
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

Fisc: A Large-scale
Cloud-native-oriented File System

Qiang Li, Alibaba Group; Lulu Chen, Fudan University and Alibaba Group;
Xiaoliang Wang, Nanjing University; Shuo Huang, Alibaba Group; Qiao Xiang,

Xiamen University; Yuanyuan Dong, Wenhui Yao, Minfei Huang, Puyuan Yang,
Shanyang Liu, Zhaosheng Zhu, Huayong Wang, Haonan Qiu, Derui Liu,
Shaozong Liu, Yujie Zhou, Yaohui Wu, Zhiwu Wu, Shang Gao, Chao Han,

Zicheng Luo, Yuchao Shao, Gexiao Tian, Zhongjie Wu, Zheng Cao, and Jinbo Wu,
Alibaba Group; Jiwu Shu, Xiamen University; Jie Wu, Fudan University;

Jiesheng Wu, Alibaba Group
https://www.usenix.org/conference/fast23/presentation/li-qiang-fisc

https://www.usenix.org/conference/fast23/presentation/li-qiang-fisc

Fisc: A Large-scale Cloud-native-oriented File System

Qiang Li⋄, Lulu Chen†⋄, Xiaoliang Wang‡, Shuo Huang⋄, Qiao Xiang⋆,
Yuanyuan Dong⋄, Wenhui Yao⋄, Minfei Huang⋄, Puyuan Yang⋄, Shanyang Liu⋄,

Zhaosheng Zhu⋄, Huayong Wang⋄, Haonan Qiu⋄, Derui Liu⋄, Shaozong Liu⋄, Yujie Zhou⋄,
Yaohui Wu⋄, Zhiwu Wu⋄, Shang Gao⋄, Chao Han⋄, Zicheng Luo⋄, Yuchao Shao⋄,

Gexiao Tian⋄, Zhongjie Wu⋄, Zheng Cao⋄, Jinbo Wu⋄, Jiwu Shu⋆, Jie Wu†, Jiesheng Wu⋄,
⋄Alibaba Group, †Fudan University, ‡Nanjing University, ⋆Xiamen University

Abstract
Despite the progress of cloud-native technologies, existing

distributed file systems are ill-suited for multi-tenant cloud-
native applications for two reasons, First, their clients are typ-
ically heavyweight, resulting in a low level of resource multi-
plexing among containers. Second, their architecture is based
on network gateway and falls short in providing efficient,
highly-available and scalable I/O services for cloud-native ap-
plications. In this paper, we propose Fisc, a large-scale, cloud-
native-oriented distributed file system. Fisc introduces three
key designs: (1) a lightweight file system client to improve
the multiplexing of resources with a two-layer resource aggre-
gation, (2) a storage-aware distributed gateway to improve the
performance, availability and scalability of I/O services, and
(3) a DPU-based virtio-Fisc device offloading key functions
to hardware. Fisc has been deployed in production for over
three years and now serves cloud applications running over
3 million cores. Results show that Fisc client only consumes
69% CPU resources compared to the traditional file system
client. The production environment shows that the average
latency of online searching tasks is less than 500 µs when
they access their files in Fisc.

1 Introduction
Many applications, such as data analytics [1], machine

learning [2], and transactional workflows [3, 4] are deployed
in public clouds. The emerging cloud-native technologies are
shifting virtualization in clouds from virtual machines (VM)
to containers and pushing up the abstraction provided to ten-
ants from resources (e.g., CPU and memory) to services (e.g.,
database and object storage service). As such, cloud service
providers (CSPs) must rethink their fundamental services to
provide efficient, flexible support to cloud-native applications.

Specifically, file system (FS) is one such fundamental
service, with which applications can store and access their
data [5–7]. Tenants typically employ FS in the cloud in one
of two modes. They either purchase cloud storage (e.g., SSD)
and deploy their own FS, or directly use the FS service pro-
vided by CSPs. As CSPs gradually switch from server- cen-

tric to resource-disaggregated architectures, tenants increas-
ingly use the second approach for its elasticity, flexibility,
on-demand charging, and ease of use [6, 8, 9].
File systems need to be redesigned to support cloud-native
applications. Existing distributed file systems (e.g., [5–7])
are ill-suited for multi-tenant cloud-native applications for
two reasons. First, clients in these systems have a low level of
resource multiplexing among containers. That hinders CSPs
from achieving high efficiency of resources and makes it dif-
ficult for each computation server to support a large number
of containers for cloud-native applications. Specifically, these
clients typically adopt a heavyweight design to provide many
functionalities, including interfaces for interacting with ap-
plications, storage protocols for data persistence and failure
handling, network-related functions for communications with
data nodes and metadata masters, and security-related func-
tions for authorization checking. As such, each client needs
to reserve many exclusive resources, and a server can host
only a small number of containers concurrently, resulting in
inefficient use of resources.

Second, a centralized network gateway employed for file
system service in the cloud cannot satisfy the requirement of
cloud-native applications for performance, availability, and
load balancing. A network gateway is a component that con-
nects clients in the virtual domain of users to backend proxies
in the physical domain of CSPs. This network-gateway-based
architecture has a series of limitations, including (1) a sub-
optimal, ms-level latency to pass through the gateway, (2)
the incapability of data locality optimization and fast failure
handling due to the unawareness of file semantics and storage
protocols, (3) the incompatibility with high-performance net-
work stack like RDMA without intrusive changes to clients,
and (4) the load balancing gap between network connections
and files. Besides, to match the throughput of a large-scale file
system of thousands of nodes, it would take non-negligible
costs for CSPs. Luna and Solar [10] propose storage network
stacks for Alibaba’s EBS service. However, they only focus
on achieving high performance within the physical domain of
CSPs. They cannot provide high performance for the whole

USENIX Association 21st USENIX Conference on File and Storage Technologies 231

path from the file clients in the virtual domain of users to the
storage clusters in the physical domain of CSPs.
Fisc: a cloud-native-oriented file system. In this paper,
we design Fisc, a cloud-native-oriented distributed file sys-
tem service to provide cloud-native applications with high-
performance, high-availability storage services at low cost.
Fisc consists of two key components: lightweight clients and
a storage-aware distributed gateway (SaDGW).

First, with a two-layer aggregation, Fisc moves user-
unaware functionalities (e.g., network stacks and storage pro-
tocols) out of clients in the containers and offloads them to the
Data Processing Units (DPU) of computation servers and the
backend storage nodes of CSPs to aggregate their resources,
respectively. As a result, the resources used for these func-
tionalities can be fully multiplexed, lowering the amortized
cost. Meanwhile, as each client consumes substantially fewer
resources, a computation server can host a large number of
containers for cloud-native applications.

Second, Fisc introduces SaDGW to provide a direct high-
way with a high-performance network stack [10] between the
computation and storage servers. Specifically, we leverage the
file system semantics on the highway path to build a storage-
aware routing mechanism to route clients’ file requests from
the frontend virtual domain of tenants to the backend physical
domain of CSPs with a granularity of files instead of network
flows. We design a series of mechanisms, such as storage-
aware failure handling and locality-aware read optimization,
to improve the availability of Fisc. We have also employed
a file-based fine-grained scheduling mechanism to balance
loads of proxies at storage nodes.
Implementing Fisc with a software-hardware co-design.
Realizing lightweight clients and SaDGW completely in soft-
ware is inefficient. As such, we leverage the emerging DPUs
to implement part of the functionalities of clients and the core
functionalities of SaDGW. We adopt a virtio-Fisc device in
DPU to offload the network stacks and storage protocols and
provide secure and high-efficient passthrough from the users’
virtual domain containers to the file system of CSP’s physical
domain. We also leverage the fast path in DPU to acceler-
ate the I/O processing, further improving the performance of
Fisc.
Production deployment. Fisc has been deployed in produc-
tion DCN for three years and serves applications running
on over 3 million cores in Alibaba. For large-scale develop-
ment, it presents an abstracted virtual RPC (vRPC) based on
SaDGW and virtio-Fisc devices, which is easy to use and can
be adopted by other cloud-native services like Function as a
Service (FaaS). Compared to the on-premise Pangu client, the
CPU and memory consumption of the Fisc client is reduced
by 69% and 20%, respectively. The availability is improved
by an order of magnitude (e.g., failure recovery from a second-
level to a 100ms-level). For the online-search query service,
its average and P999 latency in Fisc are <500 µs and <60 ms,
respectively. Its average latency jitter is less than 5%.

2 Background and Motivation
2.1 File Systems

File system (FS) is a fundamental service for users to store
and access their data. Large-scale distributed file systems like
Tectonic [7], Colossus [5], and Pangu [6] have been devel-
oped by different companies in their datacenters. Generally,
they consist of three components, masters, data servers, and
clients. The masters manage data servers and maintain the
metadata of the whole system (e.g., the file namespace and the
mapping from file chunks to data servers). The data servers
are storage nodes responsible for managing file chunks and
storing their data on storage media (e.g., HDDs and SSD).
The clients interact with the masters for metadata and the data
servers for data. Notice that clients in representative large-
scale file systems (e.g., Tectonic [7] and Colossus [5]) are
heavyweight. They provide complex functions, including not
only storage protocols for data persistence and failure han-
dling but communication with masters and data servers, as
well as security-related functions such as authorization.

Pangu [11] is a large-scale distributed storage system in Al-
ibaba and provides append-only file semantics like HDFS [12].
It works as a unified storage core of Alibaba Cloud. Multi-
ple businesses (e.g., Elastic Block Service [10, 13], Object
Storage Service [14], Network Attached Storage [15], and
MaxCompute [16]) are built on top of Pangu. They adopt
the Pangu clients for persistent, append-only file storage, em-
ploy a key/value-like index mapping to update data, and use
a garbage collection mechanism to compress historical data.

2.2 Cloud Native
With the development of cloud-native technology (e.g., mi-

croservice, container, and serverless computing), more and
more tenants are deploying their applications into the public
cloud and directly using the services provided by CSPs (e.g.,
database and object storage service). In 2020, Alibaba also
migrated all its core businesses, such as Taobao and Tmall, to
cloud-native containers. Cloud-native technologies substan-
tially simplify the development and operation of tenants and
demonstrate two characteristics. First, with fine-grained con-
tainers being used instead of VMs, the number of containers
in a computation server can exceed 1000 [17, 18], i.e., ∼10
times more than that of VMs. Second, cloud-native technolo-
gies push up the abstraction provided to tenants from VMs to
services. The implementation of services is transparent to ten-
ants but must provide high performance under heterogeneous
workloads. To this end, bare-metal DPUs are increasingly
used to accelerate cloud-native applications. For example,
AWS adopts Nitro [19] and Alibaba adopts X-Dragon [20,21].
These bare-metal DPUs utilize the virtio technology for I/O
virtualization and can provide high-performance support to a
broad range of cloud services.

2.3 Motivation
Cloud-native applications bring new challenges for CSPs

to provide file system service.

232 21st USENIX Conference on File and Storage Technologies USENIX Association

100 200 300 400 500 600 700 800 900 1000

0
2

4
C

PU
 c

or
es Writestorage-related

network-related

200 400 600 800 1000 1200 1400 1600 1800 2000
Bandwidth (MB/s)

0
1

2
C

PU
 c

or
es ReadStorage-related

Network-related

Figure 1: The CPU consumption of an HDFS client under
different I/O bandwidths.

Isolated file system clients cause low resource utilization.
In traditional file systems [5, 7], a client is responsible for
multiple tasks, including storage protocols of reliability and
consistency, failure handling, network-related functions, and
authorization-related functions. As such, applications usually
pre-allocate I/O threads and reserve memory resources and
network connections for file system clients. Because the re-
sources of FS clients in containers are isolated from each
other, the resource utilization of CSPs is low. As a result,
achieving a high density of over 1,000 containers in a com-
putation server is difficult. Take the resource consumption of
an HDFS client in a Hadoop-2.10.2 cluster of three Intel(R)
Xeon(R) Gold 5218 servers as an example. Figure 1 plots the
CPU consumption of the HDFS client under different read
and write bandwidths. Even if the client writes files at a band-
width of 200 MB/s, it consumes 1.1 CPU cores. Consider a
typical scenario where a container is allocated two cores. It
means over 50% CPU resources are spent on I/O.

We make a key observation that many common functions
(e.g., storage protocols and network stacks) of different FS
clients can be aggregated to achieve more efficient resource
sharing. With this aggregation, we can provide a lightweight
file system interface for different tenants, and simplify the
maintenance and upgrade of FS clients.
Network gateway becomes the bottleneck. FS clients of
cloud-native applications are in the virtual domain of users,
while the file system resides in the physical domain of CSPs.
For security reasons, clients cannot directly access the file
system but have to use a network gateway (i.e., network load
balancer) to access the data. However, this network gateway
cannot satisfy the requirements of cloud-native applications
on file services in terms of performance, availability, load
balance, and cost.
• Performance. Performance-critical cloud-native applica-

tions (e.g., interactive applications [22]) require a 100µs-
level storage access latency. Although file systems such
as Pangu are equipped with high-performance SSD and
RDMA in the backend cluster [6], which provides a 100µs-
level latency, an I/O request needs to go through multiple
hops in a network-gateway-based architecture, resulting in
a second-level or ms-level latency [23, 24].

• Availability. Cloud-native applications often require a ms-
level recovery latency [25] in the case of storage system

failures (e.g., network jitters and server breaking down).
However, with a network gateway, file systems can only
support second-level failure handling [26, 27] due to the
gap between files and network connections. Specifically, the
network-connection-based Service Level Agreement (SLA)
is substantially different from the file-based SLA of file
systems. As such, it is hard to leverage storage protocols
in a network-gateway-based architecture to improve the
availability of file systems.

• Load balance. The network gateway distributes the load
to different proxies based on the number of network con-
nections. That may lead to a significant load imbalance of
files among the proxies due to the semantics gap between
files and connections. For example, the load among proxies
can be as much as ten-fold different in the NAS service in
Alibaba Cloud [15]. In addition, the gateway may direct a
read request to a storage server with no requested data. The
server must forward the request to another storage server
that has the data, which will amplify the traffic.

• Cost. A large-scale file system requires a large amount
of hardware dedicated to the network gateway in order
to match the total throughput of its storage cluster, which
typically consists of thousands of storage nodes. Given a
cluster of 10,000 storage nodes, each of which is equipped
with a 25×2 Gbps NIC, its total throughput is 500 Tbps.
If the throughput of a network gateway machine is 100
Gbps, we need 5,000 gateway machines to match the total
throughput of the cluster, which introduces a non-negligible
cost for CSPs.

3 Overview of Fisc
In this section, we give an overview of Fisc, including its

design rationale, architecture and basic workflow.

3.1 Design Rationale
Aggregating the resources of FS clients. Resource aggrega-
tion is the nature of cloud computing, which can improve
resource utilization and provide elastic, efficient, and on-
demand cloud service. In contrast to the traditional resource-
intensive FS clients, we aggregate functions like storage pro-
tocol and network-related functions by offloading them to
the CSP’s domain (e.g., the DPUs at computation and storage
servers). Meanwhile, this aggregation allows CSP to provide a
reservation-only interface with a lightweight client for cloud-
native applications. As such, it allows a computation server
to host a large number of application containers concurrently.
Storage-aware distributed gateway. Instead of using a cen-
tralized network gateway, we resort to a distributed storage-
aware gateway to set up direct highways between each com-
putation server and its corresponding remote storage nodes.
This design allows us to adopt high-performance network
protocols connecting the virtual and physical domains. It also
leverages storage semantics on the highways to improve the
availability and locality of file access requests and guarantee
the load balance among storage nodes.

USENIX Association 21st USENIX Conference on File and Storage Technologies 233

Pangu file system

Storage cluster

Computation server

Fisc
client

Proxy
master

Fisc
proxy

Fisc
client

Fisc agent

Virtio-Fisc device

Computation server

Fisc
client

Fisc
client

Fisc agent
DPU

Virtio-Fisc device

DPU

SaDGW

In
te

rfa
ce

la

ye
r

st
or

ag
e-

aw
ar

e
di

st
rib

ut
ed

 g
at

ew
ay

Pe
rs

ist
en

ce
la

ye
r

Fisc
control
plane

Open APIs

control flow

data flow

Fisc
proxy

container container container container

Figure 2: The architecture of Fisc.
Software and hardware co-design. To improve the efficiency
and performance of the file system service, we leverage the
emerging DPUs deployed in physical servers. Through careful
hardware and software co-design, we can implement secure,
efficient passthrough from the users’ containers in the virtual
domain to the file system of CSP’s physical domain. More-
over, we can also introduce a fast path in DPU to accelerate
the I/O processing.

3.2 Architecture
As shown in Figure 2, Fisc consists of a control plane

and a data plane. The control plane provides open APIs for
tenants to create Fisc FS instances, mount the Fisc FS to their
VM/containers, and allocate virtio devices to accelerate the
passthrough from the virtual domain to the physical domain.

Fisc’s data plane consists of three layers: interface layer,
storage-aware distributed gateway, and persistence layer. The
lightweight Fisc client is placed in the frontend, which pro-
vides FS service interfaces for applications. The distributed
storage-aware distributed gateway (SaDGW) is in the middle
layer, composed of Fisc agents in the DPU of each compu-
tation server, Fisc proxies in each storage node, and a group
of Fisc proxy masters in the storage cluster. The Fisc proxy
masters are responsible for managing Fisc proxies and Fisc
agents. The backend persistence layer is Pangu, which is re-
sponsible for processing the requests and persisting the data
in storage media.
Lightweight Fisc client. The aggregation of client resources
occurs at the Fisc agent in the DPU of each computation server
and the Fisc proxy in each storage server. We dissect the func-
tions of FS clients and make careful aggregation tradeoffs to
decide where these functions should be aggregated (i.e., Fisc
agents or proxies). We also design mechanisms to simplify
the implementation of Fisc clients and maintain compatibility
across different versions of their software libraries.
SaDGW. This gateway gives full play to the 100µs-level
high-speed SSD and RDMA technologies via direct and high-
performance network connections between Fisc agents and
Fisc proxies. Based on the file granularity routing in each
Fisc Agent, it leverages the storage semantics on the route

to eliminate the gap between network and file to achieve a
P999 ms-level SLA. Moreover, it implements a locality-aware
read mechanism that avoids the read traffic amplification and
doubles the read throughput.

HW and SW co-design on DPU. Fisc provides a virtio-
Fisc device to build up secure and efficient passthrough from
virtual containers to the physical storage cluster. Based on
the device, a co-designed FPGA cache is presented as a fast
path to further improve Fisc’s performance. With regard to
the scarce resource of DPU, optimizations for CPU, memory,
and network are proposed.

With these three modules, we further provide a vRPC (vir-
tual RPC) abstraction for storage service, which can be easily
adopted by cloud-native services. Besides, Fisc adopts an
end-to-end (E2E) QoS mechanism for different priority ap-
plications like online search and offline training. With proxy
master scheduling, Fisc builds up file-granularity load balanc-
ing among Fisc Proxies, which avoids the imbalance caused
by traditional network connection-based scheduling.

3.3 Workflow of Fisc
In the control plane, when a tenant calls the open APIs to

create a Fisc instance, Fisc control plane maps the instance
to the backend Pangu file system, and pushes the information
of the tenant and the mount point to the Fisc proxy masters
deployed in the Pangu storage cluster. The Fisc proxy master
pushes the proxy mapping (i.e., the mapping between the
mount point and the Fisc proxies) to the Fisc agent whenever
the tenant attaches the mount point to a VM/container. In
the end, the control plane attaches a virtio-Fisc device to the
corresponding VM/container.

The workflow of the data plane mainly involves SaDGW
with a fine-granularity route table. Given a meta operation
request of files of the mount point, it arrives at the Fisc
agent through the virtio-Fisc device. The Fisc agent randomly
chooses a Fisc proxy according to the mapping between the
mount point and Fisc proxies. If it is an open operation for
a file, a route entry associated with the opened file will be
constructed with its file handle and the Fisc proxy location.
Afterwards, the subsequent read/write requests of the file will
be routed according to the route entry. More details of storage-
aware routing optimizations are in §4.2.

4 Design and Implementation
4.1 Lightweight Fisc Client

We adopt a lightweight design for Fisc clients by offloading
most of their functions to Fisc agents in the DPU of computa-
tions servers and Fisc proxies on the storage nodes. Through
this two-layer function aggregation, Fisc achieves a high level
of resource multiplexing. In addition, we also introduce a
unified RPC-based method to simplify the implementation of
Fisc clients and a mechanism similar to Protocol Buffers (PB)
to maintain compatibility across their different versions.

234 21st USENIX Conference on File and Storage Technologies USENIX Association

4.1.1 Function Offloading and Aggregation Tradeoff
Typical heavyweight FS clients [5–7] provide four types

of functions: (1) file interfaces and structures (e.g., APIs and
file handlers), (2) storage-related protocols (e.g., replication
reliability, data consistency, and failure handling), (3) secu-
rity and authentication (e.g., authorization checking) and (4)
network-related protocols (e.g., RPC with data nodes or meta-
data nodes). We make a key observation that in cloud-native
applications, users are only interested in the first type of func-
tions and the implementations of other functions are transpar-
ent to users. Therefore, we can move the latter three functions
out of Fisc clients and aggregate them to achieve a high level
of multiplexing on resources. However, the locations where
they are aggregated (i.e., Fisc agents or Fisc proxy) have a
great impact on the effects of multiplexing. We elaborate on
our offloading designs of different functions.
Offloading network-related functions to Fisc agent. We
offload the network-related functions of conventional clients
to the Fisc agent in the DPU of the computation server.
This is motivated by the recent success of DPU-based high-
performance network stacks (e.g., Luna/Solar [10] and Nitro
SRD [28]) in the physical domain of CSPs. In particular, a
Fisc agent extends Luna/Solar network stack and aggregates
multiple network connections of Fisc clients on the same
computation server. This substantially reduces the CPU and
memory resources each client needs to reserve for network-
related operations.
Offloading security-related functions to Fisc agent. We
adopt an early-checking design to perform security checks
(e.g., authentication and authorization) in Fisc agent when it
receives requests from Fisc clients. Different from the meth-
ods with network gateway, which deal with the malicious
traffic at their proxies, this design prevents malicious traffic
from consuming the resources of backend storage clusters.
Offloading storage-protocol functions to Fisc proxy. We
choose to offload storage-protocol functions to Fisc proxies
in the storage clusters, instead of Fisc clients, for three rea-
sons. First, the DPU in the computation server has limited
resources. After spending resources on network-related func-
tions, security-related functions and bare-metal virtualization
of virtio-Fisc device, the DPU does not have sufficient re-
sources to implement complex storage protocols. Second, of-
floading these functions to the storage clusters helps move the
storage traffic between the computation servers and the stor-
age clusters in the backend network within storage clusters,
saving the scarce network resources in the compute-storage
disaggregated architecture. Third, it allows us to adopt storage-
oriented optimization and hardware-assisted accelerations in
the storage clusters to improve the overall system performance
and reduce costs.
4.1.2 Simplification and Compatibility

Implementing an FS client and maintaining its compati-
bility across different versions of its software library is chal-
lenging because a typical FS client has a large number of

APIs (e.g., the HDFS client has more than 100 APIs [29]).
We introduce a unified RPC-based method to simplify the
implementation of Fisc clients and a mechanism similar to
protocol buffers for compatibility maintenance.
Simplifying client implementation using RPC. We imple-
ment the APIs in the Fisc client using RPC stubs. When the
application invokes an API, the Fisc client passes the param-
eters of the API to its corresponding RPC stub. The stub
encodes these parameters, the file handle, and the tenant in-
formation into an RPC request. This request is sent to the
Fisc agent in the DPU with a virtio-Fisc device (§4.3.1). The
Fisc agent checks the authorization of tenants and looks up
the file handle in its route table (§4.2.1) to forward the RPC
request to a corresponding Fisc proxy. Upon receiving the
request, the Fisc proxy resolves it and invokes the correspond-
ing RPC service of the API, which completes the API and
encodes its return value in an RPC response. The response is
returned to the Fisc client along the opposite path of the RPC
request and resolved by the client. This design makes it easier
to implement and add APIs in Fisc clients.
Maintaining compatibility using a PB-based mechanism.
Building on top of the RPC-based API implementation, we
introduce a PB-based mechanism to maintain the compatibil-
ity of Fisc clients across different versions. Directly applying
the PB protocol [30] would introduce extra data center tax of
(de)serialization [31], wasting the limited resources in DPU.
To this end, we categorize Fisc APIs into data-related ones
(e.g., read and append) and meta-related ones (e.g., create,
delete, open and close). Although the former has fewer APIs,
it is more frequently used than the latter. Thus, for data-related
APIs, we adopt several carefully designed, efficient data struc-
tures to maintain their compatibility. For the meta APIs, we
use the PB protocol as it is. In this way, we can achieve a
balance between performance and compatibility.

4.2 Storage-aware Distributed Gateway
SaDGW is a distributed gateway that sets up direct con-

nections, referred to as "direct highways" in the paper, be-
tween the Fisc agents and the Fisc proxy. As such, Fisc can
adopt high-performance network stacks on these direct high-
ways, and further leverage storage semantics to build a file-
granularity storage-aware routing. It improves the availability
through storage-aware failure handling and improves the read
throughput through locality optimizations.

4.2.1 Direct Highway Between Agents and Proxies
Direct highway. With the help of DPUs, Fisc builds direct
highways between Fisc agents and Fisc proxies, where no net-
work gateways are needed. Considering a storage cluster with
thousands of nodes, this would be a significant cost saving.
On the highways, we adopt high-performance network stacks
of Luna/Solar [10], which is transparent to cloud-native appli-
cations, instead of the TCP/IP stack. Raw data structures [32]
are adopted to eliminate the overhead of (de)serialization
between Fisc agents and proxies.

USENIX Association 21st USENIX Conference on File and Storage Technologies 235

Fisc proxy
Chunk server

index file handle proxy

0x0000 fd1 10.10.1.4

0xffff fd2 10.10.1.8

… … …

file_handle_index = Open (“mountpoint.cluster1/file1”, …)

Read(file_handle_index, offset, length, ..)

Proxy
master

Master

Storage cluster

10.10.1.4

open path

read path

Fisc client

Fisc agent

Route
table

Fisc proxy
Chunk server

10.10.1.8

…

Figure 3: The routing process of Fisc.

File granularity route table. SaDGW manages highways
through a centralized control mechanism (§3.3). As shown
in Figure 3, Fisc agent adopts a file-granularity route table
for routing file requests to Fisc proxies, which records the
file handle information and the location of the Fisc proxy
serving the file. For the route table, one entry is inserted once
a file is opened for the first time. When Fisc agent receives
a file open request, it randomly chooses a Fisc proxy from
the proxy mapping. An entry is constructed when a response
of successful file open is returned. The entry includes the
returned file handle, the location of the chosen proxy, and the
SLA-related attributes mentioned below. Afterwards, when
an I/O request arrives at the Fisc agent, it looks up a proxy
in the route table with the file handle of the request and then
transmits the request to the proxy. Due to the scarce memory
in DPU, Fisc uses an LRU policy to control the size of the
route table.

4.2.2 Storage-aware Failure Handling
Enhanced route entry. Based on the file granularity route
table, Fisc further leverages storage semantics to improve its
availability. For failure handling of storage protocols, three
main factors are considered: retry timeout, retry destination,
and highway quality. 1) The retry timeout means the max-
imum number of times the Fisc agent retries the failed re-
quests, which is related to the request timeout set by users and
highway quality; 2) The retry destination denotes the proxy
location in the entry, which will be replaced by a new proxy if
retry timeout occurs; and 3) The highway quality is measured
by the average latency to estimate the network quality to the
proxy. Therefore, we enhance the route table to support fail-
ure handling. Besides the file handle and proxy location, each
route entry is extended with three items: retry times, retry
timeout, and avg-latency, which record when the agent reset
the connection, the condition under which the agent gives up,
and the average latency of requests, respectively. We make use
of these items to implement storage-aware failure handling.
Failure handling. Fisc leverages several mechanisms in the
Fisc agent to conduct failure handling.
• Retry. When detecting a failed request, the Fisc agent re-

tries the request several times until it receives a success-
ful response or it exceeds the timeout defined by users.

Since users usually set a relatively large timeout for their re-
quests, the Fisc agent initially sets a small empirical timeout
(i.e., ten times the average latency) to detect failed requests.
When such a request is found, the agent doubles the timeout
to execute the retry. This mechanism deals with temporary
failures (e.g., network jitters and burst proxy load).

• Blacklist. Upon detecting consecutive failures of requests
or an abnormally large average latency to a Fisc proxy,
the Fisc agent puts this Fisc proxy into the blacklist. A
background thread periodically pings these proxies and will
remove the successful pinged proxy from the blacklist. The
metadata requests in the metadata path will exclude the
proxies in the blacklist when choosing Fisc proxies. The
data operations in the data path will involve the following
reopen mechanism.

• Reopen. If the destination Fisc proxy of a request is in the
blacklist, Fisc agent will select a new Fisc proxy to reopen
the file and update the route entry. Otherwise, for a failed
request, it adopts a threshold of retry times to make sure
that there is still time left after the retry. In the remaining
time, it reopens the file by retrying the request to a new Fisc
proxy. This operation provides the opportunity to complete
the request with the new proxy and avoid request failure.
These mechanisms are transparent to cloud-native applica-

tions. It provides flexibility for CSPs to upgrade the failure
handling policy and helps keep the Fisc client lightweight.
4.2.3 Locality-aware Read

For a read operation, its request is first sent to a Fisc proxy
and then sent to the Pangu chunkserver where the data to read
is located by the proxy. The read response with the data to
read is returned along the opposite path: from the chunkserver
to the proxy and then to the client. It results in a two-time
amplification of the read traffic, which consumes extra band-
width and reduces the read throughput of the whole cluster by
half. Considering that each storage node is deployed with a
Fisc proxy process and chunkserver process, we design the
locality-aware read by letting Fisc agent record the locations
of file chunks and sending read requests to the proxy, where
the concurrently deployed chunkserver holds their required
chunks.
Predicted locations in a range table. When an open or read
response returns to Fisc agents, the location information of
the file chunks is piggybacked, as shown in Figure 4. The
proxy returns the chunk information that would be read in the
near future by the read prediction mechanism of Pangu. The
number of the predicted chunks is empirically set to 16. Then
the location information is encoded as range and location
pairs and inserted into a range table. Each entry of the range
table corresponds to a file, and the total number of range
pairs in an entry is limited to 64 due to the scarce resource
of DPU. For the 64 MB chunk size, its spanned range is 4
GB, which covers a large range space of files. The index of a
file’s corresponding range table entry is stored as a read hint
attribute in a route table entry.

236 21st USENIX Conference on File and Storage Technologies USENIX Association

Fisc client

Fisc agent

Fisc proxy
Chunk server

Fisc proxy
Chunk server

… … … …

Range entry 1

Open Read

Proxy
master

Master

Storage cluster

<file handle, Range, chunk server IP>

10.10.1.4 10.10.1.8

open path

read path

10.10.2.6

Replica 1
location

Range

Range1
(offset, length)

Range2
(offset, length) 10.10.1.8

Replica 2
location

10.10.2.4

Replica 3
location

10.10.1.5

10.10.1.5

10.10.2.6

Range entry 2

… … … …

… … … …

… … … …

… … … …

Range table index, which is stored as the read hint in the route table

Figure 4: The design of locality-aware read.

DPU

Virtio-Fisc
back-end

NIC

Fisc agent

CPU

FPGA

Virtio-Fisc
frond-end

Cached
route table Route table

fast path

slow path

Figure 5: The design of fast path.

Fisc
proxy

Storage cluster

Client

Computation server

Fisc agent
routing

failure handling

Client
(vRPC client)

Server
(vRPC server)

Fisc agent
(Plugin adaptor)

vRPC

DPU…

Fisc
proxy

vitio-Fisc device

High performance
network

…

Figure 6: The abstracted vRPC.

Shared memory instead of cross-node communication.
When a request arrives at a Fisc agent, the Fisc agent looks
up its route entry and finds the read hint, which is an index
of the range table. With the index, the Fisc agent then looks
up the range table and finds the matching range and location
pair. If a pair hits, the read request will be sent to the location
in the pair. In some cases, the range for a read, with the offset
adding the length to read, is larger than the range of a hit pair.
In this case, due to the limitation of CPU resources, we do
not divide a read request into multiple ones to avoid complex
processing in DPU, such as segmentation, combination and
failure handing. When the Fisc proxy of the location receives
the read request, it calls the Pangu client to complete the re-
quest. As the Pangu client finds that the chunkserver and the
proxy is located in the same physical node, it uses shared-
memory communication instead of the network. As a result,
the data to read is only transmitted once through the network,
and increase the total read-throughput of a storage cluster.

4.3 SW/HW Co-design with DPU
Fisc adopts X-Dragon DPU [33] to build a novel virtio-

Fisc device to accelerate its secure passthrough from the
virtual domain of users to the physical domain of CSPs. To
meet the requirements of cloud-native applications, a fast path
is applied in DPU, and many optimizations are adopted to
mitigate the impact of the scarce resources of DPU.
4.3.1 DPU-based Virtio-Fisc Device

The virtio-Fisc device is a PCIe device following the virtio
standard. It consists of two parts, the frontend in VMs/contain-
ers and the backend in DPUs. Fisc client puts requests in the
virtio hardware queues through the frontend, and Fisc agents
running on the processor of DPU process the requests of the
hardware queues. Agents send the requests to the Fisc prox-
ies, and put the returned responses into the virtio hardware
queues, which are consumed by the frontend. Two generations
of virtio-Fisc devices are adopted in Fisc:
Virtio-Fisc devices based on virtio-block. We adopt virtio-
block device for its compatibility with major operating sys-
tems and can be used by most VMs/containers without modi-
fication. With virtio-block interface, the front-end is the same
as the standard virtio-block device, and a lightweight com-
munication library is implemented with block read and write

operations for Fisc client. However, the backend is quite dif-
ferent, and requests in hardware queues are processed with
Fisc agents instead of the traditional virtio-block software, as
mentioned in [20]. In fact, it only makes use of the virtio-block
interface and works as a virtio-Fisc device.
Virtio-Fisc devices based on customized design. We de-
sign a novel vitio-Fisc device to eliminate the limitation of
virtio-block. For example, the depth of a virtio-block queue is
limited to 128 in most operating systems. Though it is enough
for virtio-block but not for nonblocking requests of Fisc. The
novel virtio device is more like a NIC device. We further
leverage its interface to the RPC level, which can be suitable
for cloud-native services like FaaS. It makes use of virtio
queues to transmit commands for RPC requests and receive
responses. We equip the device driver in our released OS in
Alibaba.
4.3.2 Fast Path

We adopt a cache of route table in FPGA of DPU, which
generates a fast path to speed up the processing of file requests.
As shown in Figure 5, the mapping between the file handle and
network connection is cached in the FPGA. With the cache,
when a request with its file handle comes to the customized
virtio-Fisc device in the FPGA, the FPGA resolves the file
handle from the request and looks up the table. If it hits,
the request will be directly packed as network packets and
transmitted to the network connection. Otherwise, the request
will be sent to Fisc agents via the slow path. Entries of the
cache are controlled and updated by Fisc agent in software
to relieve the complexity of the FPGA implementation of
the cache. And to control network transmission bandwidth,
the transmission window of each connection is also set and
updated in cache entries by the Fisc agent.
4.3.3 Resource Optimizations

With regard to the scarce resources of DPU, optimizations
for its CPU, memory and network are applied.
CPU optimization. We leverage two methods to optimize
the CPU usage in DPU. 1) Batch operation. Fisc gathers
multiple requests into one to share the processing of virtio
protocols between Fisc clients and agents. 2) Manual PB
(De)Serialization. Fisc adopts manual PB (De)Serialization
methods. They are customized for particular data types of

USENIX Association 21st USENIX Conference on File and Storage Technologies 237

Fisc and are more efficient than compiler-generated ones.
According to our experiment with the manual methods, the
IOPS can be improved by about 1.5% for 4 KB requests with
one processor core of a DPU.
Memory optimization. The route table and range table oc-
cupy most memory in Fisc agent. To save memory, Fisc com-
presses the memory space of their entries. As the number of
storage nodes is less than 1 million, we adopt 20 bits to repre-
sent the location IP instead of 32 bits, i.e. 4 bytes, in general.
For locations of 3 replicas for a chunk, it consumes 8 bytes in
total. A file with 64 predicted chunks for locality-aware read
occupies 512 bytes. Taking file handle and tenant information
into account, the total size of the memory space for a file in
Fisc agent is no more than 1 KB. Thus, 1 GB of memory can
hold up to 1 million files.

To further save the memory, we pass the range table to Fisc
client as a hint. In this way, there is no need to store a large
number of locations for locality-read in the range table in
DPU. Instead, they can be stored in Fisc client. Fisc client
is aware of the range of chunks and can find the location
corresponding to its read request. When Fisc client sends
a request, it is accompanied by the hint. Then Fisc agent
first checks the file handle and tenant information with the
route table in DPU. For a passed request, Fisc agent sends the
request to the Fisc proxy according to the hint. For security,
the location hint passed to Fisc client is encoded with an index
and has no meaning to users. To avoid applications changing
the hint maliciously, the index is checked in Fisc agents and
Fisc proxies. If the check fails, the locality-read mechanism
for the tenants will be forbidden for a period of time in Fisc
agent. It then falls back to using the route table of fewer
locations in DPU. Thus, with the hint, Fisc can save a lot of
memory and support more range table entries in DPU.
Network optimization. SaDGW carefully deals with the
number of connections for the direct highway. First, it adopts
the shared-connection mechanism [13] to reduce the con-
nections between Fisc agents and Fisc proxies. Second, it
recycles the resources of network connections by periodically
tearing down idle connections. Third, for the narrow inter-
region Tbps-level network bandwidth compared to that of
intra-region, Fisc agents only connect parts of proxies in dif-
ferent regions where there can be thousands of storage nodes.
In this way, it is sufficient for inter-region network throughput
and reduces the number of connections.

4.4 Large-scale Deployment
Fisc carefully deals with ease of use, load balance, and QoS

to support applications running over 3 million CPU cores.

4.4.1 vRPC
As shown in Figure 6, we abstract a vRPC service from

Fisc. It is similar to the traditional RPC mechanism of RPC
client and RPC server. Clients placed in containers call an
RPC request by vRPC stub in Fisc client, and the request is
processed by the vRPC Server in Fisc proxy. For a cloud-

native service, developers only need to concern the RPC stub
for clients in containers and its RPC service for servers in the
backend clusters. The implementation details of vRPC such
as virtio device and SaDGW, are transparent to both clients
and servers, which is different from the traditional RPC as fol-
lows. First, it provides a secure passthrough from the virtual
domain to the physical domain with an efficient hardware-
assisted virtio device. Second, its RPC request can be retried
in Fisc agent, which is transparent to vRPC client, and high-
performance network stacks can also be transparently adopted.
Third, it gives an opportunity to adopt an adapter for a ser-
vice, which can be integrated into Fisc agent to improve the
availability of the service by its developers. vRPC can not
only support Fisc FS but also other cloud-native services.

4.4.2 Load Balance
Fisc introduces two mechanisms for the load balance

among thousands of Fisc proxies in storage clusters.
File granularity schedule. Traditional load balance relies
on connection-based scheduling of network gateway, which
focuses on balancing the number of network connections
among proxies. However, a gap exists between the number of
network connections and that of files. This means the number
of connections may be balanced, but that of files in each proxy
may be significantly different. To tackle this problem, Fisc
eliminates the gap and presents a file-granularity schedule
for load balance. Fisc agent forwards each file to a random
Fisc proxy according to the hash value of its file name and
other information such as access time. In this way, the files are
evenly distributed among Fisc proxies. With locality-aware
read optimization, as the chunks of files are evenly distributed
to each data server by Pangu, it leads to an even balance of
read requests to Fisc proxies, which are currently deployed
with data servers in storage nodes.
The centralized re-scheduling. As Fisc proxy masters pe-
riodically collect the load of each proxy, they can schedule
and migrate part of the files from a high-load Fisc proxy to a
low-load one. The migration is transparent to the applications
of tenants, and Fisc agent accordingly reopens these files after
the migration. Meanwhile, Fisc proxy masters also push the
load information to Fisc agents. After receiving the informa-
tion, Fisc agents reduce the hash weight of high-load Fisc
proxies and improve that of low-load ones. In this way, Fisc
implements a centralized re-scheduling.

4.4.3 E2E QoS
Fisc supports hybrid file access for online real-time applica-

tions and offline batch-processing applications, the demands
of which are represented by high priority and low priority.
Hardware-based QoS. Vitio-Fisc devices, NICs, and net-
works adopt hardware-based QoS mechanism. Virtio-Fisc
devices and NICs make use of their hardware queues of high
and low priorities. We set DSCP values in the IP packet header
through the networking library to leverage the priority queues
of network switches.

238 21st USENIX Conference on File and Storage Technologies USENIX Association

1j1d 2j1d 8j32d0.0

0.1

0.2

0.3

0.4

C
PU

 c
or

es

WriteLC
TC

(a) Client’s CPU utilization.

1j1d 2j1d 8j32d0

100

200

300

M
em

or
y

(M
B

)

WriteLC
TC

(b) Client’s memory consumption.

8j1d 8j16d 8j32d0

2

4

C
PU

 c
or

es

ReadLC
TC

(c) Client’s CPU utilization.

8j1d 8j16d 8j32d0

200

400

600
M

em
or

y
(M

B
)

ReadLC
TC

(d) Client’s memory consumption.

Figure 7: The resource consumption of LC and TC when
writing/reading data to/from the storage cluster.

Software-based QoS. Fisc client, Fisc agent and Fisc proxy
adopt a software-based QoS mechanism, utilizing a hybrid
thread model of exclusive threads for high-priority and low-
priority requests, respectively. The reason for the hybrid
thread model is to avoid head-of-line (HOL) blocking prob-
lems. To conserve the scarce CPU resource of DPU, a large
offline request is not divided into separate smaller ones to
avoid the complex request combination and failure dealing.
As a result, if high and low priority requests are in the same
thread, there may be a HOL blocking problem between them.
And the other reason is the lack of cache isolation capability
of NIC like CAT for Intel CPU [34]. The buffer cache of NIC
may be full-filled with low-priority packets if a DPDK-based
polling thread [35] stops polling network packets. Therefore,
if high and low priority network packets are processed in
the same thread, the low-priority queue of NIC should keep
polling. Otherwise, the buffer cache may be full-filled and
eventually affect high priority traffic. However, the non-stop
polling for low-priority requests in a thread makes it hard to
guarantee the high-priority requests.

Besides Fisc modules, the backend Pangu also adopts
software-based QoS for NVMe SSDs, as current SSDs lack
of hardware-level QoS mechanism. Therefore, Fisc enables
end-to-end priority classification.

5 Evaluations
We evaluate Fisc through extensive experiments in a testbed

and demonstrate its performance in a production environment.
We focus on the following measurements:

• The efficiency of Fisc lightweight client (§5.2).
• The performance of I/O requests in Fisc (§5.3).
• The availability of I/O requests in Fisc (§5.4).
• The impact of QoS scheme on multi-applications (§5.5).
• The effectiveness of load balancing in Fisc (§5.6).

5.1 Testbed Setup
Our testbed is a disaggregated cluster consisting of one

computation server and a storage cluster of 43 commodity
storage servers. The computation server is equipped with a
DPU. The storage cluster is equipped with the Pangu stor-
age system [6]. We use FIO [36] to generate different I/O
workloads in the computation server and record the CPU and
memory consumption of the client. The number of threads
to issue I/O requests is denoted by num jobs. The number
of inflight I/O is denoted by iodepth. For simplicity, we use
njmd in figures to represent the workload of num jobs = n,
iodepth = m.

5.2 Lightweight Client
We first compare the resource consumption of Fisc client,

denoted as LC, with that of a traditional FS client, which
integrates the storage-related protocols (e.g., three replicas)
and network-related stacks (e.g., RPC and TCP/IP) and is
denoted as TC.
Microbenchmark. To test the resource utilization of clients
with different data sizes, we write data to the file system with
a granularity of 4 KB and read the file with a granularity
of 128 KB. Figure 7 shows that LC has substantially lower
CPU utilization and memory consumption than TC for both
write and read operations. For example, when writing data
with 8j32d (i.e., num jobs = 8 and iodepth = 32), LC and
TC each consumes 0.3 and 0.46 CPU cores, respectively. In
another experiment where we let one FIO job write data to
the storage cluster at a fixed rate of 1.75 GB/s, LC consumes
less CPU and memory resources than TC by 69% and 20%,
respectively.
Production environment. We also evaluate Fisc in a pro-
duction system, which consists of thousands of servers and
provides Swift service, a distributed streaming service similar
to Kafka [37]. Figure 8 shows the bandwidth and CPU and
memory consumption of Swift in one month when writing
data to the remote storage cluster. Swift initially uses TC and
switches to LC on day 18. After the switch, LC maintains the
same high bandwidth performance as TC does, but consumes
16% and 57% less CPU and memory, respectively, than TC.
Specifically, when we only offload erasure coding to Fisc
proxies, the CPU and memory consumption of containers is
reduced by 9% and 40%, respectively.

These results in the testbed and production environment
demonstrate the efficiency and efficacy of the Fisc lightweight
client in supporting cloud-native applications with high per-
formance while consuming substantially fewer resources.

5.3 Latency
To evaluate the latency of I/O requests in Fisc, we first

compare Fisc with a network-gateway-based load balancing
solution [38], denoted as LB. We then validate the effective-
ness of locality-aware read in the testbed.
Microbenchmark. We first start different FIO tasks on the
computation server and measure the end-to-end latency of I/O

USENIX Association 21st USENIX Conference on File and Storage Technologies 239

Figure 8: The bandwidth, CPU utilization, and memory consumption in a month. Results are given in the range of [0, 100].

(a) The write and read latency of a
single job with a data size of 8 KB.

(b) The write latency with 64 jobs, a
data size of 8 KB, and a fixed band-
width of 100 MB/s.

Figure 9: The comparison of latency between Fisc and LB.

(a) The latency of sequential read. (b) The latency of random read.

Figure 10: The effectivenss of locality-aware read.

requests. Figure 9(a) shows that the write and read latency of
Fisc is 63% and 61% lower than those of LB when launching
I/O requests with a data size of 8 KB. In the next experiment,
we let Fisc and LB write files with 64 jobs and a data size of 8
KB at a fixed bandwidth of 100 MB/s. Figure 9(b) shows that
Fisc reduces the average and P999 tail latency compared to
LB by 76% and 92%, respectively. This latency improvement
results from two optimizations: (1) the SaDGW provides one-
hop communication instead of the two-hop communication in
a centralized network gateway; (2) the SaDGW transparently
adopts the high-performance networking stack to replace the
inefficient TCP/IP stack.

To verify the benefits of locality-aware read, we further
compare the latency of FIO tasks in sequential read and ran-
dom read scenarios with a data size of 16 KB and 256 KB.
As shown in Figure 10, the latency of read requests reduces
in both scenarios (e.g., by 25% when randomly reading files

with a data size of 256 KB). It shows that the locality infor-
mation in the range table is effective in helping route the
read requests directly to the target storage server, reducing
the end-to-end latency.

Production environment. We plot the average write latency
of an online search workload over 30 days. As shown in Fig-
ure 11, the average latency is stable at ∼500 µs even when
the workloads reach as high as millions-level IOPS. This re-
sult demonstrates that Fisc provides a low-latency file system
service for cloud-native applications. In contrast, this latency
becomes several milliseconds when the file system service is
provided through LB.

5.4 Availability
We use the P999 tail latency as a key metric to measure the

effectiveness of Fisc’s storage-aware failure handling mecha-
nisms in guaranteeing the availability of file system services.

Microbenchmark. To verify the impact of proxy failure on
tail latency, we randomly kill some proxy processes in the
storage cluster of 80 storage servers and record the tail latency
for all I/O requests. As shown in Figure 13, we kill one proxy
at t1 and then kill five proxy processes at t2. We observe
that the tail latency increases to <40 ms for a short time and
quickly returns to the previous level. This result shows that
proxy failures in the storage cluster have a limited effect on
the tail latency. It is because Fisc can retry the failed I/O
requests with its storage-aware failure handling methods. As
a result, such failures have a limited impact on applications.

Production environment. Figure 12 illustrates the P999 tail
latency of online searching tasks over the same 30-day period.
Most of the time, it stays under 30 ms. We analyze the spikes
in the figure. The spikes t1, t2, t3, and t4 happen due to the
upgrade of FS, at which we launch/stop some proxies in the
storage cluster. Other spikes are caused by network jitters
and storage node breakdowns. However, after each spike, the
P999 tail latency quickly returns to a low level with the help
of Fisc’s storage-aware failure handling mechanisms.

240 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 11: The average write latency and IOPS in one month.

Figure 12: The P999 tail latency of write in one month in production environment.

Figure 13: The P999 tail latency of write in micro-benchmark.

5.5 QoS
We demonstrate Fisc’s ability to guarantee the QoS across

different applications by measuring the latency of online
searching tasks and the throughput of offline AI training tasks
in a production environment. Both tasks are deployed in the
same computation cluster and share the same storage clus-
ter. Figure 14 shows that the latency of online search tasks
stays stable and is barely affected by the fluctuated offline
AI training tasks. It is because Fisc assigns a high priority
to latency-critical tasks like online search and guarantees the
corresponding QoS with an E2E QoS mechanism.

5.6 Load Balancing
To study the load-balancing capability of Fisc, We ran-

domly choose six storage servers from our storage cluster
and measure their normalized read IOPS over seven days. We
compute the coefficient of variation of these nodes as a mea-
surement of Fisc’s load-balancing capability [39]. As shown
in Figure 15, the coefficient of variation of read IOPS is <
5%. This result indicates that the read requests are evenly
distributed among Fisc proxies and proves that Fisc achieves
a similar quality of load balancing as Maglev, Google’s in-
house load balancer [39], whose coefficient of variation is 6-
7%. This efficacy is due to Fisc’s fine-grained storage-aware
load-balancing strategy. Specifically, Fisc agents forward I/O
requests with a granularity of files. In contrast, network-based
load balancing methods forward I/O requests with a granular-
ity of network connections, causing unbalanced numbers of
files forwarded to different storage nodes.

6 Discussion
Not just migration. The two-layer aggregation of Fisc of-
floads network-related functions and storage protocols to Fisc
agent in DPU and Fisc proxy in the storage node. The ques-
tion is whether Fisc merely transfers the resource consump-

tion from containers of users to DPUs and back-end storage
clusters of CSPs but does not reduce the total amount of con-
sumed resources. The answer is that Fisc not just migrates
resources spatially but can significantly reduce resource con-
sumption, because it "aggregates" the resource for storage
protocols and network stacks processing in terms of tenants,
applications and workloads. For example, one application in
containers usually pre-allocate I/O threads and reserve mem-
ory and network connections, which cannot be shared with
the applications in other containers. However, in Fisc, these
resources are "migrated" and "aggregated" in Fisc agents
and proxies, and they are efficiently shared by multiple ap-
plications to achieve high resource utilization. Furthermore,
with function offloading, Fisc can leverage modern hardware-
assisted acceleration for these storage protocols and advanced
network-related stacks to improve their efficiency. For exam-
ple, the Erasure-coding and CRC operation can be accelerated
by hardware in the storage cluster.

With the development of cloud-native applications, more
cloud-native services should aggregate their service-related
resources among containers. Based on the traditional aggre-
gation of VM resources, it will further improve the resource
efficiency of CSPs.
Ecosystem service. The ecosystem is vital for cloud-native
applications. Fisc extends its ecosystem in two aspects:
compatibility with HDFS ecosystem and virtio-Fisc devices
for different operating systems. For the former one, Fisc
Client adopts a Java Native Interface (JNI) method to use
its lightweight client of C language, and many optimizations
have been introduced for the semantics compatibility between
HDFS and Pangu. For the latter issue, we abstract virtio-Fisc
devices to more general virtio-RPC devices, which are suit-
able for more cloud-native services. And we develop the
virtio-Fisc driver in our released OS and will submit it to the
open source community.
Resource in DPU. The resources in DPU are scarce, and
Fisc also has to share these resources with other virtualiza-
tion services, such as virtual networking and block services.
Therefore, Fisc adopts a variety of optimization technologies
to economize resource utilization, as mentioned in §4.3.3.
With the development of DPUs such as Intel IPU [40] and

USENIX Association 21st USENIX Conference on File and Storage Technologies 241

Figure 14: The latency of online tasks with background offline tasks in one month.

Figure 15: The load distribution of read IOPS of six storage nodes in one week.

Nvidia DPU [41], the processing capability of embedded pro-
cessors of DPU has been greatly improved. Meanwhile, more
hardware acceleration functions like compression have been
integrated. These new features help Fisc agents adopt more
complex policies to deal with failure handling and locality-
aware read mechanisms. It is noteworthy that careful resource
optimizations are still needed with the increase of throughput
from 25 Gbps to 100 Gbps or 200 Gbps.

7 Related Work
Infrastructure support for cloud-native applications.
Many studies [4, 42–51] have investigated how to provide
efficient infrastructure support for emerging cloud-native ap-
plications (e.g., microservice, container and serverless com-
puting), including state management [43–45], runtime [46],
data storage [47], fault tolerance [4] and performance opti-
mization [48–51]. Some work [52,53] also looked into design-
ing efficient service interfaces for cloud-native applications.
For example, LogBook [52] provides logging interfaces for
stateful serverless applications and uses a metalog to address
log ordering, read consistency, and fault tolerance. Fluid [53]
provides a unified data abstraction for cloud-native deep learn-
ing applications. In this paper, we design Fisc, a large-scale
file system that provides high-performance file system ser-
vices for cloud-native applications.
High-performance distributed file systems. Many dis-
tributed file systems have been designed and deployed (e.g.,
pNFS [54], NAS [15], Facebook Tectonic [7], Google Colos-
sos [5], and Alibaba Pangu [6]) to provide high-performance
storage services for applications. However, they are ill-suited
for cloud-native applications because they use heavyweight
clients and a centralized network gateway. To this end, some
studies (e.g., OFC [55], FaaSCache [56], FLASHCUBE [57],
and Pocket [58]) proposed adding cache to the persistence
layer to improve the performance. However, they still suffer
from a low level of resource multiplexing. In contrast, Fisc
proposes the design of a lightweight client and storage-aware
gateway, and resorts to a software-hardware co-design to pro-
vide high-performance file system services for cloud-native

applications.
Bare-metal DPUs in clouds. The cloud computing com-
munity is increasingly developing and deploying bare-metal
DPUs in clouds (e.g., Nitro [19], BM-Hive [20], ELI [59],
Splinter [60], and Bluebird [61]). Some studies also use DPUs
to accelerate file system services (e.g., LineFS [62], Gim-
bal [63], and Leapio [64]). However, they are not designed
to provide cross-domain file system services between tenants
and CSPs. In contrast, Fisc leverages the X-Dragon DPU in
the computation server and introduces a new virtio device to
provide secure, high-performance cross-domain file system
services.

8 Conclusion
The trend of cloud-native brings new challenges and oppor-

tunities for CSPs to revisit their file system services. In this
paper, we present Fisc, a large-scale cloud-native-oriented file
system, which adopts a two-layer aggregation mechanism to
multiplex resources of file clients among containers and a
distributed storage-aware gateway to improve performance,
availability and load balance of I/O requests. Fisc also adopts
virtio-Fisc device with DPU for high performance and secure
passthrough from users’ virtual domain to CSPs’ physical
domain. Fisc has been deployed in a production DCN for over
three years and provides large-scale file system service for
cloud-native applications.

Acknowledgements
We are extremely grateful to our shepherd, Liuba Shrira,

and the anonymous FAST’23 reviewers for their invaluable
feedback. We also thank Yuxin Wang, Ridi Wen, and Hao-
hao Song for their help during the preparation of the paper.
Lulu Chen and Jie Wu are supported in part by the National
Key R&D Program of China 2021YFC3300600 and an Al-
ibaba Innovative Research Award. Qiao Xiang is supported
in part by an Alibaba Innovative Research Award, NSFC
Award 62172345, Open Research Projects of Zhejiang Lab
2022QA0AB05, and NSF-Fujian-China 2022J01004. Xiao-
liang Wang is supported by NSFC Award 62172204.

242 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-

fling, Fast and Slow: Scalable Analytics on Serverless
Infrastructure. In NSDI’19, pages 193–206. USENIX
Association, 2019.

[2] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gus-
tavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu,
and Ce Zhang. Towards Demystifying Serverless Ma-
chine Learning Training. In SIGMOD’21, pages 857–
871. ACM, 2021.

[3] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and
Arkaprava Basu. Faastlane: Accelerating Function-
as-a-Service Workflows. In ATC’21, pages 957–971.
USENIX Association, 2021.

[4] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebas-
tian Angel, and Vincent Liu. Fault-Tolerant and Trans-
actional Stateful Serverless Workflows. In OSDI’20,
pages 1187–1204. USENIX Association, 2020.

[5] Google. A peek into Google’s scalable storage sys-
tem. https://cloud.google.com/blog/products
/storage-data-transfer/a-peek-behind-colos
sus-googles-file-system, 2022.

[6] Pangu. The High Performance Distributed File System
by Alibaba Cloud. https://www.alibabacloud.com
/blog/, 2022.

[7] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul
Sikaria, Pavel Zakharov, Abhinav Sharma, Mike Shuey,
Richard Wareing, Monika Gangapuram, Guanglei Cao,
et al. Facebook’s Tectonic Filesystem: Efficiency from
Exascale. In FAST’21, pages 217–231. USENIX Asso-
ciation, 2021.

[8] Amazon. AWS Elastic File System. https://docs.a
ws.amazon.com/efs/latest/ug/whatisefs.html,
2022.

[9] Microsoft. Azure Data Lake Storage Gen2. https://
learn.microsoft.com/en-us/azure/storage/bl
obs/data-lake-storage-introduction, 2022.

[10] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao,
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From Luna to Solar: The Evolu-
tions of the Compute-to-Storage Networks in Alibaba
Cloud. In SIGCOMM’22, pages 753–766. ACM, 2022.

[11] Qiang Li, Qiao Xiang, Yuxin Wang, Haohao Song, Ridi
Wen, Wenhui Wang, Yuanyuan Dong, Shuqi Zhao, Shuo
Huang, Zhaosheng Zhu, Huayong Wang, Shanyang Liu,
Lulu Chen, Zhiwu Wu, Haonan Qiu, Derui Liu, Gexiao

Tian, Chao Han, Shaozong Liu, Yaohui Wu, Zicheng
Luo, Yuchao Shao, Junping Wu, Zheng Cao, Zhongjie
Wu, Jinbo Wu, Jiwu Shu, and Jiesheng Wu. Deployed
System: More Than Capacity, Performance-oriented
Evolution of Pangu in Alibaba. In FAST’23. USENIX
Association, 2023.

[12] Hdfs. Hadoop HDFS. https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html, 2022.

[13] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When Cloud Storage
Meets RDMA. In NSDI’21, pages 519–533. USENIX
Association, 2021.

[14] Alibaba cloud. Object Storage Service. https://www.
alibabacloud.com/help/en/object-storage-se
rvice, 2022.

[15] Alibaba cloud. Apsara File Storage NAS. https://ww
w.aliyun.com/product/nas, 2022.

[16] Alibaba. Maxcompute. https://www.alibabacloud
.com/product/maxcompute, 2022.

[17] Alibaba cloud. The exploration of cloud-native. https:
//developer.aliyun.com/article/721889, 2021.

[18] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng
Bian, Yi Tao, Bin Zha, Qiang Wang, Weidong Han,
and Minyi Guo. RunD: A Lightweight Secure Con-
tainer Runtime for High-density Deployment and High-
concurrency Startup in Serverless Computing. In
ATC’22, pages 53–68. USENIX Association, 2022.

[19] Amazon. AWS nitro system. https://aws.amazon.c
om/cn/ec2/nitro/, 2022.

[20] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang,
Yibin Shen, and Xin Long. High-density Multi-tenant
Bare-metal Cloud. In ASPLOS’20, pages 483–495.
ACM, 2020.

[21] Xiantao Zhang, Xiao Zheng, and Justin Song. High-
density Multi-tenant Bare-metal Cloud with Memory Ex-
pansion SoC and Power Management. In HotChips’20,
pages 1–18. IEEE, 2020.

[22] Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and
Guoliang Li. Visclean: Interactive cleaning for progres-
sive visualization. Proceedings of the VLDB Endow-
ment, 13(12):2821–2824, 2020.

[23] Michael Vrable, Stefan Savage, and Geoffrey M Voelker.
Bluesky: A Cloud-backed File System for the Enterprise.
In FAST’12, pages 1–14. USENIX Association, 2012.

USENIX Association 21st USENIX Conference on File and Storage Technologies 243

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://www.alibabacloud.com/blog/
https://www.alibabacloud.com/blog/
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.alibabacloud.com/help/en/object-storage-service
https://www.alibabacloud.com/help/en/object-storage-service
https://www.alibabacloud.com/help/en/object-storage-service
https://www.aliyun.com/product/nas
https://www.aliyun.com/product/nas
https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute
https://developer.aliyun.com/article/721889
https://developer.aliyun.com/article/721889
https://aws.amazon.com/cn/ec2/nitro/
https://aws.amazon.com/cn/ec2/nitro/

[24] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fer-
nando André, and Paulo Sousa. Depsky: Dependable
and Secure Storage in a Cloud-of-Clouds. ACM Trans-
actions on Storage, 9(4):1–33, 2013.

[25] Yilong Li, Seo Jin Park, and John Ousterhout. MilliSort
and MilliQuery:Large-Scale Data-Intensive Computing
in Milliseconds. In NSDI’21, pages 593–611. USENIX
Association, 2021.

[26] Amazon. AWS storage gateway. https://aws.amazon
.com/cn/blogs/storage/deploy-a-highly-avai
lable-aws-storage-gateway-on-a-vmware-vsph
ere-cluster/, 2022.

[27] Digitalocean. DigitalOcean. https://www.digita
locean.com/community/tutorials/how-to-crea
te-a-high-availability-setup-with-heartbea
t-and-reserved-ips-on-ubuntu-14-04, 2022.

[28] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A Cloud-optimized Transport Protocol for Elastic
and Scalable HPC. Micro, 40(6):67–73, 2020.

[29] Apache. HDFS APIs. https://github.com/apache/
hadoop/blob/trunk/hadoop-common-project/ha
doop-common/src/main/java/org/apache/hadoo
p/fs/FileSystem.java, 2022.

[30] Google. Protocol Buffers. https://developers.goo
gle.com/protocol-buffers, 2022.

[31] Svilen Nikolaev Kanev. Efficiency in Warehouse-scale
Computers: A Datacenter Tax Study. PhD thesis, Har-
vard University, pages 1–24, 2017.

[32] John Biddiscombe, Anton Bikineev, Thomas Heller, and
Hartmut Kaiser. Zero Copy Serialization Using RMA in
the HPX Distributed Task-based Runtime. In Proceed-
ings of the International Conference on WWW/Internet
2017 and Applied Computing, pages 1–8. IADIS, 2017.

[33] Shuangchen Li, Dimin Niu, Yuhao Wang, Wei Han, Zhe
Zhang, Tianchan Guan, Yijin Guan, Heng Liu, Linyong
Huang, Zhaoyang Du, et al. Hyperscale FPGA-as-a-
Service Architecture for Large-scale Distributed Graph
Neural Network. In ISCA’22, pages 946–961. IEEE,
2022.

[34] Intel. Introduction to Cache Allocation Technol-
ogy. https://www.intel.com/content/www/us/e
n/developer/articles/technical/introductio
n-to-cache-allocation-technology.html, 2022.

[35] DPDK. DPDK Poll Mode Driver. https://doc.dp
dk.org/guides/prog_guide/poll_mode_drv.htm
l, 2022.

[36] Flexible i/o tester. Flexible I/O tester. https://fio.re
adthedocs.io/en/latest/, 2022.

[37] Apache. Kafka. https://kafka.apache.org/intro,
2022.

[38] What is ALB. Server Load Balancer. https://www.al
ibabacloud.com/help/en/server-load-balance
r/latest/what-is-application-load-balancer,
2022.

[39] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In NSDI’16, pages 523–
535. USENIX Association, 2016.

[40] Intel. Intel® Infrastructure Processing Unit (Intel® IPU).
https://www.intel.com/content/www/us/en/pr
oducts/details/network-io/ipu.html, 2022.

[41] Nvidia. NVIDIA BlueField Data Processing Units).
https://www.nvidia.com/en-us/networking/pr
oducts/data-processing-unit/, 2022.

[42] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From Laptop to Lambda: Outsourc-
ing Everyday Jobs to Thousands of Transient Functional
Containers. In ATC’19, pages 475–488. USENIX Asso-
ciation, 2019.

[43] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng,
Chuhao Xu, Deze Zeng, Zhuo Song, Tao Ma, Yong Yang,
Chao Li, and Minyi Guo. Help Rather than Recycle: Al-
leviating Cold Startup in Serverless Computing through
Inter-Function Container Sharing. In ATC’22, pages
69–84. USENIX Association, 2022.

[44] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Jose M Faleiro, Joseph E Gonza-
lez, Joseph M Hellerstein, and Alexey Tumanov. Cloud-
burst: Stateful Functions-As-A-Service. arXiv preprint
arXiv:2001.04592, pages 1–15, 2020.

[45] Zhe Wang, Teng Ma, Linghe Kong, Zhenzao Wen, Jingx-
uan Li, Zhuo Song, Yang Lu, Guihai Chen, and Wei Cao.
Zero Overhead Monitoring for Cloud-native Infrastruc-
ture using RDMA. In ATC’22, pages 639–654. USENIX
Association, 2022.

[46] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia,
Binyu Zang, and Haibo Chen. Serverless Computing
on Heterogeneous Computers. In ASPLOS’22, pages
797–813. ACM, 2022.

244 21st USENIX Conference on File and Storage Technologies USENIX Association

https://aws.amazon.com/cn/blogs/storage/deploy-a-highly-available-aws-storage-gateway-on-a-vmware-vsphere-cluster/
https://aws.amazon.com/cn/blogs/storage/deploy-a-highly-available-aws-storage-gateway-on-a-vmware-vsphere-cluster/
https://aws.amazon.com/cn/blogs/storage/deploy-a-highly-available-aws-storage-gateway-on-a-vmware-vsphere-cluster/
https://aws.amazon.com/cn/blogs/storage/deploy-a-highly-available-aws-storage-gateway-on-a-vmware-vsphere-cluster/
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-high-availability-setup-with-heartbeat-and-reserved-ips-on-ubuntu-14-04
https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java
https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java
https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java
https://github.com/apache/hadoop/blob/trunk/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://fio.readthedocs.io/en/latest/
https://fio.readthedocs.io/en/latest/
https://kafka.apache.org/intro
https://www.alibabacloud.com/help/en/server-load-balancer/latest/what-is-application-load-balancer
https://www.alibabacloud.com/help/en/server-load-balancer/latest/what-is-application-load-balancer
https://www.alibabacloud.com/help/en/server-load-balancer/latest/what-is-application-load-balancer
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/

[47] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan
Cheng, Wenli Zheng, and Minyi Guo. FaaSFlow: Enable
Efficient Workflow Execution for Function-as-a-Service.
In ASPLOS’22, page 782–796. ACM, 2022.

[48] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. ORION and the Three Rights: Sizing, Bundling,
and Prewarming for Serverless DAGs. In OSDI’22,
pages 303–320. USENIX Association, 2022.

[49] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang,
Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li.
INFless: A Native Serverless System for Low-latency,
High-Throughput Inference. In ASPLOS’22, pages 768–
781. ACM, 2022.

[50] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Ice-
Breaker: Warming Serverless Functions Better with Het-
erogeneity. In ASPLOS’22, page 753–767. ACM, 2022.

[51] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jin-
grong Chen, and Ion Stoica. Caerus: NIMBLE Task
Scheduling for Serverless Analytics. In NSDI’21, pages
653–669. USENIX Association, 2021.

[52] Zhipeng Jia and Emmett Witchel. Boki: Stateful Server-
less Computing with Shared Logs. In SOSP’21, pages
691–707. ACM, 2021.

[53] Rong Gu, Kai Zhang, Zhihao Xu, Yang Che, Bin Fan,
Haojun Hou, Haipeng Dai, Li Yi, Yu Ding, Guihai Chen,
et al. Fluid: Dataset Abstraction and Elastic Accelera-
tion for Cloud-native Deep Learning Training Jobs. In
ICDE’22, pages 2182–2195. IEEE, 2022.

[54] Dave Hitz, James Lau, and Michael A Malcolm. File
System Design for an NFS File Server Appliance. In
WTEC’94, pages 1–23. USENIX Association, 1994.

[55] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang,
Lucien Ngale, Stéphane Pouget, Josiane Kouam, Renaud
Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont,
et al. OFC: An Opportunistic Caching System for FaaS
Platforms. In EuroSys’21, pages 228–244. ACM, 2021.

[56] Alexander Fuerst and Prateek Sharma. FaasCache:
Keeping Serverless Computing Alive with Greedy-Dual
Caching. In ASPLOS’21, pages 386–400. ACM, 2021.

[57] Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and
Hui Lu. FlashCube: Fast Provisioning of Serverless
Functions with Streamlined Container Runtimes. In
PLOS’21, pages 38–45. ACM, 2021.

[58] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic Ephemeral Storage for Serverless Analytics. In
OSDI’18, pages 427–444. USENIX Association, 2018.

[59] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-
Yehuda, Alex Landau, Assaf Schuster, and Dan Tsafrir.
ELI: Bare-Metal Performance for I/O Virtualization.
SIGPLAN, 47(4):411–422, 2012.

[60] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter:
Bare-metal Extensions for Multi-tenant Low-latency
Storage. In OSDI’18, pages 627–643. USENIX As-
sociation, 2018.

[61] Manikandan Arumugam, Deepak Bansal, Navdeep Bha-
tia, James Boerner, Simon Capper, Changhoon Kim,
Sarah McClure, Neeraj Motwani, Ranga Narasimhan,
Urvish Panchal, Tommaso Pimpo, Ariff Premji, Pran-
jal Shrivastava, and Rishabh Tewari. Bluebird: High-
performance SDN for Bare-metal Cloud Services. In
NSDI’22, pages 355–370. USENIX Association, 2022.

[62] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
Peter, and Emmett Witchel. LineFS: Efficient Smart-
NIC Offload of a Distributed File System with Pipeline
Parallelism. In SOSP’21, pages 756–771. ACM, 2021.

[63] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krish-
namurthy. Gimbal: Enabling Multi-tenant Storage Dis-
aggregation on SmartNIC JBOFs. In SIGCOMM’21,
pages 106–122. ACM, 2021.

[64] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan RK Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S Gunawi, and
Anirudh Badam. Leapio: Efficient and Portable Vir-
tual NVMe Storage on ARM SoCs. In ASPLOS’20,
pages 591–605. ACM, 2020.

USENIX Association 21st USENIX Conference on File and Storage Technologies 245

	Introduction
	Background and Motivation
	File Systems
	Cloud Native
	Motivation

	Overview of Fisc
	Design Rationale
	Architecture
	Workflow of Fisc

	Design and Implementation
	Lightweight Fisc Client
	Function Offloading and Aggregation Tradeoff
	Simplification and Compatibility

	Storage-aware Distributed Gateway
	Direct Highway Between Agents and Proxies
	Storage-aware Failure Handling
	Locality-aware Read

	SW/HW Co-design with DPU
	DPU-based Virtio-Fisc Device
	Fast Path
	Resource Optimizations

	Large-scale Deployment
	vRPC
	Load Balance
	E2E QoS

	Evaluations
	Testbed Setup
	Lightweight Client
	Latency
	Availability
	QoS
	Load Balancing

	Discussion
	Related Work
	Conclusion

