §5.3) and overhead (§5.4).
5.1 Functionality Demonstrations

We assemble a network of 6 switches in Figure 1a: 4 Mel-
lanox [25], 1 Edgecore [9] and 1 Barefoot [4]. We run demos
to verify (1) loop-free, waypoint reachability from 𝑆 to 𝐷
in Figure 1a, (2) loop-free, multicast from 𝑆 to 𝐶 and 𝐷 , (3)
loop-free, anycast from 𝑆 to 𝐵 and 𝐷 , (4) different-ingress
consistent loop-free reachability from 𝑆 and 𝐵 to 𝐷 , and (5)
all-shortest-path availability from 𝑆 to 𝐶 [16]. We run each
demo with correct and erroneous data planes. The network
always computes the right results. Details can be found at [3].
5.2 Testbed Experiments
We add 3 Barefoot switches to mimic the 9-device Inter-

net2 WAN [26]. We inject propagation latencies between
switches, based on Internet2 topology [34]. We verify the
conjunction of loop-freeness, blackhole-freeness and all-pair
reachability between switches along paths with (≤x+2) hops,
where 𝑥 is the smallest-hop-count for each pair of switches.
Experiment 1: burst update. We first evaluate Coral in
the scenario of burst update, i.e., all forwarding rules are
installed to corresponding switches all at once. Coral fin-
ishes the verification in 0.99 seconds, outperforming the best
centralized DPV in comparison by 2.09× (Figure 4a).
Experiment 2: incremental update.After the burst update,
we randomly generate 10𝐾 rule updates distributed evenly
across devices and apply them one by one. After each update,
we incrementally verify the network. For 80% of the updates,
Coral finishes the verification ≤ 5.42𝑚𝑠 , outperforming the
best centralized DPV in comparison by 4.90×.
5.3 Large-Scale Simulations

We implement an event-driven simulator to evaluate Coral
in various real-world networks.
Datasets and comparisons.We use 5 datasets. We assign
link latencies for WAN based on topologies [34], and 10𝜇s
latency for each link in LAN/DC.We compare Coral with cen-
tralized DPV tools: AP [36], APKeep [41] and Veriflow [19].
Requirements. We verify the same reachability require-
ment in §5.2 for WAN/LAN and the all-ToR-pair shortest
path reachability for DC. For all datasets, the latency to com-
pute on-device tasks is between 0.07 and 338 seconds.
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Network Verification Time
Name #Device #Rules Type AP APKeep VeriFlow Coral

Internet2 9 7.74 × 106 WAN 2.07 2.88 11.20
exp: 0.99 (2.09×)

simu: 0.95 (2.18×)

Stanford 16 3.84 × 103 LAN 0.49 0.29 0.12 0.06 (2.00×)

Airtel1 16 9.64 × 104 WAN 0.82 2.56 1,771.14 0.72 (1.14×)

Airtel2 68 4.56 × 105 WAN 5.93 18.23 39,979.64 1.60 (3.71×)

Fattree (k=48) 2880 3.31 × 106 DC 40,608.79 3,293.30 46,103.03 4.05 (813.16×)

(a) Verification time of burst update (seconds).

Network
Percentage < 10 ms 80% quantile (ms)

AP APKeep VeriFlow Coral AP APKeep VeriFlow Coral

Internet2 0% 29.29% 0.03%
exp: 81.55%
simu: 83.63% 2782.10 26.55 345.62

5.42 (4.90×)
8.83 (3.01×)

Stanford 1.23% 99.93% 22.55% 99.76% 10,522.66 0.27 11.22 0.06 (4.5×)
Airtel1 4.89% 13.20% 0% 85.50% 1,488.84 122.25 336.88 4.99 (24.50×)
Airtel2 1.49% 10.73% 0% 73.38% 924.10 127.78 1,127.78 73.64 (1.74×)

Fattree (k=48) 0% 0% 0% 96.81% 29.21 86.17 18,962.00 0.12 (243.42×)

(b) Verification time of 10K incremental updates.
Figure 4: Verification time of experiments and large-scale simulations.
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Figure 5: UPDATE message processing overhead.
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Figure 6: Initialization overhead.
Metric. We study the verification time. It is computed as
the period from the arrival of data plane updates at devices
to the time when all requirements are verified, including
the propagation delays. For centralized DPV, we randomly
assign a device as the location of the server, and let all devices
send data planes to the server along lowest-latency paths.
Results: burst update. In Figure 4a, for WAN/LAN, Coral
completes the verification in ≤ 1.60𝑠 and achieves an up to
3.71× speedup than the fastest centralized DPV. For DC, this
speedup is up to 813.16×. This is because Coral decomposes
verification into on-device tasks, which have a dependency
chain roughly linear to the network diameter. A DC has a
small diameter (e.g., 4 hops). As such, Coral achieves a very
high level of parallelization, enabling high scalability.
Results: incremental update. Figure 4b shows that, for 10K
incremental verification in each network, the 80% quantile
verification time of Coral is up to 243× faster than the fastest
centralized DPV. In all datasets, Coral finishes verifying at
least 73.38% rule updates in < 10𝑚𝑠 , while this lower bound
of other tools is less than 1%. This is for the same reason
as in experiments (§5.2). When a rule update happens, only
devices whose on-device task results are affected need to
incrementally update their results, and only these changed
results are sent to neighbors incrementally. For most rule
updates, the number of affected devices is small (2 devices
at 75% quantile in all simulations). In addition, all UPDATE
messages during simulations have a size less than 150 KB.
5.4 On-Device Microbenchmarks
Initialization overhead. For each of 98 devices from WAN
/ LAN and 3 devices from Fattree (one edge, aggregation

and core switch), we measure its initialization overhead in
burst update (i.e., computing the initial LEC and CIB), in
terms of total time, maximal memory and CPU load, on the
3 switch models. The CPU load is computed as 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒

/(𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 × #𝑐𝑜𝑟𝑒𝑠). On all 3 switches, all devices in the
datasets complete initialization in ≤ 0.64𝑠 , with a CPU load
≤ 0.48, and a maximal memory ≤ 18.3𝑀𝐵 (Figure 6).
UPDATE message processing overhead. For each of the
same set of 101 devices, we collect their received UPDATE
messages during burst and incremental update, replay them
consecutively on each of the three switches, and measure the
message processing overhead, i.e., maximal memory, CPU
load and processing time/message. (Figure 5). For 90% of de-
vices, all 3 switches process all UPDATE messages in ≤ 2.37𝑠 ,
with a maximal memory ≤ 32.37𝑀𝐵, and a CPU load ≤ 0.16.
And for 90% of all 83.48𝐾 UPDATE messages, the switches
can process it in ≤ 6.11𝑚𝑠 . To summarize, these microbench-
marks show that Coral can be deployed on commodity net-
work devices with little overhead.
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