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Abstract—Large-scale charging stations become indispensable
infrastructure to support the rapid proliferation of electric ve-
hicles. Their operation modes have drawn great attention from
both academia and industry. One promising mode called park-
and-charge has been recently introduced. This new mode allows
customers to park their electric vehicles at a parking lot, where
the vehicles are charged during the parking time. Several small-
scale experiments, such as the V-Charge project and General
Motors’ E-Motor plant, have demonstrated its potential. A key
enabler for deploying this mode to large-scale stations is effective
and efficient charging load scheduling methods. Most existing
works confine to the time-driven scheduling policy due to their
sole focus on the charging service. Applying their solutions to
the park-and-charge mode would jeopardize the unitization of
charging resource or cause frequent charging mode switching.
This inapplicability motivates us to explore the feasibility and
benefits of exploiting the event-driven scheduling policy in park-
and-charge systems. Further, to better characterize charging
load in this mode, we propose to adopt a metered model, by
which a system gains value in proportion to the served charging
demand. To be specific, the objective of this paper is to carry
out both theoretical and experimental analysis for event-driven
algorithms adapted to this metered model. We leverage both the
competitive analysis and resource augmentation to demonstrate
the non-constant and constant performance bounds for the
earliest-deadline-first and highest-value-first algorithms respec-
tively. Moreover, we provide a stronger theoretical result, i.e.,
the performance bound for the whole class of work-conserving
scheduling algorithms. Through extensive simulations, we validate
the proposed theoretical results and further provide interesting
findings from the in-depth analysis of the simulation results.

I. INTRODUCTION

The market share of electric vehicles (EVs) keeps prolif-
erating due to the benefits of few emissions and high power
efficiency. As forecasted by research reports such as [1], [2],
the growth of electric vehicles in the globe would reach 7
million per year by 2020, and electric vehicles would hold
28% of the U.S. vehicle market by 2031. The associated high
impact on the power grid and transportation system has drawn
great interests from both the industry and academia. Various
charging facilities have been studied, such as charging points
in residential areas and working places [3]–[9]. Among them,
charging stations have become indispensable infrastructure to
support the deep integration of electric vehicles [7]–[11]. Thus,
their operation mode needs careful design.

Due to the relatively long and frequent charging cycles,
one promising operation mode, named park-and-charge, has
been recently proposed for electric vehicle charging [7]–[9],
[12], [13]. By this mode, parking lots are equipped with
charging points to function with both parking and charging
services. Electric vehicles can receive charging during the
period of parking. One key advantage of this mode is that
customers can directly follow their agendas after parking their
vehicles with no need to care about the charging process.

Potential applications of this park-and-charge mode include
parking lots at office buildings, shopping malls, and airports.
Recently, several field experiments have been conducted to
explore the feasibility of the park-and-charge mode. For ex-
ample, several universities in Europe together with The Bosch
Group carry out the project V-Charge, which aims to develop
an automated valet parking and charging system to support
autonomous local transportation [12]. General Motors (GM),
OnStar and TimberRock collaborate to perform a pioneering
experiment at GM’s E-Motor Plant, whose objective is to
coordinate the charging demand of parked electric vehicles
with the co-located renewable generation [13]. These small-
scale experiments present positive feedbacks on the potential
of the park-and-charge mode. An important step to deploy this
mode to large-scale charging stations is to develop effective
and efficient charging load scheduling methods.

Although researchers have begun to take efforts towards
this step, most existing works solely focus on the charging
service and thus confine to the time-driven scheduling policy,
e.g., [14]–[19]. By this policy, the time line is equally slotted
and scheduling decisions are made for each time slot. A key
assumption in these works is that the arrival time and deadline
(i.e., the time when the user picks up her/his EV) of an EV
are right at the beginning or the end of a time slot. Under
this assumption, one major dilemma for applying this policy
to park-and-charge systems is to determine the length of time
slots. Long time slots lead to few charging mode switchings but
cause under-utilized charging points at the stations, while short
time slots improve charging point utilization but cause many
mode transitions for electric vehicles. Frequent mode switch-
ings can significantly compromise the lifetime and capacity of
EV batteries. Hence, to avoid such dilemma, we propose to
explore the event-driven scheduling policy to schedule electric
vehicle charging in park-and-charge systems in this paper.

Event-driven scheduling is widely recognized in real-time
community, and thus many real-time scheduling methods such
as earliest-deadline-first (EDF) and least-laxity-first (LLF)
have been designed along with this policy. Further, these
scheduling methods have been extensively studied in various
kinds of systems such as embedded systems, communication
systems [20], and even server farms/data centers [21]. A clear
vision is, however, still elusive regarding the feasibility and
benefits of applying real-time scheduling to park-and-charge
systems. Understanding and analyzing such application is a
non-trivial task because of three key challenges. First, model-
ing charging tasks should capture both the parking and charg-
ing functions. Second, charging tasks usually have different
temporal constraints and may also have different values (e.g.,
utilities to measure user satisfaction) due to different energy
prices paid by the customers. Choosing between temporality-
based and value-based scheduling methods is involved. Third,
the scheduling methods should be online, which need to
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determine vehicles for charging based only on the information
of electric vehicles that have already arrived at the system.

To address these challenges, we first propose to adopt a
metered model, by which the system gains in proportion to
the amount of already served demand of a charging task. This
metered model better fits to park-and-charge, compared with
the classical deterministic model (detailed model discussion
in Section II-B). Second, we study the adaption of several
widely used on-line scheduling methods to the metered model.
They include: (i) temporality-based algorithms such as EDF
and shortest-job-first (SJF); (ii) a value-based algorithm, i.e.,
highest-utility-first (HUF). Their pros and cons regarding park-
and-charge are thoroughly discussed using: (i) theoretical anal-
ysis via the competitive analysis and resource augmentation
techniques; (ii) experimental validations via detailed simula-
tions. To be specific, our major contributions are as follows.

• We novelly adapt several well-known on-line scheduling
algorithms to schedule EV charging in park-and-charge sys-
tems. As to maximizing EV user satisfaction, we demonstrate
(i) the non-constant performance bound of EDF and the
constant bound of HUF; (ii) a generalized theoretical result,
i.e., the performance bound for the whole class of work-
conserving scheduling algorithms.

• We conduct extensive simulations to make comparison
on optimizing EV user satisfaction. The results show the near-
optimality and performance consistency of the value-based
algorithm (i.e., HUF), and the sub-optimality and performance
anomaly of temporality-based algorithms (e.g., EDF and SJF).

Note that this paper targets the case of multiple charging
points, which is equivalent to the multiple processor case as to
the scheduling theory. From this perspective, our work is an
extension to [22]. Work [22] carries out competitive analysis
for HUF solely, while our work performs both competitive
analysis and resource augmentation analysis for several well-
known algorithms (including HUF) and further for the whole
class of work-conserving algorithms.

The rest of the paper is organized as follows. Section II
presents the system model and problem statement. Sections III
and IV analyze algorithms using competitive analysis and
resource augmentation respectively. Section V evaluates the
studied on-line algorithms. Section VI concludes the paper.

II. PROBLEM DESCRIPTION

There are usually two different implementations for a park-
and-charge system. The first one, a combined zone (Fig. 1(a)),
is that the parking zone and charging zone are in the same
area, and each parking space is equipped with one charging
points [4], [5]. A centralized controller controls power on and
off for each charging point. The second one, separate zones
(Fig. 1(b)), is that the parking zone and charging zone are at
different areas [12], [23]. The parking zone has no charging
infrastructure. Charging points only concentrate in the charging
zone and always have power supply. A centralized scheduler
decides which electric vehicles to charge at the charging zone
and which to park at the parking zone. This implementation
needs valets to assist moving vehicles or allows fully au-
tonomous driving between the two separate zones [12].

For the customers, they check in and drop off their electric
vehicles at the parking zone. Then, they can leave and directly
proceed to follow their original agendas, instead of taking care

. . .
The Parking and Charging Zone

Central Controller

Power Line Control Link Charging Point

(a) A combined zone

. . .
The Parking Zone

Central Scheduler

The Charging Zone

. . .

(b) Separate zones

Fig. 1. The schematics of two different implementations of park-and-charge.

of charging their vehicles. During their absence, the park-and-
charge system is responsible to schedule vehicles for charging.
Upon the returns, they pick up their vehicles from the parking
zone, where the vehicles are already waiting for them. For the
system operator, the checked-in vehicles need to be scheduled
according to users’ charging requirements. This work focuses
on the charging scheduling problem: to determine when to
charge which electric vehicles. The scheduling decisions can
be realized by (i) switching power on or off for the correspond-
ing charging points as to the combined-zone case in Fig 1(a),
and (ii) moving the corresponding vehicles into or out of the
charging zone as to the separate-zone case in Fig. 1(b).

In this section, we first present a general system model that
applies to both of the cases. Then, we use model differentiation
to show that the model better fits the park-and-charge scenario,
and lastly provide problem statement.

A. System Modeling
We consider a park-and-charge system that supports at

most M charging points turned on currently. This limit derives
from the physical constraints such as respecting the capacity
of upstream transformers [6], or is imposed by the system
operators such as capping the peak power of the systems [3],
[24]. Without loss of generality, we assume that M is less
than the number of parking spots [4], [9], [23]. Each charging
point supports a charging power of p. Each electric vehicle is
modeled by a charging task EVi, which is characterized by a
four-tuple (ai, di, ei, ui). The following first details the defini-
tion of each parameter and then provides the accommodation
of this model to realistic charging behavior of EV battery.

Parameter Definition. (i) The arrival time ai is when the
customer drops off his/her vehicle at the parking zone. At this
time, the vehicle is also ready for charging.

(ii) The charging demand ei is the amount of energy that
the user expects after the deadline. It can be estimated by
(soc′i − soci) ·Bi, where soci is the state of charge (SOC) at
the arrival time ai; soc′i is the expected SOC after deadline
di; Bi is the capacity of the vehicle’s battery. SOC is usually
denoted as a percentage value. Existing methods such as [25],
[26] can be used to estimate SOC of EV battery.

(iii) The deadline di is a user-specified time, after which
he/she will come back to pick up his/her vehicle. The deadline
is soft, that is, after it, the system stops charging the vehicle
and switch off the power supply or park it at the parking
zone. If with partially completed demand, the system gains the
partial value. Further, it uses arbitrary deadline. That is, there is
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Fig. 2. An example piecewise linear function for the unit utility, which
increases as to the energy price and decreases as to the SOC.

no constraint between the deadline di and charging time ei/p,
i.e., the former can be larger than, less than, or equal to the
latter. This setting can largely avoid cheating as to customers
specifying their charging requirements, e.g., deadline. Since a
vehicle receives no energy after the deadline, the vehicle may
receive little energy in the end if the customer deliberately
reports a much shorter deadline than ei/p.

(iv) The parameter ui denotes unit utility. If an EV receives
an amount x of energy, the gained utility is ui ·x. The utility is
a measurement of user satisfaction or the value of a charging
task, which depends on both the energy price and state-of-
charge. First, to differentiate users’ charging requirements, the
system may employ some market mechanisms such as pricing
or biding to determine energy price for individual charging
tasks1 [27], [28]. Thus tasks may have different energy prices.
Customers willing to pay more usually come with higher value
about the charging service [27], [28]. Second, user satisfaction
is usually assumed to follow the law of diminishing utility [19],
[29], where the marginal utility decreases as state-of-charge
increases. Hence, the unit utility can be modeled as a function
that is non-decreasing as to energy price and non-increasing
as to state-of-charge. This kind of modeling approach has
been widely used in EV charging studies [19], [29]–[31] and
network economics literature [32]–[34].

Model Accommodation for Realistic Non-linear Charg-
ing Behavior. In reality, SOC of EV battery is non-linear
with time. For accommodating to this, we can split a charging
task into a sequence of subtasks that arrive sequentially at
the system. We use an approximation: for each subtask, SOC
or the received energy of an EV is linear with time. Further,
the unit utility function can be approximated by a piecewise-
constant function that respects the above non-decreasing and
non-increasing features. Each subtask corresponds to a piece
and thus has a constant unit utility. Fig. 2 shows a numerical
example for this accommodation. By this example, for a
subtask with SOC in [0, 20%], the unit utility is 10 if energy
price is 2 (the dotted lines) and it is 5 if price is 1 (the solid
lines); for that in (20%, 40%], it is 8 if price is 2 and 4 if price
is 1; and so on. The gained utility of a charging task EVi is thus
equal to the sum of each subtask’s utility, i.e.,

∑
j uij · xij ,

where uij and xij are the unit utility and received energy
of subtask EVij respectively. Note that the following results
remain true with this accommodation. For ease of presentation,
we associate each electric vehicle with one charging task and
omit the subtask index in the following algorithm analysis.

The system allows preemption of the charging process
of electric vehicles, and each preemption corresponds to one
charging mode switching or mode transition. That is, the
system is able to suspend an electric vehicle’s charging process
by turning power off for its charging point as to the combined-
zone case or re-parking the vehicle at the parking zone as to the

1No matter what market mechanisms are adopted, the system needs to
schedule charging tasks after deciding the energy price. This scheduling step
is very important to satisfy customers and is the right focus of this paper.

separate-zone case. Later on, it can also be resumed from the
suspension and continue for charging. We assume that the time
overhead incurred by charging mode switching is negligible
compared with the long charging time of electric vehicles.

B. Model Differentiation
Model Categorization. Real-time task models can be

classified based on different metrics such as flexibility on
parallelism [35] and abstraction levels [36]. This paper uses
a categorization according to the relation between the gained
utility and the amount of finished workload (charging demand
here). Thus, there are three categories: deterministic, metered
and hybrid task models. By the deterministic model, the utility
is gained (and thus the customer pays) only if the charging
demand of a charging task is fully fulfilled, otherwise the
gained utility is zero (and the customer pays nothing) [7], [9],
[37]. This model follows the classical all-or-nothing setting for
hard real-time tasks. The metered task model allows the gained
utility (and payment) to be a strictly increasing function of the
amount of finished workload. The hybrid task model can be
seen as a combination of the above two models. That is, each
hybrid task consists of two subtasks. One uses the deterministic
model, i.e., the utility of the subtask is gained only if it is fully
completed. The other uses the metered model, i.e., the gained
utility of the subtask increases as more workload is finished.
This hybrid model is closely related to the task model adopted
in the imprecise computation literature [38].

Model Suitability. EV charging loads in different ap-
plication scenarios, such as home charging and park-and-
charge, have different features about the temporality and user
satisfaction. Thus, it needs different task models (with respect
to the above categorization) to capture the distinct features of
different kinds of charging loads. However, existing works that
use event-driven scheduling mainly confine to the deterministic
model regardless of the application scenarios, e.g., [7], [9],
[37]. The deterministic model is not suitable to the park-and-
charge scenario due to reasons as follows.

With the deterministic task model, customers may intend
to submit stringent charging requirements. The system either
accepts them and risks at economic loss due to the potential
unfulfilled requirements, or simply rejects them and much
dissatisfies these customers. This dilemma may also happen if
with the hybrid task model. Thus, both deterministic and hy-
brid models are not suitable for park-and-charge. By contrast,
the metered model is compatible with such strict requirements.
Further, it will not happen that even though there are enough
parking spots, the system rejects electric vehicles only due to
their tough requirements. Hence, the metered task model is
more suitable to characterize the charging load in park-and-
charge systems. To be specific, the task model proposed in the
previous subsection belongs to the category of metered model,
and thus well fits to the park-and-charge scenario.

As mentioned above, existing works, e.g., [7], [9], [37], use
real-time scheduling methods such as EDF and LLF, but they
confine to the deterministic model. One key question is how
these methods perform when adapted to the metered model.
The following sections answer this question and further ana-
lyze more and broader event-driven scheduling methods.

C. Problem Statement
This work studies the on-line charging scheduling problem

with the objective of maximizing the social welfare. A charging

71



schedule is to decide when to charge which vehicles. The
social welfare is defined as the sum utility of electric vehicles.
This charging scheduling problem pursues maximized social
welfare, which is different from that of hard real-time schedul-
ing problems whose goal is to maximize the number of tasks
meeting their deadlines. Electric vehicles arrive in an on-line
manner, i.e., the system knows no details of the charging tasks
before the vehicles’ arrival. We assume that after arrival, all
parameters of a charging task are known to the system. On-line
algorithms need to make scheduling decisions based only on
the parameters of electric vehicles that have already arrived.

III. ALGORITHM ANALYSIS BASED ON COMPETITIVE

ANALYSIS

In this section, we present the theoretical results based on
competitive analysis. We first demonstrate the non-constant
and constant competitive ratios for EDF and HUF (highest-
utility first) respectively, and then provide a much stronger
result, i.e., the performance upper bound of the whole class of
work-conserving algorithms.

A. Analysis for EDF and LLF
Impracticability of LLF. Earliest-deadline-first (EDF)

and Least-laxity-first (LLF) are two classic temporality-based
algorithms. EDF always first charges electric vehicles with
the earliest deadlines (di); while LLF always first processes
vehicles with the least laxity time (di − ai − e′i/p, where
e′i is the remaining charging demand). Recently, LLF has
been used to schedule deferrable loads such as charging tasks
[37]. However, LLF is impractical for the charging scheduling
problem. The reason is that the algorithm may cause much
frequent preemption or mode switching. For example, suppose
there are two charging points and three vehicles. The charging
power is set as p = 1 and the three vehicles’ setting (by
(ai, di, ei, ui)) is: EV1 = (0, 1, 1, 1), EV2 = (0, 1, 1 − ε, 1),
EV3 = (0, 1 + ε, 1 − ε, 1), where 0 < ε < 1. By LLF, the
number of mode transitions for EV2 and EV3 is both O(1/ε).
Thus, if ε is small, the number will be large. Actually, this
number is unbounded, i.e., approaches infinity as ε→ 0.

Most electric vehicles in the current generation are
equipped with Li-ion batteries. The lifetime and capacity of
Li-ion batteries are significantly compromised by the frequent
mode switching [39]. Although the next-generation battery
for future electric vehicles would have better resilience to
the mode switching, it is still dangerous to employ such an
algorithm with unbounded number of mode transitions. Hence,
we focus on the performance analysis for EDF in the following.

No constant competitive ratio for EDF. Competitive
analysis provides the performance gap between an on-line
algorithm and the off-line optimal algorithm. The performance
gap is expressed by a definition of competitive ratio as follows.
Note that the definition is for maximization problem, not for
minimization problem such as [40].

Definition 1 (Competitive ratio): An on-line algorithm A
is α-competitive if

Opt(I)
A(I) ≤ α for any feasible input instance

I , where Opt(I) and A(I) are the social welfare gained by
the off-line optimal algorithm and the algorithm A on input
instance I , respectively.

Based on this definition, we demonstrate that there is no
constant competitive ratio for EDF. Suppose there are two
charging points and three electric vehicles. The charging power
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Port 2

EV arrival

(a) EDF (EV1 misses deadline)

0
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EV deadline

(b) Opt (EV3 misses deadline)

Fig. 3. Illustration for the example showing no constant bounds for EDF.

t

(a) Original schedule

t

(b) Canonical schedule

Fig. 4. Illustration of reschedule for Lemma 1.

is set as p = 1 and the three vehicles’ settings are as follows:
EV1 = (0, 1, 1 − ε, 1/ε), EV2 = (0, 1 − ε, 1 − ε, 1), EV3 =
(0, 1 − ε, 1 − ε, ε), where 0 < ε < 1. As illustrated in
Fig. 3, EV2 and EV3 are first charged to finish by the EDF
schedule; while EV1 and EV2 are first charged to finish in the
optimal schedule. The utility gained by EV1toEV3 is (i) EDF:
1, 1 − ε, (1 − ε) · ε; (ii) Opt: (1− ε)/ε, 1 − ε, 0. Hence, the
social welfares derived by the two schedules are:

U(EDF ) = 2− ε2, U(Opt) =
1

ε
− ε.

Letting ε→ 0 makes the competitive ratio arbitrarily approach

the positive infinity: lim
ε→0

U(Opt)
U(EDF ) → +∞. Therefore, EDF has

no constant performance bound based on competitive analysis.

The non-constant competitive ratio. Before giving this
performance bound, we present several definitions and lemmas
that will be used in the following theoretical proofs. They are
the definition of canonical schedule, a shared property among
off-line optimal schedules, and a utility mapping scheme.

Definition 2 (Canonical schedule): A schedule S is called
canonical if for any two time points t1 < t2, the following is
satisfied: if z1 = S(t1), and z2 = S(t2) �= ∅, then either
(i) mini∈z2(ai) > t1, or (ii) z1 �= ∅ and maxi∈z1(di) <
mini∈z2(di), where S(t) is the set of vehicles being charged
in schedule S at time t.

Intuitively, Definition 2 indicates that at any time, schedule
S processes either the electric vehicles with the earliest dead-
lines, or discard them forever. With this definition, we have
Lemma 1 for the off-line optimal schedules.

Lemma 1: At least one of the off-line optimal schedules is
a canonical schedule.

Proof: We prove this lemma by demonstrating that any
off-line optimal schedule can be converted to a canonical
schedule without affecting its optimality. Consider an off-
line optimal schedule S, and EVi with a later deadline and
EVj with a earlier deadline. We use si and fi (sj and fj)
to denote the starting and ending time of some consecutive
portion of processing EVi’s (EVj’s) charging demand, where
si ≥ max(ai, aj), sj ≥ max(ai, aj). Suppose that EVi’s
portion is scheduled before EVj’s portion, i.e., si < sj . As
illustrated in Fig. 4, we can reschedule and make EVj’s portion
processed ahead of EVi’s without changing their gained utility.
For EVj , it is scheduled earlier than the original, and thus
its utility keeps unchanged. For EVi, though it is postponed
to a later time, its new ending time is still earlier than

72



Fig. 5. The utility mapping scheme.

max{fi, fj}, which is less than deadline di. Thus, EVi’s utility
also stays unchanged. If applying the above reschedule to all
non-canonical portions, we convert schedule S to a canonical
schedule. Therefore, the lemma holds.

To bound the competitive ratio of EDF, we further employ
a schedule mapping scheme proposed in [41]. We adapt this
scheme to our system model and call it as utility mapping
scheme. The adapted scheme is detailed as follows.

The Utility Mapping Scheme. The scheme is described
by a function F : R→ R, which maps each time point in the
off-line optimal schedule Opt to a time point in the schedule
of an on-line algorithm A. We use Crgx(EVi, t) to denote the
amount of energy that has been fueled into EVi by algorithm
x by time t. For any time t, suppose EVi is a vehicle being
charged in Opt. If CrgOpt(EVi, t) ≥ CrgA(EVi, t), F (t) = t.
Otherwise, let F (t) = t′ < t, where t′ is the maximum time
that CrgOpt(EVi, t) = CrgA(EVi, t). In both cases the unit
utility is ui. It can be seen that the utility mapped to algorithm
A is equal to that of Opt. Fig. 5 illustrates this utility mapping
scheme. For example, at time t1, since CrgOpt(EVi, t1) ≥
CrgA(EVi, t1), the mapping is F (t1) = t1.

We define the utility ratio at any time as the sum util-
ity mapped to A over the utility obtained by A at that
time. The utility ratio at time t′ in Fig. 5 is calculated by
(p·ui + p·uj)/p·uj . Note that at any time, there are at most
two utilities mapped from Opt to A: one is p·ui from time t′
and the other is p·uj from time t later than t′. Hence, if we
can bound the utility ratio for all time points, then this offers
a bound on the competitive ratio of algorithm A.

We now show the non-constant performance bound, which
is dependent on the dynamic range of unit utility (see Theo-
rem 2). This dynamic range is described by the ratio of maxi-
mum to minimum unit utility, β = max(ui)/min(ui), β ≥ 1.

Theorem 2: EDF is β-competitive and the bound is tight.

Proof: Bounding competitive ratio. Suppose that at time
t, EV1, ..., EVM are the M vehicles being charged by EDF,
and EV ′1 , ..., EV ′M are the M vehicles being charged by an
off-line optimal canonical schedule Opt. Some of the EVis
may be identical to some of the EV ′i s. Thus, without loss of
generality, we assume EVi = EV ′i for i ∈ I ⊂ {1, ...,M}.
We discuss the two individual cases (whether vehicles belong
to set I) as follows.

Case 1 (i ∈ I): The utility of EV ′i by Opt can be mapped
to EDF at time t at most once. The reason is that according to
the utility mapping scheme described above, the EV ′i utility
is either mapped to time t or a time before t. The total utility
mapped in this case is at most

∑
i∈I p·ui.

Case 2 (i ∈ {1, ...,M} \ I): First, also according to the
scheme, the utility of the set of EV ′i is mapped to EDF at
most once. The sum utility is at most

∑
i∈{1,...,M}\I p·u′i.

Second, the set of EVi is not being charged in Opt at time

0

0

t

t

Port 1

Port 2

(a) EDF schedule

0

0

t

t

Port 1

Port 2

(b) Opt schedule

Fig. 6. Illustration of tightness for Theorem 2. Text in rectangles is unit utility.

t, and they will not be mapped to time t from a later time.
The reason is that EDF always first schedules vehicles with
earliest deadlines, and thus it must hold that di < mini (d

′
i).

Moreover, since Opt is canonical, these EVis will be dropped
by Opt forever. Thus, the mapped utility is zero.

Note that the utility obtained by the EDF schedule at time
t is

∑
i∈{1,...,M} p·ui. Hence, the competitive ratio α of EDF

is bounded by

α ≤
∑

i∈I p·ui +
∑

i∈{1,...,M}\I p·u′i
∑

i∈{1,...,M} p·ui
≤ M · u

M · u = β, (1)

where u = max(ui) and u = min(ui). EDF is β-competitive.

Tightness of the bound. Consider a system with two
charging points and four vehicles for charging. Charging power
is set as 1. Two vehicles are set as (0, 1, 1, u1), and the other
two are set as (0, 1 + ε, 1, u2), where u1 < u2. For EDF,
as depicted in Fig. 6(a), the gained utility of the first two
vehicles is 2u1, and that of the other two is 2ε · u2. For Opt,
as illustrated in Fig. 6(a), they are 0 and 2u2 respectively.
Thus, the competitive ratio α = 2u2/(2u1 + 2ε · u2), which
approaches to β = u2/u1 as ε → 0. Therefore, the bound is
tight and the theorem holds.

Theorem 2 confirms that the competitive ratio of EDF
is non-constant. Furthermore, the performance gap between
EDF and the optimal schedule is unpredictable if the dynamic
range of unit utility is unbounded. Thus, an on-line algorithm
with constant competitive ratio may be more appealing. We
will analyze an algorithm in first-fit style and demonstrate its
constant competitiveness in Section III-B.

We have the following corollary based on Theorem 2.

Corollary 3: EDF is optimal if all electric vehicles have
the same unit utility, i.e., β = 1.

It is well-known that as to global multiprocessor (or
multiple-charging-point here) scheduling, EDF is not optimal
for meeting deadlines. By contrast, this corollary indicates
that if all customers can be equally satisfied, EDF is optimal
with respect to maximizing social welfare or optimizing user
satisfaction. In other words, EDF can process charging demand
as much as the off-line optimal algorithm does.

B. A 2-Competitive Scheduling Algorithm
We analyze a first-fit style algorithm called highest-utility-

first (HUF). The algorithm always first charges EVs with the
highest unit utilities. As we know, the algorithm is similar
to the efficiency (profit to weight ratio) first algorithm of the
knapsack problem [42], which first packs items with highest
efficiencies. However, our system model is different from that
of the knapsack problem. The difference includes the metered
model, deadline and preemption. Hence, the analysis for the
efficiency first algorithm can not be applied to our problem.
To bound the competitive ratio of HUF, we also leverage the
utility mapping scheme described above. Using a similar proof
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skeleton to Theorem 2, we prove a 2-competitiveness for HUF,
i.e., HUF always gives a welfare at least half of the optimal.

Theorem 4: HUF is 2-competitive and the bound is tight.

Proof: Bounding competitive ratio. Suppose that at time
t, EV1, ..., EVM are the M vehicles being charged by HUF
with u1 ≥ u2 ≥ ... ≥ uM , and EV ′1 , ..., EV ′M are the M
vehicles being processed by an off-line optimal schedule Opt.
Some EVis may be identical to some EV ′i s. Thus, without loss
of generality, we assume EVi = EV ′i for i ∈ I ⊂ {1, ...,M}.
We discuss the two individual cases as follows.

Case 1 (i ∈ I): The utility of EV ′i by Opt can be mapped
to HUF at time t at most once, since the EV ′i utility is either
mapped to time t or a time before t. Thus, the total utility
mapped is at most

∑
i∈I p·ui.

Case 2 (i ∈ {1, ...,M}\I): First, according to the scheme,
the utility of the set of EV ′i either is not mapped to HUF
at time t, or if it is, the following condition holds. We must
have p·u′i ≤ p · uM because these vehicles are not finished
for charging and not chosen by HUF. The utility (of EV ′i )
mapped is at most (M − |I|) · p·uM , where |I| is the number
of vehicles in set I . Second, the set of EVi is not being charged
in Opt at time t, and they may be mapped to time t from a
later time in Opt. Thus, the utility (of EVi) mapped is at most∑

i∈{1,...,M}\I p·ui.

Note that the utility obtained by the HUF schedule at time
t is

∑
i∈{1,...,M} p·ui. Hence, the competitive ratio (α) of HUF

is bounded by

α ≤
∑

i∈I p·ui +
∑

i∈{1,...,M}\I p·ui + (M − |I|) · p·uM
∑

i∈{1,...,M} p·ui

=

∑
i∈{1,...,M} p·ui + (M − |I|) · p·uM

∑
i∈{1,...,M} p·ui

≤
∑

i∈{1,...,M} p·ui + M · p·uM
∑

i∈{1,...,M} p·ui
(2)

≤
∑

i∈{1,...,M} p·ui +
∑

i∈{1,...,M} p·ui
∑

i∈{1,...,M} p·ui
= 2. (3)

Eqn. (2) is true because of that the set I may be empty,
i.e., |I| may be equal to zero. As mentioned above, we must
have u1 ≥ ... ≥ uM according to HUF. Thus, M · p·uM ≤∑

i∈{1,...,M} p·ui and thus we have Eqn. (3).

Tightness of the bound. Consider a system with two
charging points and four vehicles for charging. Charging power
is set as 1. Two vehicles are set as (0, 2, 1, 1+ε), and the other
two are set as (0, 1, 1, 1), where ε > 0. As shown in Fig. 7(a),
HUF only gains the utility of the first two vehicles and none
for the other two due to deadline miss. As depicted in Fig. 7(b),
the off-line optimal algorithm obtains all four vehicles’ utility.
The competitive ratio α = 4/(2 + 2ε), which approaches to 2
as ε→ 0. Hence, the bound is tight and the theorem holds.

As defined in Section II-A, the unit utility of a charging
task is a piecewise function and each subtask corresponds to
one piece. That is, the unit utility varies between subtasks
and is fixed for each individual subtask. Thus, by HUF,
subtasks being served always have higher unit utilities than do
suspended charging (sub)tasks. The former subtasks can never
be preempted by the latter ones. Hence, this utility definition
guarantees that HUF will not behave in the same way as LLF
with unbounded number of preemptions or mode transitions.

0
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Port 2

(a) HUF schedule

0

0

t

t
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Port 2

(b) Opt schedule

Fig. 7. Illustration of tightness for Theorem 4. Text in rectangles is unit utility.

C. Bounding All Work-Conserving Schedules
We present a stronger result through showing that any

work-conserving algorithm is bounded. It is worth to note
that the performance bound is applicable to the whole class of
work-conserving algorithms, not just to a specific algorithm.
In the following, we first define a work-conserving schedule
and then analyze the upper bound.

Definition 3 (Work-conserving schedule): A schedule S is
called work-conserving if the following is satisfied: at any time
t, if there are unfinished vehicles with ai ≤ t < di, then
S(t) �= ∅, where S(t) is the set of vehicles being charged in
schedule S at time t.

Definition 3 means that the system can not be idle if
there are still unfinished and unexpired charging demands.
Note that the algorithms discussed in this paper are all work-
conserving. Moreover, the optimal off-line schedules must be
work-conserving, otherwise a larger social welfare can be
obtained by rescheduling vehicles to fill the idleness.

Theorem 5: Any work-conserving algorithm is (1 + β)-
competitive, i.e., 1 + β is the upper bound.

Proof: The proof is similar to that of Theorem 2. Also
suppose that at time t, EV1, ..., EVM are the M vehicles in a
work-conserving schedule S, and EV ′1 , ..., EV ′M are in Opt.
The difference lies in Case 2. The set of EVi that is not in
Opt but in S, may be mapped to time t from a later time.
Hence, the competitive ratio of schedule S is

α ≤
∑

i∈I p·ui +
∑

i∈{1,...,M}\I p·ui
′ +

∑
i∈{1,...,M}\I p·ui

∑
i∈{1,...,M} p·ui

= 1 +

∑
i∈{1,...,M}\I p·ui

′
∑

i∈{1,...,M} p·ui
≤ 1 +

M · u
M · u = 1 + β, (4)

where u = max(ui) and u = min(ui). The theorem holds.

The ratio 1+β is a performance upper bound for the whole
class of work-conserving algorithms. EDF and HUF are also
work-conserving algorithms and they have better performance
bounds. For example, the competitive ratio of HUF is 2 ≤
1 + β. Based on Theorem 5, we can obtain the performance
bound for a batch of on-line algorithms such as first-come-first-
serve (FCFS) and shortest-job-first (SJF). FCFS always first
processes electric vehicles with the earliest arrival times; while
SJF always charges vehicles with the least charging demands.

Corollary 6: Both FCFS and SJF are (1 + β)-competitive
and the bound is tight.

Proof: The bound directly follows Theorem 5 and we
only need to prove the tightness. Consider a system with two
charging points and four vehicles for charging. The charging
power is set as 1. For FCFS, two electric vehicles are set
as (0, 2, 1, u1), and the other two are set as (ε, 1, 1 − ε, u2),
where u1 < u2. The gap between Opt and FCFS is α =
(2 ·u1+2 ·u2)/2 ·u1 = 1+β. For SJF, two vehicles are set as
(0, 2, 1, u1), and the other two are set as (0, 1 + ε, 1 + ε, u2),
where u1 < u2. The gap between Opt and SJF is α = (2(1 +
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TABLE I. SUMMARIZATION OF THEORETICAL RESULTS USING

COMPETITIVE ANALYSIS.

Algorithm EDF HUF FCFS/SJF work-conserving

Bound β 2 1 + β 1 + β
Tight Yes Yes Yes No

ε) · u1 +2(1− ε) · u2)/(2 · u1 +2ε · u2), which approaches to
1 + β as ε goes to zero. Therefore, the corollary holds.

Table I summarizes the theoretical results based on com-
petitive analysis in this section. As mentioned above, multiple
charging points can be abstracted as the multi-processer case
as to the scheduling theory. Thus from a technical perspective,
the theoretical results in this section can be seen as (i) a
generalization to [41], which only focuses on the uni-processor
case, and (ii) an extension to [22], which solely studies
competitive analysis for HUF.

IV. ALGORITHM ANALYSIS BASED ON RESOURCE

AUGMENTATION

In this section, we leverage an analysis technique called
resource augmentation for performance analysis. Resource
augmentation as a method for analyzing on-line algorithms,
first appears in [43], [44]. An on-line algorithm is given more
resource than the optimal off-line schedule with which it is
compared. The idea is to analyze how much additional resource
the on-line algorithm is needed to achieve the optimality.
For a park-and-charge system, the additional resource means
either higher charging power or more charging points. We first
present the analysis for EDF and propose the results for the
whole class of work-conserving algorithms. In the following
theorems, p and M denote the charging power and the number
of charging points for an optimal off-line schedule respectively.

A. Analysis for EDF
In Section III-A, we discuss EDF using competitive anal-

ysis and prove its non-constant competitive ratio. Because
constant bounds are more appealing, one pending question is
whether EDF has a constant performance bound if using other
analysis techniques. We thus turn to resource augmentation.
The authors in [22] adopts resource augmentation to analyze
EDF for the uni-processor (or single charging point) case. We
make a significant generalization to that and deal with the case
of multiple charging points. We demonstrate that EDF also
has no constant performance bound according to the following
two lemmas. This result partly answers the pending question
through eliminating one more analysis technique.

Lemma 7: EDF is optimal with charging power β · p.

Proof: Bounding augmented resource. The proof is
similar to that of Theorem 2. Thus, we only highlight the
difference as follows. Suppose that EDF is with charging
power of x · p and Opt is with power p. The utility by
EDF is thus x ·∑i∈{1,...,M} p·ui. The mapped utilities for

Case 1 and Case 2 keep unchanged, which are
∑

i∈I p·ui and∑
i∈{1,...,M}\I p·u′i respectively. Thus, we have

∑
i∈I p·ui +

∑
i∈{1,...,M}\I p·u′i

x ·∑i∈{1,...,M} p·ui
≤ M · u

x ·M · u =
β

x
.

Hence, to make EDF is 1-competitive (i.e., optimal), we let
the above equation less than or equal to 1. That is, if x = β,
i.e., the charging power is augmented to β ·p, EDF is optimal.

Tightness of the bound. We prove this tightness using the
same example as that in Theorem 2. For EDF with augmented
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Fig. 8. Illustration of tightness for Lemma 7. Text in rectangles is unit utility.

resource, as depicted in Fig. 8(a), the gained utility of the
first two vehicles is 2u1 and that of the other two is 2u2 ·
(1 + ε− u1/u2) respectively. For Opt, as shown in Fig. 8(b),
they are 0 and 2u2 respectively. Thus, the competitive ratio is
α = 2u2/(2u2 + 2ε · u2), which approaches to 1 as ε → 0.
The lemma holds.

Lemma 8: EDF is optimal with 
M · β� charging points.

Proof: Bounding augmented resource. The proof is also
similar to that of Theorem 2 and we highlight the difference.
Suppose that EDF is with x charging points and Opt is with M
charging points. The utility by EDF is thus

∑
i∈{1,...,x} p·ui.

The mapped utilities for Case 1 and Case 2 keep unchanged.
Thus, we have

∑
i∈I p·ui +

∑
i∈{1,...,M}\I p·u′i

∑
i∈{1,...,x} p·ui

≤ M · u
x · u =

M · β
x

.

Hence, to make EDF is 1-competitive, we let the above
equation less than or equal to 1. That is, if x = M · β, i.e.,
the number of charging points is augmented to 
M · β� (the
number is integral), EDF is optimal.

Tightness of the bound. This tightness can be proved by
constructing two different schedules as follows. One is Opt,
where all scheduled vehicles have the highest unit utilities.
The other is the EDF with more charging points, where all
scheduled vehicles have the lowest unit utilities. For example,
consider a system with two charging points. Suppose that there
are two vehicles with unit utility u2 and later deadlines, and
2β vehicles with u1 and earlier deadlines, where u2 > u1 and
β = u2/u1. For Opt, the welfare is 2 · u2. For EDF with 2β
charging points, the welfare is 2β ·u1. It is easy to verify that
the competitive ratio is 1. Hence, the lemma holds.

B. Analysis for Work-Conserving Schedules
Using similar proofs to those in the above lemmas, we

prove that HUF has a constant bound based on resource
augmentation, as illustrated in Lemma 9. We further have
a stronger result, Theorem 10, which is an upper bound of
augmented resource for the whole class of work-conserving
algorithms. We omit their proofs to avoid repetition.

Lemma 9: HUF is optimal with charging power 2p or with
2M charging points.

Theorem 10: Any work-conserving algorithm is optimal
with charging power (1 + β) · p or 
M · (1 + β)� charging
points.

Corollary 11: Both FCFS and SJF are optimal with charg-
ing power (1 + β) · p or with 
M · (1 + β)� charging points.

Table II summarizes the theoretical results based on re-
source augmentation in this section. One application of these
results is when a park-and-charge system plans to upgrade
its charging infrastructure. These results can answer questions
such as how much charging power and how many charging
points need to be added in order to satisfy customers to a
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TABLE II. SUMMARIZATION OF THEORETICAL RESULTS BASED ON

RESOURCE AUGMENTATION. p (M ) DENOTES THE CHARGING POWER (THE

NUMBER OF CHARGING POINTS) FOR AN OPTIMAL OFF-LINE SCHEDULE.

Algorithm EDF HUF FCFS / SJF work-conserving

Charging Power β · p 2 · p (1 + β) · p (1 + β) · p
Charging Point No. �β ·M� 2 ·M �(1 + β) ·M� �(1 + β) ·M�

Tight Yes Yes Yes No

certain degree. From a technical perspective, the theoretical
results in this section can be seen as generalization to that
of the uni-processor case studied in [22], [41]. Further, as
mentioned above, our work adopts the metered task model
and has a goal of welfare maximization. This differentiates
it from those existing works such as [43], [44] that use
deterministic task model and optimize pure temporal metrics
such as response time and deadline miss.

V. EVALUATION

We evaluate the performance of four different algorithms
including HUF, EDF, FCFS and SJF. As mentioned in Sec-
tion III-A, LLF is impractical for park-and-charge system and
thus is excluded in our evaluation. We carry out comparisons
between them and the off-line optimal solution (Opt). To
derive the optimal, we formulate an integer linear program
for the charging scheduling problem, which is then solved
using IBM ILOG CPLEX [45]. We study the performance
of these algorithms under different ranges of unit utility (i.e.,
different values of β), and different scales of charging resource
(i.e., different values of p and M ), different charging load of
vehicles (i.e., different numbers of EVs and charging demand).

A. Experimental Setup
We consider a park-and-charge system with M charging

points and each charging point supports a charging power of
p kw. We compare the social welfare in a time duration of
T = 24h between the above algorithms and Opt. To make the
integer linear program solvable, the time unit is set as 0.1h and
all parameters except unit utility are set to be integral. Note
that there is no such limitation for the algorithms discussed
in this paper. During the 240 time units, there are N electric
vehicles that come to the system for charging. The arrival time
ai is uniformly generated from [1, 240] time unit. The deadline
di, charging demand ei and unit utility ui are chosen from
uniform distributions in [10, D] time unit, [5, C] kWh and
[1, β], respectively. Note that each figure in the following plots
the results that are already normalized to the maximum value in
the corresponding setting. The following shows the simulation
results as well as the corresponding result analysis.

B. Experimental Results
1) Welfare Comparison: Fig. 9 and Fig. 10 demonstrate

the welfare comparison under different settings between the
four algorithms and the off-line optimal result. First, HUF
significantly outperforms the other three algorithms on welfare
maximization across nearly all settings. The reason is that
HUF always first schedules electric vehicles with larger unit
utilities, while other three algorithms schedule vehicles based
on their temporal characteristics. Furthermore, HUF performs
nearly as well as Opt across all of the settings. In practice, the
performance gap between HUF and Opt is much smaller than
the theoretical bound, and so do the other three algorithms.
For example, when β = 8 (in Fig. 9(c)), the theoretical bound
of EDF is 8 according to Theorem 2, but the experimental
performance gap between EDF and Opt is about 1.4. Another

observation is that EDF, FCFS and SJF have nearly the same
performance (i.e., the three curves overlap with each other),
though their theoretical performance bounds are quite different
(β- and 1 + β-competitiveness). This observation infers that
only differentiating vehicles’ temporal characteristics helps
little on welfare maximization with the metered charging
model, when the unit utility range β is large.

2) Sensitivity Analysis: Impact of charging point num-
ber. Fig. 9(a) plots social welfare varying with the number of
charging points. First, the welfare of all four algorithms as well
as Opt increases as the number of charging points rises. This
observation follows the intuition that more charging points
can process more vehicles and thus results in higher welfare.
Second, an interesting observation is that as the charging point
number grows, the difference on welfare between Opt (or
HUF) and the other three algorithms first increases and then
decreases. The reason is two-fold. On one hand, all algorithms
and Opt can process only a small amount of vehicles when
charging points are scarce (e.g., M = 1), and they can finish
almost all charging demands when charging points become
abundant (e.g., M = 20). On the other hand, in-between (e.g.,
M = 5 to 15) is when much difference occurs to the set
of vehicles that these algorithms can schedule, and so does
the welfare. Third, the augmented resource (charging points)
in practice is less than the theoretical bound. For example,
the bound for EDF is 
β ·M�. However, the EDF value at
M = 20 is much larger than the Opt value at M = 5. Similar
remarks can be also made for HUF, FCFS and SJF.

Impact of charging power. Fig. 9(b) shows welfare
varying with the charging power. For this setting, we have
similar observations and analysis to those for Fig. 9(a). We
thus only outline them as follows. First, the welfare of all
four algorithms and Opt increases as the charging power rises.
Second, the difference on welfare between Opt (or HUF) and
the other three algorithms first goes up and then declines.
Third, the augmented resource (charging power) in practice
is less than the theoretical bound. For instance, the EDF value
at p = 20 is much larger than the Opt value at p = 5, where
charging power grows 4 times.

Impact of unit utility range. Fig. 9(c) demonstrates wel-
fare varying with the range of unit utility. As the utility range
grows, the welfare of all four algorithms and Opt increases, and
the performance gap becomes wider and wider. As to flat unit
utility (i.e., β = 1), the welfare derived by EDF is equal to the
Opt value. This observation validates Corollary 3. The other
three algorithms also perform nearly the same as Opt. This
is because that since the unit utility is flat, the resulting gap
between them and Opt is only caused by temporality, which
is thus rather small. When the range of unit utility is β = 8,
the performance difference between Opt and EDF, FCFS, or
SJF becomes to about 40%. By contrast, HUF still performs
nearly as well as Opt. This observation indicates the robustness
of HUF on welfare maximization.

Impact of vehicle number. Fig. 10(a) plots welfare varying
with the number of electric vehicles. First, the welfare of all
four algorithms and Opt increases as the number of vehicles
rises. This is because there are more vehicles scheduled for
charging. However, the increasing rate on welfare decreases.
For example, as to Opt and HUF, the welfare increases more
than 75% from N = 100 to N = 200; while it is less than 6%
from N = 600 to N = 800. For the other three algorithms,

76



� � �� �� ���

���

���

���

���

�

�������������� !"#���$

 
��
"
��
�%
�&
�	
��
��
��'
��
(�
��


)�
*+,
-�,
,�,	
	.,

(a) p = 10, β = 4
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(b) M = 10, β = 4
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(c) M = 10, p = 10

Fig. 9. Experimental results for varying charging point number (M ), charging power (p) and unit utility range (β). Parameters on vehicle number, charging
demand and deadline are set as N = 400, C = 20, D = 60.
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(a) C = 20, D = 60, β = 4
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(b) N = 200, D = 60, β = 8
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(c) N = 200, C = 20, β = 8

Fig. 10. Experimental results for varying parameters on vehicle number (N ), charging demand (C) and deadline (D). Charging point number and charging
power are set as M = 10, p = 10.

there is nearly no change on welfare from N = 200 to 800.
The reason is as follows. When the number of vehicles is
small, the system is lightly loaded and all charging demand
can be fulfilled. As the number grows, the system’s charging
load becomes heavier and heavier. After it reaches the load
limit that an algorithm can schedule (e.g., N = 200 for
EDF), the welfare by the algorithm stays nearly unchanged.
Second, because of the same reason, the difference on welfare
between Opt or HUF and the other three algorithms grows
as the number of vehicles rises, especially when N ≥ 200.
This observation indicates that HUF is more suitable to
systems that tend to be overloaded. As to the charging service,
the park-and-charge system is such a system. In the real-life
scenario, the charging point or power supply in one system is
limited compared with the parking space and is an even scarcer
resource compared with the scale of electric vehicles.

Impact of charging demand. Fig. 10(b) demonstrates wel-
fare varying with the charging demand of vehicles. In reality,
it seldom happens that all vehicles have the same charging
demand. Thus for the charging demand range [5, C] kWh, we
set that C varies from 10 kWh. For this setting, we can make
similar observations and analysis to those for Fig. 10(a). For
example, the welfare by Opt and HUF increases as the charging
demand rises, and the increasing rate decreases. Instead of
repeating them, we only highlight a different observation as
follows. The social welfare by EDF and FCFS even declines as
the charging demand grows, which is rather counter-intuitive.
The reason for EDF is that vehicles with earlier deadlines may
be with lower unit utility. Increasing the charging demand of
these vehicles may make the system schedule less vehicles
with higher unit utility. Similarly, the reason for FCFS is that
increasing the charging demand of vehicles with earlier arrival
time may reduce the serving time for vehicles with higher unit
utility. This observation reveals the performance anomaly of
the temporality-based methods on welfare maximization.

Impact of deadline. Fig. 10(c) shows welfare varying
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(b) Comparison on EDF

Fig. 11. Comparisons about event-driven and time-driven versions of HUF
and EDF. ET: event-driven; TT: time-driven.

with the deadline of vehicles. First, the welfare of all four
algorithms and Opt increases as the deadline rises. The reason
is that longer deadlines make more charging demand be
processed and thus results in higher welfare. Second, the
increasing rate on welfare decreases as the deadline grows. For
example, the welfare by HUF grows about 10% from D = 10
to D = 30; while it stays nearly uncharged from D = 90 to
D = 120. This is because that the welfare benefits little from
deadline increasing after the deadline is large enough to make
all charging demand fully satisfied.

3) Event-driven vs. Time-driven: The above comparisons
(Section V-B1 and V-B2) confine to event-driven algorithms.
Here shows the comparison between event-driven and time-
driven policies. Time-driven policy has been widely used for
general EV charging problems in existing works such as [14]–
[19], but it is inadequate for the park-and-charge scenario
compared to event-drive policy. This fact is validated by
Fig. 11, which depicts exemplary comparisons using event-
driven and time-driven versions of HUF and EDF. We can see
that the event-driven versions perform better than the time-
driven versions. Their difference becomes larger as the time
slot length increases. The reason is that by time-driven policy,
the scheduler is activated only at the beginning of each time
slot. If a charging task arrives within a time slot, it needs to
wait for being scheduled until the beginning of next time slot.
The longer the time slot is, the more waiting time the task
would have. For the extreme case that a charging task arrives
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just after a time slot begins, it will delayed for an entire time
slot. Thus time-driven policy can much compromise the social
welfare as to park-and-charge.

VI. CONCLUSION

This paper studies a park-and-charge system and focuses
on the on-line charging scheduling problem for maximizing
social welfare or EV user satisfaction. We propose to adopt
the metered model to characterize charging tasks and employ
event-driven methods to schedule charging tasks. Our goal
is to perform both theoretical and experimental analysis
for event-driven algorithms adapted to the metered model.
Theoretical results show the varying performance bound
of temporality-based algorithms such as EDF, FCFS, and
SJF, and the constant performance bound of the value-based
algorithm, HUF. Simulation results further demonstrate
the near-optimality and performance consistency of HUF,
and the sub-optimality and performance anomaly of the
temporality-based algorithms. These results indicate that HUF
has better robustness than those temporality-based algorithms
do in terms of maximizing social welfare. Hence, adopting
HUF in park-and-charge systems can provide better charging
service to customers and thus make them better satisfied.
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