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Abstract

A core requirement in the 5G network is to support low-latency

end-to-end communication. However, in the current network ar-

chitecture, the communication between devices has to go through

unnecessarily long paths involving radio access networks, edge net-

works and backbone networks, hence could result in high latency.

To address this problem, in this paper, we design an interdomain

edge peering framework called EdgePeering. Instead of sending

traffic to backbone networks, in EdgePeering, edge networks from

different network providers use each other to forward traffic to-

ward destinations, and therefore improve the latency of end-to-end

communication. Meanwhile, network providers in EdgePeering

maintain their autonomy to make policies on which links in their

own edge network can be used to forward such traffic. We develop

a novel distributed algorithm in EdgePeering, which allows edge

nodes of different networks to collaboratively decide the optimal

routing and traffic assignment for delivering all traffic along paths

with low latency, subject to the policies of all networks but without

exposing them. Extensive evaluation using real-world topologies

shows that EdgePeering provides a tight approximation ratio, and

can scale to large interdomain edge networks.
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Figure 1: Amotivating example for EdgePeering. 1○: in the current network

architecture, device 1 needs to go through the backbone networks to reach

device 2, resulting in potentially high latency. 2○: in EdgePeering, different

edge networks can collaboratively form interdomain edge paths, potentially

reducing the end-to-end latency from device 1 to device 2.

1 Introduction

5G is a key enabler for diverse new use cases, such as autonomous

driving [6] , augmented/virtual reality [9] , cloud gaming [33],

and ultra-high-resolution video streaming [24]. To this end, many

innovations (e.g., 5G New Radio [4], carrier aggregation [8] and dy-

namic slot scheduling [23]) have been made, including commercial

5G network deployments since 2019 [7, 10].

Despite such progress in both technology innovation and com-

mercial deployment, the end-to-end communication latency in 5G

is still constrained by its overall architecture design. Specifically,

consider a 5G typical scenario [4] in Figure 1. For device 1 to send

data traffic to device 2, the workflow consists of 4 steps: (1.1) de-

vice 1 sends the data through its connected radio access network

(RAN) to edge network 𝐴; (1.2) edge network 𝐴 performs packet

core functions (e.g., billing) on the received data, and forwards it to

the backbone network 𝐴 and Internet; (1.3) the backbone network

𝐶 forward the data to edge network 𝐶 ; (1.4) edge network 𝐶 sends

the data to device 2 through RAN C. The end-to-end communica-

tion latency between two devices is limited by the latency of this

unnecessarily long path, and can be very high.

Researchers have made several efforts to reduce the end-to-end

latency in cellular networks, and the basic design principle is to

avoid sending the traffic through the backbone networks. Specifically,
some propose to design and use mobile ad hoc network (MANET)

routing and scheduling protocols [11, 18, 28] to forward traffic

through end devices. However, it has limited scalability, and hence

is not suitable for the 5G network. Others propose to use servers

in edge networks as coordinators to decide the routing among end

devices [22, 32]. However, this separation of control path and data

path cannot respond to the highly dynamic environment of 5G in

time. Some industry solutions use edge networks for traffic forward-

ing among devices connected to the same network provider [5, 14],

but they require significant hardware investment and only work on

data traffic among devices connected to the same network providers.

https://doi.org/10.1145/3538401.3546600
https://doi.org/10.1145/3538401.3546600
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In this paper, we propose EdgePeering, a novel framework that

achieves low-latency end-to-end communication in 5G at a low

cost when the latency of the backbone network is high, using two

novel design points:

Peering and exchanging traffic at edge networks. (§2). Our

key observation is that the edge networks of different network

providers can collaboratively provide low-latency end-to-end paths

among all devices. For example, in the same scenario in Figure 1, by

adding edge peering links between edge networks from different

providers at common locations (e.g., edge data centers provided by

data center providers or internet exchange points) and forwarding

traffic through edge networks, device 1 can send data to device 2

with a potentially lower latency, without going through backbone

networks. By allowing network providers to use the edge networks

of others, we may improve the end-to-end latency of 5G at low

investment and social cost, and ensure scalability.

We note that the idea of pooling the resources of multiple

networks together to improve the overall network performance

is already being practiced in some other contexts. For example,

REIN [29] proposes to let two neighboring networks use the infras-

tructure of each other as a backup to improve the network reliability.

Such sharing of resources improves the performance of individual

network providers, reduces their investment cost, and also reduces

the overall social cost (e.g., less waste of idle resources).
Distributed, collaborative traffic engineering among edge net-

works (§3). To realize low-latency forwarding using edge networks,

the participating network providers first negotiate offline to reach

an agreement on a cost function that the network of their edge net-

works (called an interdomain edge network) aims to minimize. Next,

a novel, distributed algorithm is developed, which allows routers

(called edge nodes) from different network providers in the interdo-

main edge network to collaboratively decide the optimal routing

and traffic assignment for delivering traffic in the interdomain edge

network along paths with low latency, subject to the topologies

and policies of all network providers but without exposing them.

Prototype evaluation (§4). We implement a prototype of

EdgePeering, and evaluate its performance using real world topolo-

gies. Results show that EdgePeering provides a tight approximation

ratio on minimizing the agreed cost function, with small messaging

and computation overhead even in large networks.

2 Overview of EdgePeering

In this section, we present the architecture and the basic work-

flow of EdgePeering, and then formulate the optimal low-latency

routing problem in EdgePeering.

2.1 Architecture and Workflow

Interdomain edge network. Figure 2 gives the architecture of

EdgePeering. We consider an interdomain edge network𝐺 = (𝑉 , 𝐸)
composed of 𝐾 edge networks from different network providers,

indexed by 𝑘 = 1, . . . , 𝐾 . Links in 𝐺 are directional. A link between

two edge nodes 𝑖, 𝑗 ∈ 𝑉 represents that they are directly connected.

Given a link 𝑒 = (𝑖, 𝑗), we use 𝑑𝑒 and 𝑑𝑖 𝑗 interchangeably to denote

its latency. EachAS𝑘 has a set of edge nodes (i.e., routers) denoted as
𝑉𝑘 . Each edge node 𝑖 ∈ 𝑉 belongs to one and only one edge network.

In other words, for any two edge networks 𝑘, 𝑘 ′, 𝑉𝑘 ∩ 𝑉𝑘′ = ∅.
𝐸𝑘 is the set of links in 𝐸 whose both ends are in 𝑉𝑘 , i.e., 𝐸𝑘 =

Figure 2: The architecture of EdgePeering.

{(𝑖, 𝑗) | (𝑖, 𝑗) ∈ 𝐸, 𝑖, 𝑗 ∈ 𝑉𝑘 }. Given a link 𝑒 = (𝑖, 𝑗) ∈ 𝐸, if 𝑖, 𝑗 belongs
to different edge networks, 𝑒 is called an edge peering link. The set of
all edge peering links in 𝐺 is denoted as 𝐸𝐼 . We see that ∪𝑘𝑉𝑘 = 𝑉

and (∪𝑘𝐸𝑘 ) ∪ 𝐸𝐼 = 𝐸.
For any two different edge nodes (𝑖, 𝑗) ∈ 𝑉 × 𝑉 , we use 𝑙𝑖 𝑗 to

denote the amount of data traffic node 𝑖 needs to deliver to 𝑗 . A

node pair (𝑖, 𝑗) is called a traffic demand pair if 𝑙𝑖 𝑗 > 0. The set of

all traffic demand pairs in𝐺 is called the traffic demand set, denoted

as 𝑆 = {(𝑖, 𝑗) | (𝑖, 𝑗) ∈ 𝑉 ×𝑉 , 𝑙𝑖 𝑗 > 0}.
Workflow of EdgePeering. We briefly present the basic work-

flow of EdgePeering, in which edge nodes of different networks

collaboratively compute the optimal routing and traffic assignment

decisions for delivering all traffic demand pairs along low-latency

paths. All these steps can be executed in short or long periods as

needed.

• Step 0: all 𝐾 networks agree on a cost function 𝑔 for the inter-

domain edge network through offline negotiation. This step is

similar to that in collaborative science networks [21] and com-

mercial interdomain networks [26, 29, 30];

• Step 1: each edge node 𝑖 estimates 𝑙𝑖 𝑗 , the traffic demand from

itself to 𝑗 , and measures 𝑑𝐵
𝑖 𝑗
, the latency to deliver traffic to 𝑗

through the backbone networks for all other edge nodes 𝑗 ∈
𝑉 /{𝑖};
• Step 2: each edge node 𝑖 decides 𝛼𝑖 𝑗 ∈ (0, 1), the maximal latency

coefficient, and uses 𝛼𝑖 𝑗𝑑
𝐵
𝑖 𝑗
as the maximal allowable latency for

delivering traffic from 𝑖 to 𝑗 ;

• Step 3: edge nodes execute a distributed algorithm (§3) to decide

the route and traffic assignments for all traffic demand pairs,

such that (1) for each (𝑖, 𝑗) ∈ 𝑆 , its traffic can be delivered along

policy-compliant paths (i.e., paths allowed by network providers

to forward interdomain traffic) with latency no higher than𝛼𝑖 𝑗𝑑
𝐵
𝑖 𝑗
,

(2) 𝑔 is minimized, and (3) the policies of edge networks are not

exposed.

2.2 Optimal Low-Latency Routing Problem

In EdgePeering, given a node pair (𝑖, 𝑗) ∈ 𝑆 , its traffic demand 𝑙𝑖 𝑗
can be forwarded along one or more simple paths in 𝐺 . Such paths

may span over multiple edge networks, and are called interdomain

edge paths. Given a path 𝑝 , we use 𝑑𝑝 =
∑
𝑒∈𝑝 𝑑𝑒 , i.e., the sum of

latency of all links in the path, to denote its latency.

Each edge network 𝑘 has the autonomy to make policies to

decide for each link 𝑒 ∈ 𝐸𝑘 , whether it can be used to forward data

from 𝑖 to 𝑗 , and keeps such policies as private information, similar
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to other interdomain routing protocols (e.g., [27, 31]). Given a path

𝑝 connecting 𝑖 and 𝑗 , it is called a policy-compliant interdomain

edge path for traffic demand pair (𝑖, 𝑗) if and only if for each link

𝑒 in 𝑝 , the corresponding network’s policy allows 𝑒 to be used to

forward traffic from 𝑖 to 𝑗 . We use P𝑝𝑜𝑙
𝑖 𝑗

to denote the set of all

policy-compliant interdomain edge paths of traffic demand pair

(𝑖, 𝑗).
For each traffic demand pair (𝑖, 𝑗) ∈ 𝑆 , we use P𝑖 𝑗 to denote the

set of all policy-compliant interdomain edge paths in𝐺 that has an

end-to-end latency lower than or equal to its maximal allowable

latency, i.e., P𝑖 𝑗 = {𝑝 |𝑝 ∈ P𝑝𝑜𝑙
𝑖 𝑗

, 𝑑𝑝 ≤ 𝛼𝑖 𝑗𝑑𝐵𝑖 𝑗 }. For each 𝑝 ∈ P𝑖 𝑗 ,
we use 𝑦𝑝 to denote the amount of traffic demand pair (𝑖, 𝑗) to be

delivered along 𝑝 . For each link 𝑒 ∈ 𝐸 in the interdomain edge

network, we use 𝑥𝑒 to denote the total amount of traffic to be

delivered along 𝑒 . For presentation simplicity, we also introduce

vector notations x = [𝑥𝑒 ]𝑒∈𝐸 and y = [𝑦𝑝 ]𝑝∈∪(𝑖,𝑗 )∈𝑆 P𝑖 𝑗 .
For presentation simplicity, we use the maximal traffic load of

all edge peering links as the cost function, i.e., 𝑔(x) =𝑚𝑎𝑥𝑒∈𝐸𝑖𝑥𝑒 ,
We believe it is reasonable for EdgePeering, because it measures

the fairness (i.e., traffic load balance) among cross-domain traffic

forwarding. We will discuss more general cost functions later.

With these notations, we formally define the following problem

in EdgePeering:

Problem 1 (Optimal Low-Latency Routing Problem). Find
the optimal solution to the following optimization problem,

min 𝑔 (x) =𝑚𝑎𝑥𝑒∈𝐸𝐼 𝑥𝑒 , (1)

subject to, ∑︁
(𝑖,𝑗 )∈𝑆

∑︁
𝑝∈P𝑖 𝑗 : 𝑒∈𝑝

𝑦𝑝 ≤ 𝑥𝑒 ,∀𝑒 ∈ 𝐸, (2a)∑︁
𝑝∈P𝑖 𝑗

𝑦𝑝 ≥ 𝑙𝑖 𝑗 ,∀𝑖, 𝑗 ∈ 𝑆, (2b)

𝑥𝑒 ≥ 0,∀𝑒 ∈ 𝐸, (2c)

𝑦𝑝 ≥ 0,∀(𝑖, 𝑗) ∈ 𝑆, ∀𝑝 ∈ P𝑖 𝑗 , (2d)

where each edge network keeps its policy on what links can be used
to forward traffic for traffic demand pair (𝑖, 𝑗) private.

Equation (2a) ensures that for each link 𝑒 , the sum of the traffic

load of each path passing link 𝑒 does not exceed the amount of

assigned traffic load of link 𝑒 . Equation (2b) ensures that for each

traffic demand pair (𝑖, 𝑗), all its traffic demand 𝑙𝑖 𝑗 is allocated along

policy-compliant paths with latency no higher than 𝛼𝑖 𝑗𝑑
𝐵
𝑖 𝑗
. Note

the ≥ and ≤ in these two constraints can be replaced by = without

affecting the optimal solution. Equations (2c)(2d) specify that all

𝑥𝑒s and 𝑦𝑝s are non-negative.

The fundamental challenge of Problem 1 is that there is no global

view of any policy-compliant path due to the privacy policies of

edge networks. As such, we next design a novel distributed algo-

rithm to solve it.

3 A Distributed Algorithm for Optimal

Low-Latency Routing

The key steps of our distributed algorithm are summarized in

Algorithm 1. Specifically, it solves Problem 1 in three phase: node

clustering, local optimization, and aggregation. First, edge nodes in

𝐺 execute a distributed, randomized clustering protocol to form a

partition of clusters multiple times, based on the latencies among

Algorithm 1: An algorithm that solves Problem 1 dis-

tributively through clustering, local optimization, and dis-

tributed aggregation of local optimal solutions.

1 Initialization: 𝜆 ← 𝜖 (1−𝜖 )
(2−𝜖 ) (1+𝜖 ) ,𝑇 ←

24(1− 𝜖
2
) (1+𝜖 ) ln |𝐸 |
𝜖2

;

2 // Phase 1: Node Clustering
3 Construct𝑇 partitions sampled from (𝐷, 𝜆)-padded

decompositions ;

4 // Phase 2: Local Optimization
5 foreach 𝑡 ← 1, . . . ,𝑇 do

6 foreach cluster𝐶 ∈ C𝑡 do
7 The cluster head of𝐶 solves its Problem 2 and populates

the solution (x𝐶,𝑡 , y𝐶,𝑡 ) to all nodes in𝐶 ;

8 // Phase 3: Aggregation
9 foreach 𝑖 ∈ 𝑉 do

10 foreach 𝑒 = (𝑖, 𝑗) ∈ 𝐸 do

11 𝑇𝑖,𝑗 ← {𝑡 |∃𝐶 ∈ C𝑡 : 𝑖, 𝑗 ∈ 𝐶 };
12 �̃�𝑒 ← 1+𝜖

𝑇

∑︁
𝑡∈𝑇𝑖,𝑗

𝑥
𝐶𝑖,𝑡 ,𝑡
𝑒 ;

13 𝑇𝑖 ← {𝑡 |∃𝐶 ∈ C𝑡 : 𝐵 (𝑖, 𝐷) ⊆ 𝐶 };
14 foreach 𝑝 ∈ ∪P𝑖 𝑗 that passes 𝑖 do
15 �̃�𝑝 = 1

|𝑇𝑖 |
∑

𝑡∈𝑇𝑖 𝑦
𝐶𝑖,𝑡 ,𝑡

𝑝 ;

them, i.e., nodes in the same cluster are not too far from each other

in terms of latency. Second, in each partition, the head node of

each cluster constructs and solves a local optimal routing problem

without violating the private information of each network, and

sends the corresponding local result to the nodes in the same clus-

ter. In the end, each node independently take a weighted average

of the local results it receives to get the final routing and traffic

assignment.

3.1 Node Clustering

In the clustering phase, we execute a clustering protocol 𝑇 times

(Line 3) in concurrent to construct 𝑇 partitions of the complete

interdomain edge network𝐺 . Our goal is to partition𝐺 into smaller

clusters in each partition, where nodes in each cluster are not too

far in 𝐺 in terms of latency.

To this end, we leverage the notion of padded decomposition

[15, 20] in metric embedding theories [20]. Specifically, we assign

each node 𝑖 a unique identifier ID𝑖 that is comparable. Given a node

𝑖 in 𝐺 , we use 𝐵(𝑖, 𝑑) to denote the set of nodes in 𝐺 whom 𝑖 can

reach in a latency no more than 𝑑 , without considering the policy of

any network. Using 𝑑𝑖 𝑗 to represent the shortest latency from 𝑖 to 𝑗 ,

we have 𝐵(𝑖, 𝑑) = { 𝑗 | 𝑗 ∈ 𝑉 ,𝑑𝑖 𝑗 ≤ 𝑑}. We let 𝐷 = 𝑚𝑎𝑥 (𝛼𝑖 𝑗𝑑𝐵𝑖 𝑗 ), i.e.,
the largest maximal allowable latency of all traffic demand pairs.

A (𝐷, 𝜖)-padded decomposition, where 𝜖 ∈ (0, 1), is a probability
measure over the set of graph partitions, that for each 𝑖 ∈ 𝑉 , the
probability that all nodes in 𝐵(𝑖, 𝐷) are in the same cluster is at

least 1 − 𝜖 . That is, the closer 𝜖 gets to 0, the more likely it is that

nodes within a certain distance will be assigned to the same cluster,

and vice versa.

Our clustering protocol has two phases: advertising and selection.

In the advertising phase, each node 𝑖 broadcasts its ID𝑖 to all other

nodes in𝐵(𝑖, 𝑟𝑖 ), where the broadcast radius 𝑟𝑖 is𝑚𝑖𝑛(𝑧𝑖 , 𝑟 ln |𝑉 |+𝐷).
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Here, 𝑟 = 2𝐷
𝜖 , and 𝑧𝑖 is independently sampled from a distribution

with a probability density function 𝑝 (𝑧𝑖 ) = |𝑉 |
|𝑉 |−1 ·

𝑒−𝑧𝑖 /𝑟
𝑟 .

In the selection phase, from all the IDs it receives, each edge

node 𝑖 selects node 𝑗 with the smallest ID (e.g., ordered by ASCII

value) as its cluster head. Using metric embedding theories [20], we

can prove that for each run of our clustering protocol, the resulting

set of clusters is a partition of 𝐺 sampled from a (𝐷, 𝜖)-padded
decomposition partition.

3.2 Local Optimization

After constructing 𝑇 partitions of clusters, for each cluster, we let

its cluster head construct and solve a local convex programming

problem. Specifically, given a cluster 𝐶 , let 𝐸𝐶 be the set of links

whose both ends are in 𝐶 , i.e., 𝐸𝐶 = {(𝑖, 𝑗) | (𝑖, 𝑗) ∈ 𝐸, 𝑖, 𝑗 ∈ 𝐶} and
𝑆𝐶 be the set of all traffic demand pairs (𝑖, 𝑗) such that all nodes of

𝐵(𝑖, 𝐷) is fully contained in the cluster 𝐶 , i.e., 𝑆𝐶 = {(𝑖, 𝑗) | (𝑖, 𝑗) ∈
𝑆, 𝐵(𝑖, 𝐷) ⊂ 𝐶}. We construct a local optimal routing problem for𝐶 ,

which optimizes the same objective function as the global convex

programming in Problem 1, with three differences: (1) only decide

the routing and traffic assignments for traffic demand pairs in 𝑆𝐶 ;

(2) only decide the traffic assignments for links in 𝐸𝐶 , and (3) set

the traffic assignment for links in 𝐸 − 𝐸𝐶 to zero. Formally, this

problem is defined as follows.

Problem 2 (Local Optimal Routing Problem). Given a clus-
ter 𝐶 , find the optimal solution to the following problem:

min 𝑔 (x) =𝑚𝑎𝑥𝑒∈𝐸𝐼 𝑥𝑒 (3)

subject to,∑︁
(𝑖,𝑗 )∈𝑆𝐶

∑︁
𝑝∈P𝑖 𝑗 : 𝑒∈𝑝

𝑦𝑝 ≤ 𝑥𝑒 , ∀𝑒 ∈ 𝐸𝐶 , (4a)∑︁
𝑝∈P𝑖 𝑗

𝑦𝑝 ≥ 𝑙𝑖 𝑗 , ∀𝑖, 𝑗 ∈ 𝑆𝐶 , (4b)

𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸𝐶 , (4c)

𝑥𝑒 = 0, ∀𝑒 ∈ 𝐸 − 𝐸𝐶 , (4d)

𝑦𝑝 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝑆𝐶 , ∀𝑝 ∈ P𝑖 𝑗 , (4e)

𝑦𝑝 = 0, ∀(𝑖, 𝑗) ∈ 𝑆/𝑆𝐶 , ∀𝑝 ∈ P𝑖 𝑗 . (4f)

The scale of the Problem 2 is much smaller than Problem 1,

however, how to construct is still an issue. Because nodes in the

same cluster 𝐶 are not necessarily in the same edge network, a

strawman approach that collects the topology and routing policy of

all nodes in 𝐶 to construct this convex programming model is not

feasible. To tackle this, for each partitioned cluster computed by

the cluster protocol in the previous phase, we use the latency and

routing information of nodes in the same cluster to construct a local

convex programming problem at its head, and let the head solve

it. Because edge nodes in the same cluster may belong to different

networks, we use a recursive query process similar to AODV [11]

and DSDV [25] to collect the necessary information in a path-

vector abstraction (e.g., the ALTO path vector extension [13, 17]) to

construct the local convex programming problem, while allowing

networks to keep their topology and policy information private.

Details of the query process can be found in [1].

For a given a cluster 𝐶 , we denote the optimal solution to its

Problem 2 as (x̃𝐶 , ỹ𝐶 ). After the head of 𝐶 computes (x̃𝐶 , ỹ𝐶 ), it
sends this solution to all other nodes in𝐶 . We use (x∗, y∗) to denote
the optimal solution to Problem 1, and prove that:

Theorem 1. Define x∗,𝐶 = [𝑥∗,𝐶𝑒 ]𝑒∈𝐸 such that 𝑥∗,𝐶𝑒 = 𝑥∗𝑒 if
𝑒 ∈ 𝐸𝐶 , and 0 otherwise. Then 𝑔(x̃𝐶 ) ≤ 𝑔(x∗,𝐶 ).

We prove it by showing that (x∗,𝐶 , [𝑦∗𝑝 ]𝑝 ) is a feasible solution
to Problem 2. Details can be found in [1].

3.3 Aggregating Local Optimals for Global

Optimization

After all cluster heads compute their local optimization problems

and send the results to other nodes in the clusters, each node com-

putes the final routing and traffic assignment decisions by taking a

weighted average of all its received local optimal solutions for each

decision variable 𝑥𝑒 and 𝑦𝑝 .

Specifically, each node 𝑖 counts that for each link (𝑖, 𝑗) ∈ 𝐸, which
partitions have a cluster that contains both 𝑖 and 𝑗 , denoted as 𝑇𝑖, 𝑗
(Line 11), and which partitions have a cluster that contains the ball

𝐵(𝑖, 𝐷), denote as 𝑇𝑖 (Line 13) Note that for any (𝑖, 𝑗) ∈ 𝐸, 𝑇𝑖 ⊆ 𝑇𝑖, 𝑗 .
With these results, node 𝑖 computes 𝑥𝑒 for each link 𝑒 = (𝑖, 𝑗)
as the average of all local solutions of 𝑒 in iterations where 𝑖 , 𝑗

are in the same cluster, i.e., 𝑥𝑒 = 1+𝜖
𝑇

∑
𝑡 ∈𝑇𝑖,𝑗 𝑥

𝐶𝑖,𝑡 ,𝑡
𝑒 , where 𝑥

𝐶𝑖,𝑡 ,𝑡
𝑒

is the solution of the cluster that contains 𝑖 in the 𝑡-th partition

(Line 12). Node 𝑖 also computes 𝑦𝑝 for all paths passing 𝑖 in a

similar way (Line 15). The vector (x̃ = [𝑥𝑒 ]𝑒 , ỹ = [𝑦𝑝 ]𝑝 ) is then the

solution Algorithm 1 computes for the global routing problem (i.e.,
Problem 1).

We next analyze the performance of Algorithm 1. First, Algo-

rithm 1 has a low time complexity. Specifically, in Algorithm 1, in

total there are a polynomial number of local convex programming

problems to solve (i.e., bounded by 𝑂 ( |𝑉 | ·𝑇 ), the number of edge

nodes in 𝐺 times the number of partitions). None of any two these

local problems is coupled. As such, each can be solved in polyno-

mial time, and in parallel, at the corresponding cluster center. In

addition, the population of the optimal solutions to local problems

also takes a polynomial time because (1) populating the solution to

any local problem is bounded by 𝑂 ( |𝐸 |)), and (2) the solutions to

all local problems can be populated in parallel.

In addition to low computation complexity, we also prove:

Theorem 2. Suppose the objective function 𝑔(x) is convex
partitionable[12]. Let (x̃, ỹ) be the solution computed by Algorithm 1,
it is a solution to Problem 1 with high probability (i.e., 1 − 1

|𝐸 |2 ), and

has an approximation ratio of 1 + 𝜖 , i.e., 𝑔 (x̃)
𝑔 (x∗) ≤ (1 + 𝜖).

The proof is omitted due to space limit, and can be found in [1].

This shows the generality of Algorithm 1: it computes a (1 + 𝜖)-
approximated solution to Problem 1 for any cost function that is

convex partitionable. Thismeans that in practice, network providers

can negotiate to collaboratively optimize diverse cost functions. For

example, not only is 𝑔(x) = 𝑚𝑎𝑥𝑒∈𝐸𝐼 𝑥𝑒 convex partitionable, so

are the maximal traffic assignment of any set of links in 𝐺 , i.e.,
𝑔 =𝑚𝑎𝑥𝑒∈𝐸𝑎,𝐸𝑎⊂𝐸 (𝑥𝑒 ) and the weighted sum of traffic assignment

of any set of links in 𝐺 , i.e., 𝑔 =
∑
𝑒∈𝐸𝑎,𝐸𝑎⊂𝐸 (𝑤𝑒𝑥𝑒 ). As such, they

can also be optimized by Algorithm 1.

4 Performance Evaluation

We implement a prototype of EdgePeering, and evaluate its per-

formance with extensive experiments using real-world topologies.
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We aim to answer the following questions. (1) What is the perfor-

mance of Algorithm 1 in finding optimal solutions for the optimal

low-latency routing problem in interdomain edge networks? (2)

Can EdgePeering scale to large networks with low overhead?

4.1 Experiment Settings

Network topology.We use the topology of 243 real networks of

various sizes from Topology Zoo [19] and Rocketfuel [3] as the

topologies of interdomain edge networks in our experiments. We

focus on the scenario where the latency of EdgePeering can be

lower than that of the backbone network. In these topologies, the

number of nodes ranges from 4 to 96, and the number of links

ranges from 4 to 97. When evaluating EdgePeering’s scalability

later, we add another 10 larger topologies. The largest ones have

127 nodes and 129 links, 113 nodes and 183 edges, respectively.

Experiment parameters. We divide the nodes into 6 ASes for

each topology and set the lower bound of latency of each link as

10, and the upper bound as 300. For each topology, we randomly

select 10% of the links as edge peering links.

For each topology, we randomly select 80% of node pairs as the

set of traffic demand pairs. For each traffic demand pair (𝑖, 𝑗), we
randomly assign its traffic demand from a uniform distribution

between 50 and 100. We use 2 times of its lowest latency in the

topology to approximate its maximal allowable latency. To simulate

the policies of different network providers, among all paths con-

necting 𝑖 and 𝑗 with a latency smaller than its maximal allowable

latency, we randomly select 50% (30%) of them as policy-compliant

interdomain edge paths in the topology with ≤ 20 (> 20) nodes.

In our prototype, we use Gurobi [2] as the solver. We conduct

experiments with 𝑔 =𝑚𝑎𝑥𝑒∈𝐸𝐼 𝑥𝑒 and 𝑔 =
∑
𝑒∈𝐸 𝑥𝑒 as the objective

functions. We set 𝜖 to be {0.3, 0.5, 0.7, 0.9}. For each choice of 𝜖 , we

repeat the experiment for each topology 5 times and measure the

average result.

4.2 Results

We only present the results with 𝑔 = 𝑚𝑎𝑥𝑒∈𝐸𝐼 𝑥𝑒 , and omit the

results with 𝑔 =
∑
𝑒∈𝐸 𝑥𝑒 because they show similar trends in all ex-

periments. We present results on both performance and scalability

of EdgePeering.

Performance. We study the performance of EdgePeering by com-

paring the value of the objective function 𝑔(x̃) computed by Al-

gorithm 1 and the actual optimal objective function value 𝑔(x∗)
computed by directly solving Problem 1.

Figure 3 shows the ratio of 𝑔(x̃) over 𝑔(x∗) (i.e., the approxi-

mation ratio of Algorithm 1). Figure 3a plots the relation between

this ratio and the size of topology, and Figure 3b gives the CDF of

the ratio in all experiments. We observe that this ratio is bounded

by 1 + 𝜖 and independent from the size of topology. As such, we

conclude that EdgePeering has a good performance across various

topologies and settings.

Scalability overhead. To study the scalability of EdgePeering, we

analyze its overhead in three key aspects: the number of messages

needed for clustering, the number of local problems to be solved,

and the scale of these local problems. As noted earlier, we add 10

larger topologies with at most 127 nodes and 129 links, 113 nodes

and 183 edges for stress test.

(a) The impact of topology size on

𝑔 (x̃)
𝑔 (x∗ ) .

(b) The CDF of
𝑔 (x̃)
𝑔 (x∗ ) in all experi-

ments.

Figure 3: The performance of Algorithm 1 vs. the global optimal solution.

(a) The impact of topology size on

the average number of clusteringmes-

sages.

(b) The CDF of the average number

of clustering messages of each node.

Figure 4: The average number of clustering messages each node sends.

Figure 4 studies the average number of messages each node sends

(including originating and forwarding) in the clustering protocol

to form a partition. Figure 4a plots this number versus the size

of topology, and Figure 4b plots the CDF of the average number

of messages. We see that the average number of messages each

node sends in general increases as the number of nodes in the

topology increases, and is not affected by 𝜖 . The high peaks in

smaller topologies are caused by the richer connectivity (i.e., higher
average node degrees) in them. Even in the worst case, each node

sends less than 1.4k messages on average to form a cluster, showing

that the clustering message overhead of EdgePeering is reasonably

low.

Figure 5 studies the number of local convex programming prob-

lems in each experiment, which equals the number of clusters in

each experiment. Specifically, Figure 5a plots the relation between

the number of local problems and the size of topology. We see that

this metric increases linearly with topology size, and decreases as

𝜖 increases. The largest number of local problems needed is less

than 3.5k, for a topology with 109 nodes and 200 links, and 𝜖 = 0.3,

because it has more links. Figure 5b further gives the CDF of the

number of problems. We see that even when 𝜖 is slightly large

(e.g., > 0.3), 80% of topologies only need to solve less than 1k local

problems.

Figure 6 shows the average scale of local problems in all experi-

ments measured as the average number of constraints of each local

problem, which roughly equals the average number of variables in

a problem. Figure 6a plots the relation between the number of local

problems and the size of topology. We see the problem scale in-

creases approximately linearly with topology size, with the largest

scale having less than 6k constraints in the largest topology of 127

nodes and 129 links. Figure 6b shows the CDF of the average scale

of local problems. It shows that the scale of local problems is less
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(a) The impact of topology size on the

number of local problems.

(b) The CDF of the number of local

problems in all experiments.

Figure 5: The number of local convex programming problems each experi-

ment needs to solve.

(a) The impact of topology size on the

scale of local problems.

(b) The CDF of the scale of local prob-

lems.

Figure 6: The scale of local problems in all experiments.

than 2k constraints in 90% of the experiments. Given the polyno-

mial nature of linear programming and the maturity of LP solvers,

we conclude that the computation overhead of EdgePeering is also

reasonable.

Through these results, we see that the overhead of EdgePeering

increases slowly as the network scale increases. As such, we draw

the conclusion that EdgePeering has the potential to scale to very

large interdomain edge networks.

5 Discussion

Incremental deployment. EdgePeering may seem to be hard to

scale, troubleshoot or manage release version across different edge

networks. However, EdgePeering does not require full deployment

at all networks to reduce the latency of end-to-end communication.

It can be deployed incrementally at networks interconnected by

edge peering links, and help reduce the communication latency

among devices connected to both networks.

Incremental integration with software-defined networking

(SDN). In an interdomain edge network where some edge networks

use SDN, EdgePeering can extend the algorithm to let the SDN

controllers interact with edge nodes of neighboring networks to

sample node clustering, perform local optimization and aggregating

the local solutions.

Negotiate offline to solve problems arising from interdomain

collaboration. Because there are multiple network providers in-

volved in EdgePeering, such interdomain collaboration may cause

safety and regulation issues (e.g., security vulnerabilities, responsi-

bility distribution issues, pricing policies, bandwidth guarantees,

leases and architecture adjustments). As such, providers need to pay

special attention to the offline negotiation process of EdgePeering

and their intradomain traffic forwarding policies. For offline nego-

tiation, providers may refer to the typical customer-peer-provider

relationship between ASes and the negotiation process used in

MIRO [30], ARROW [26] and REIN [29] as references. For intrado-

main traffic forwarding policies, providers can apply their internal

traffic engineering algorithms to treat their internal traffic with a

high priority, and decide which routes have spare capacities for

forwarding interdomain traffic in EdgePeering. We leave the full in-

vestigation of the negotiation process and the intradomain policies

as future work.

6 Related Work

Efforts to reduce the end-to-end latency in cellular networks

share a common basic principle: avoid sending the traffic through

the backbone networks. Some design MANET protocols [11, 18,

28] to route traffic through end devices but sacrifice scalability.

Others introduce servers at edges to coordinate the routing among

devices [22, 32]. They cannot respond quickly to highly-dynamic 5G

environments. Network providers deploy their own edge networks

[5, 14]. But it requires significant investment and cannot reduce the

latency among devices connected to different providers. In contrast,

EdgePeering lets different edge networks form an interdomain edge

network for traffic forwarding, avoiding the scalability issue and

reducing the cost.

Multiple systems have been proposed to pool the resources of

multiple networks together to improve the overall performance

[16, 21, 28, 29]. REIN [29] allows two networks (e.g., AT&T and

Sprint) to use the infrastructure of each other as a backup to improve

the network reliability of each other. The LHC project [21] uses

distributed resources from research agencies all over the world

to perform exascale data analytics. To the best of our knowledge,

EdgePeering is the first to let edge networks share resources to

collaboratively forward end-to-end traffic along low-latency paths.

7 Conclusion

We propose EdgePeering to tackle the low-latency end-to-end

communication challenge of 5G. It allows different edge networks

to forward traffic collaboratively along low-latency paths. Extensive

evaluation shows its feasibility and benefits.

Acknowledgment

We thank all the constructive comments from the anonymous

reviewers. We thank Haohao Song for his help during preparation.

This work is supported in part by NSFC Award #62172345, Alibaba

Innovative Research Award, Open Research Projects of Zhejiang

Lab #2022QA0AB05, Future Network Innovation Research Award

of Ministry of Education of China #2021FNA02008 and Tan Kah

Kee Innovation Laboratory Award #HRTP-2022-34.

References

[1] 2021. Edgepeering technical report. https://www.dropbox.com/sh/

rk9964uu1sf0rst/AAATUmGksz9ZPsVzpChV7uQ8a?dl=0.

[2] 2021. The Gurobi Solver. https://www.gurobi.com/.

[3] 2021. Rocketfuel: An ISP topology mapping engine. http://www.cs.washington.

edu/research/networking/rocketfuel.

[4] 3GPP. 2019. Release 15. https://www.3gpp.org/release-15.

[5] AT&T. 2021. AT&T Network Edge. https://www.business.att.com/products/att-

network-edge.html.

[6] Hamidreza Bagheri, Md Noor-A-Rahim, Zilong Liu, Haeyoung Lee, Dirk Pesch,

Klaus Moessner, and Pei Xiao. 2021. 5G NR-V2X: Toward Connected and Coop-

erative Autonomous Driving. IEEE Communications Standards Magazine (2021).
[7] BBC. 2019. China rolls out ’one of the world’s largest’ 5G networks.

https://www.bbc.com/news/business-50258287.

[8] Elias Chavarria-Reyes, Ian F Akyildiz, and Etimad Fadel. 2016. Energy-efficient

multi-stream carrier aggregation for heterogeneous networks in 5G wireless

systems. IEEE Transactions on Wireless Communications 15, 11 (2016), 7432–7443.

https://www.dropbox.com/sh/rk9964uu1sf0rst/AAATUmGksz9ZPsVzpChV7uQ8a?dl=0
https://www.dropbox.com/sh/rk9964uu1sf0rst/AAATUmGksz9ZPsVzpChV7uQ8a?dl=0
https://www.gurobi.com/
http://www.cs.washington.edu/research/ networking/rocketfuel
http://www.cs.washington.edu/research/ networking/rocketfuel
https://www.business.att.com/products/att-network-edge.html
https://www.business.att.com/products/att-network-edge.html


Interdomain EdgePeering NAI ’22, August 22, 2022, Amsterdam, Netherlands

[9] Min Chen and Yixue Hao. 2018. Task offloading for mobile edge computing

in software defined ultra-dense network. IEEE Journal on Selected Areas in
Communications 36, 3 (2018), 587–597.

[10] CNN. 2019. Looking for 5G? A list of US cities that have it.

https://edition.cnn.com/2019/04/09/tech/5g-network-us-cities/index.html.

[11] Santanu Das, Charles Perkins, and Elizabeth Royer. 2003. Ad hoc on demand

distance vector (AODV) routing. IETF RFC3561, July 10 (2003).

[12] Michael Dinitz and Yasamin Nazari. 2017. Distributed Distance-Bounded Net-

work Design Through Distributed Convex Programming. In 21st International
Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal,
December 18-20.

[13] Kai Gao, Qiao Xiang, XinWang, Yang Richard Yang, and Jun Bi. 2019. An objective-

driven on-demand network abstraction for adaptive applications. IEEE/ACM
Transactions on Networking 27, 2 (2019), 805–818.

[14] Google. 2021. Google Edge Network. https://peering.google.com/.

[15] Anupam Gupta, Mohammad T Hajiaghayi, and Harald Räcke. 2006. Oblivious

network design. In Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm. 970–979.

[16] Chuang Hu, Wei Bao, and Dan Wang. 2018. IoT Communication Sharing: Scenar-

ios, Algorithms and Implementation. In IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications. 1556–1564. https://doi.org/10.1109/INFOCOM.

2018.8486329

[17] Sabine Randriamasy Y. Richard Yang Jingxuan Zhang Kai Gao, Young Lee. 2022.

An ALTO Extension: Path Vector. Experimental RFC. https://datatracker.ietf.

org/doc/draft-ietf-alto-path-vector/

[18] Saadallah Kassir, Gustavo de Veciana, Nannan Wang, Xi Wang, and Paparao

Palacharla. 2019. Enhancing cellular performance via vehicular-based oppor-

tunistic relaying and load balancing. In IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 91–99.

[19] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew

Roughan. 2011. The internet topology zoo. IEEE Journal on Selected Areas in
Communications 29, 9 (2011), 1765–1775.

[20] Robert Krauthgamer, James R Lee, Manor Mendel, and Assaf Naor. 2004. Mea-

sured descent: A new embedding method for finite metrics. In 45th Annual IEEE
Symposium on Foundations of Computer Science. IEEE, 434–443.

[21] lhc 2021. The Large Hadron Collider (LHC) Experiment. https://home.cern/

topics/large-hadron-collider.

[22] Guiyang Luo, Haibo Zhou, Nan Cheng, Quan Yuan, Jinglin Li, Fangchun Yang,

and Xuemin Shen. 2021. Software-Defined Cooperative Data Sharing in Edge

Computing Assisted 5G-VANET. IEEE Transactions on Mobile Computing 20, 3

(2021), 1212–1229. https://doi.org/10.1109/TMC.2019.2953163

[23] Silvio Mandelli, Matthew Andrews, Sem Borst, and Siegfried Klein. 2019. Satisfy-

ing network slicing constraints via 5G MAC scheduling. In IEEE INFOCOM 2019.
IEEE, 2332–2340.

[24] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng

Qian, and Zhi-Li Zhang. 2020. A first look at commercial 5G performance on

smartphones. In Proceedings of The Web Conference 2020. 894–905.
[25] Charles E Perkins and Pravin Bhagwat. 1994. Highly dynamic destination-

sequenced distance-vector routing (DSDV) for mobile computers. ACM SIG-
COMM computer communication review 24, 4 (1994), 234–244.

[26] Simon Peter, Umar Javed, Qiao Zhang, Doug Woos, Thomas Anderson, and

Arvind Krishnamurthy. 2014. One tunnel is (often) enough. In ACM SIGCOMM
Computer Communication Review, Vol. 44. ACM, 99–110.

[27] Yakov Rekhter, Susan Hares, and Dr. Tony Li. 2006. A Border Gateway Protocol

4 (BGP-4). RFC 4271. https://doi.org/10.17487/RFC4271

[28] Daxin Tian, Jianshan Zhou, Min Chen, Zhengguo Sheng, Qiang Ni, and Vic-

tor C.M. Leung. 2018. Cooperative Content Transmission for Vehicular Ad

Hoc Networks using Robust Optimization. In IEEE INFOCOM 2018. 90–98.
https://doi.org/10.1109/INFOCOM.2018.8485868

[29] Hao Wang, Yang Richard Yang, Paul H Liu, Jia Wang, Alexandre Gerber, and

Albert Greenberg. 2007. Reliability as an interdomain service. ACM SIGCOMM
Computer Communication Review 37, 4 (2007), 229–240.

[30] Wen Xu and Jennifer Rexford. 2006. Multi-path Interdomain Routing. In In
SIGCOMM. Citeseer.

[31] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig,

and David G Andersen. 2011. SCION: Scalability, control, and isolation on next-

generation networks. In 2011 IEEE Symposium on S & P. IEEE, 212–227.
[32] Xi Zhang and Qixuan Zhu. 2019. D2D Offloading for Statistical QoS Provision-

ings Over 5G Multimedia Mobile Wireless Networks. In IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications. 82–90. https://doi.org/10.1109/

INFOCOM.2019.8737626

[33] Yunfei Zhang, Gang Li, Chunshan Xiong, Yixue Lei, Wei Huang, Yunbo Han,

Anwar Walid, Y Richard Yang, and Zhi-Li Zhang. 2020. MoWIE: Toward Sys-

tematic, Adaptive Network Information Exposure as an Enabling Technique for

Cloud-Based Applications over 5G and Beyond. In Proceedings of the Workshop
on Network Application Integration/CoDesign. 20–27.

https://peering.google.com/
https://doi.org/10.1109/INFOCOM.2018.8486329
https://doi.org/10.1109/INFOCOM.2018.8486329
https://datatracker.ietf.org/doc/draft-ietf-alto-path-vector/
https://datatracker.ietf.org/doc/draft-ietf-alto-path-vector/
https://home.cern/topics/large-hadron-collider
https://home.cern/topics/large-hadron-collider
https://doi.org/10.1109/TMC.2019.2953163
https://doi.org/10.17487/RFC4271
https://doi.org/10.1109/INFOCOM.2018.8485868
https://doi.org/10.1109/INFOCOM.2019.8737626
https://doi.org/10.1109/INFOCOM.2019.8737626

	Abstract
	1 Introduction
	2 Overview of EdgePeering
	2.1 Architecture and Workflow
	2.2 Optimal Low-Latency Routing Problem

	3 A Distributed Algorithm for Optimal Low-Latency Routing
	3.1 Node Clustering
	3.2 Local Optimization
	3.3 Aggregating Local Optimals for Global Optimization

	4 Performance Evaluation
	4.1 Experiment Settings
	4.2 Results

	5 Discussion
	6 Related Work
	7 Conclusion
	References

