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ABSTRACT
Data plane verification can be an important technique to reduce

network disruptions, and researchers have recently made signifi-

cant progress in achieving fast data plane verification. However, as

we apply existing data plane verification techniques to large-scale

networks, two problems appear due to extremes. First, existing

techniques cannot handle too-fast arrivals, which we call update

storms, when a large number of data plane updates must be pro-

cessed in a short time. Second, existing techniques cannot handle

well too-slow arrivals, which we call long-tail update arrivals, when

the updates from a number of switches take a long time to arrive.

This paper presents Flash, a novel system that achieves fast, con-

sistent data plane verification when update arrivals can include

update storms, long-tail update arrivals, or both. In particular, Flash

introduces a novel technique called fast inverse model transforma-

tion to swiftly transform a large block of rule updates to a block of

conflict-free updates to efficiently handle update storms. Flash also

introduces consistent, efficient, early detection, a systematic mecha-

nism and associated novel algorithms to detect data plane violations

with incomplete information, to avoid being delayed by long-tail

arrivals. We fully implement Flash and conduct extensive evalua-

tions under various settings. Using the data plane of a large-scale

network, we show that compared with state-of-the-art sequential

per-update verification systems, Flash is 9,000× faster.

CCS CONCEPTS
• Networks→ Network reliability; Network monitoring; • The-
ory of computation→ Logic and verification.
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1 INTRODUCTION
Network faults such as forwarding loops, blackholes and access

control violations are prevalent in large-scale computer networks,

and can lead to disastrous financial and social consequences [1–3].

Thus, how to prevent network faults is a fundamental problem in

the networking community.

A major advance is through network verification, which auto-

matically checks network for errors in both control plane [4–14]

and data plane [15–26]. In particular, we focus on the data plane

verification in this paper, which checks the data plane and can find

errors with a broad range of root causes.

There has been a long line of research on data plane verifica-

tion [15–27]. Earlier tools develop verification algorithms on top of

flow tables (forward model) (e.g., [15, 17, 18, 27, 28]). Their perfor-

mance is limited (e.g., hundreds of milliseconds to seconds for a rule

update) because flow table is not an efficient data representation for

verification. As such, recent data plane verification tools introduce

equivalent classes (inverse model) as the data representation for

verification [21–26]. Although the number of equivalent classes

can be exponential of network size, it is small in practice [21]. By

developing efficient algorithms that transform the forward model

to the inverse model, these tools achieve substantial speed up on

verification. For example, the state-of-the-art APKeep [26] achieves

a latency of tens of 𝜇𝑠 per rule update.

Motivated by the aforementioned advance, we start to construct

a data plane verification tool, using the state-of-the-art, for a large

production network, and evaluate the tool in a wide range of set-

tings, including both online settings (e.g., fast monitoring [29, 30]),

and offline settings (e.g., validation of FIBs derived from simula-

tion [6, 31, 32]). The evaluations reveal that the state-of-the-art data

plane verification techniques fall short in handling two problems,

due to extremes which tend to appear in large-scale systems.

Handling Update Storms. First, existing techniques cannot han-
dle too-fast data plane update arrivals, which we call update storms,

when a large number of data plane updates should be processed in

a short interval. Update storms can happen in both online settings

and offline settings. In an online setting, for example, during a green-

field deployment or a major event (e.g., disruption or recovery), a

large number of switches can update their data planes, resulting in

an aggregated large number of data plane updates (See Appendix A

for examples). In an offline setting, state-of-the-art network simula-

tion tools such as FastPlane [32] can compute the FIB of a network

with more than 2,000 routers in a few hundreds of seconds, and the
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scale of the RIB and FIB entries can be up to hundreds of millions.

To conduct design searches, one may run simulations many times,

and evaluate the result of each run quickly.

Designed to handle relatively smooth, limited-rate update ar-

rivals, existing techniques process updates one-by-one and do not

perform well. We have evaluated straightforward optimizations

such as batch processing, in which multiple updates are sorted by

switch, by IP address, or by operation type (e.g., add/delete). We

have also applied divide-and-conquer [19] and partitioned a dataset

of 6 million FIB updates in a Fabric topology with ~6,000 switches

into 112 partitions, where each partition uses the state-of-the-art

model-based data plane verifier [26], the system still takes tens of

minutes to hours to complete the verification.

Handling Long-Tail Arrival. Second, existing mechanisms can-

not handle too-slow arrivals, which we call long-tail update arrivals,

when the updates from a number of switches can take a long time

to arrive. Long-tail arrivals can happen for multiple reasons, such

as FIB computation crashed or dampening [33], update packets loss

due to incast congestion [34]. When update storms and long-tail

arrivals happen together, the arrivals of data plane updates at the

verification system may exhibit a bimodel pattern: an initial large

update storm followed by additional updates that slowly trickle in

from switches whose updates are delayed.

Existing data plane verification systems are designed with com-

plete knowledge of the data plane, and hence they either wait until

the full information is obtained, which can result in a long delay, or

proceed with transient, potentially inconsistent information, which

can result in false decisions. This issue is already reported by previ-

ous studies [7, 26], which use timeout as a compromise.

This paper presents Flash, a fast data plane verification system

for networks where data plane updates can trigger update storms,

long-tail update arrivals, or both. In particular, Flash contributes

two new techniques to advance the state of the art on data plane

verification: fast inverse model transformation (Fast IMT) to handle

update storms, and consistent, efficient early detection (CE2D) to

make fast, consistent decisions despite long-tail arrivals. Flash is a

single system that integrates both techniques.

Fast IMT To Handle Update Storms (§3). We make a key obser-

vation that processing updates sequentially causes redundant or

unnecessary computation and is inefficient when handling update

storms. However, it is difficult to identify computation that can be

aggregated across native rule updates, because a single rule update

can be complex and result in a large number of operations. Fast IMT

first uses an efficient, merge-based algorithm, to decompose a large

block of native updates into a set of composable updates, which

we call atomic conflict-free overwrites. It then applies two aggrega-

tion operators, first on actions, and then on predicates, to generate

compact conflict-free overwrites, which are applied to update the

inverse model. Given its similarity to the map-reduce framework,

we call Fast IMT the novel map-reduce2 (MR2) algorithm. Com-

bining MR2 with engineering efforts including subspace partition,

fast look-up of overlapping rules, and persistent action tree, Fast IMT

substantially reduces computation overhead for high scalability.

Consistent, Efficient, Early Detection to Handle Long-Tail
Arrivals (§4). We make a key observation that network errors can

be identified without collecting the complete data plane, and term
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Figure 1: Architecture and workflow of Flash.

this process early detection. For example, a forwarding loop detected

between two devices will exist regardless of how any other device

forwards the packet. Therefore, this error can be reported without

the FIB information of other devices, as long as the two devices are

in a converged state (i.e., not updating their FIB unless the network

state changes). Flash is built on top of this observation, and intro-

duces a systematic mechanism to ensure that Flash always performs

early detection on a consistent network state. Specifically, Flash uses

epochs to differentiate FIB updates computed from different net-

work states, and applies early detection to the model constructed

for synchronized devices in an epoch, i.e., whose FIB is computed

from the same network state. Flash captures the partial order of

epochs for efficient scheduling. We then leverage automata theory

to develop novel algorithms to achieve efficient early detection.

Results (§5). We implement Flash in this research and release it

as an open-source software
1
(see details of the software in §5.1

and Appendix F). We conduct extensive evaluations of Flash with a

wide range of topologies, data planes, update arrival patterns and

policies. Using the data plane of a large-scale network (LNet), we

show that Flash is 9,000× faster than state-of-art. Even if state-of-

the-art tools integrate subspace partition, Flash is still over 70×
faster. Flash achieves the preceding results by introducing both

efficient algorithms (i.e., Fast IMT and CE2D) and starting multiple

verifiers in parallel. We also evaluate the computation overhead and

operational cost of Flash, and show that the operational cost of Flash

to verify a large-scale network (with >6,000 nodes and 3.7×107 rules)
can be as low as $2.74/hour ($24.016/year) for dedicated servers

and $4.352/hour ($0.07/run) for on-demand one-shot verification.

This work does not raise any ethical issues.

2 OVERVIEW
As introduced in §1, the ability of Flash to handle update storms

and long-tail arrivals depends on two key novel techniques: fast

inverse model transformation and consistent, efficient early detection.

1
https://github.com/snlab/flash
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In this section, we give the architecture and workflow of Flash to

illustrate how these techniques are combined into a single system,

and leave the details in §3 and §4.

Figure 1 illustrates the architecture and workflow of Flash. There

are two major components in the system.

Subspace Verifier. In a nutshell, a subspace verifier provides the

same functionality as an ordinary data plane verifier: it receives

FIB updates, reconstructs the data plane state, and verifies whether

the properties are violated. In Flash, the subspace verifier is spe-

cialized for data plane verification tasks for large-scale networks. It

consists of two parts: the model manager maintains a snapshot of

the data plane based on the received FIB updates, and an equivalent

class representation of the data plane computed using Fast IMT

(§3); the CE2D verifier monitors the equivalent class representation

and maintains a CE2D verification graph using consistent early

detection algorithms in §4.

In Flash, each subspace verifier maintains the complete FIB snap-

shots but only verifies the properties for FIB snapshots of a specific

epoch and a specific packet header subspace. While a subspace veri-

fier can be configured to work as a standalone high-performance

data plane verifier, it can only guarantee the correctness of consis-

tent early detection by collaborating with CE2D dispatcher.

CE2D Dispatcher. The CE2D dispatcher has two responsibilities.

First, it is responsible for managing the life cycles of subspace veri-

fiers, i.e., creation, destruction, and reconfiguration. It also main-

tains a mapping from an epoch tag to the set of subspace verifiers

who are responsible for verifying the properties for FIBs of the

epoch. Second, the dispatcher is responsible for forwarding FIB

updates to subspace verifiers based on the epoch-verifier mapping.

Workflow. A typical workflow of using the Flash system is as

illustrated in Figure 1. First, operators specify the verification re-

quirements ( 1 ), i.e., data plane properties to be verified, using a

specification language based on regular expressions. Static configu-

rations such as the network topology and IP prefix mappings are

also required to build the CE2D verification graph. After the system

is up and running, it can receive FIB updates from routers, proxies

or network simulators ( 2 ). To get consistent early detection results,

these FIB updates should be tagged with an epoch tag.

Upon receiving a new epoch from a device ( 3 ), the CE2D dis-

patcher finds subspace verifiers whose epoch is outdated, stops

their execution, and reconfigures them to verify the latest epoch,

as specified §4.1. It then updates the epoch-verifier mapping and

forwards FIB updates accordingly ( 4 ).

Each subspace verifier maintains an inverse model, i.e., the equiv-

alent class representation of the data plane. When a subspace veri-

fier receives new FIB updates, it first dispatches them into blocks,

which are used to compute the latest FIB snapshot and the conflict-

free inverse model overwrites using Fast IMT in §3 ( 5 ). The conflict-

free inverse model overwrites are then applied to obtain the latest

inverse model that is consistent with the new FIB snapshot ( 6 ).

With the inverse model, the CE2D verifier updates the CE2D

verification graph ( 7 ) and applies the early detection algorithm. If

a deterministic result is returned, the verifier returns a consistent

verification results for the subspace ( 8 ).

Table 1: Key Notations.

Symbol Meaning

𝑁 number of devices in a network

R the rule-based representation of data plane𝐶

𝑟𝑖𝑘 , 𝑟 the 𝑘-th rule in the 𝑖-th device’s FIB / a rule

𝑚𝑖𝑘 ,𝑚𝑟 the match of 𝑟𝑖𝑘 /𝑟

pri𝑖𝑘 , pri𝑟 the priority of 𝑟𝑖𝑘 /𝑟

𝑎𝑖𝑘 , 𝑎𝑟 the actions of 𝑟𝑖𝑘 /𝑟

𝑒𝑖𝑘 , 𝑒𝑟 the effective predicate for 𝑟𝑖𝑘 /𝑟

𝑝𝑖 (𝑦) the predicate on the 𝑖-th device when the action is 𝑦

𝑤 a conflict-free overwrite

𝑎𝑤 , 𝑝𝑤 the action/predicate of a conflict-free overwrite 𝑢

𝑀 the equivalent-class representation of data plane𝐶

𝑝 𝑗 the predicate of the 𝑗-th element in𝑀

®𝑦 𝑗 the action vector of the 𝑗-th element in𝑀

3 FAST IMT
In this section, we give more details of Fast IMT. We first define the

problem (§3.1), then give a high-level overview (§3.2), followed by

the specification of the core merge-based block update decompo-

sition algorithm (§3.3). More optimizations and data structures to

improve speed and resource consumption in practice are given in

(§3.4). See Table 1 for key notations.

3.1 Problem Definition and Background
A network data plane configuration 𝐶 with 𝑁 devices (routers or

switches) can have two different representations that define the

same forwarding behavior for any packet header ℎ: the rule-based

representation (forward model) and the equivalent class represen-

tation (inverse model).

Rule-based Representation (Forward Model). The rule-based
representation of a network data plane is denoted as R = {𝑅𝑖 }𝑁 ,
where 𝑅𝑖 denotes the forwarding table on the 𝑖-th device. A for-

warding table consists of multiple forwarding rules in the format

of ⟨match, priority, action⟩ where the match field is a predicate (i.e.,

a Boolean function on the packet header space), the priority field is

an integer that specifies the priority of the rule, and the action is the

action to be applied on the packets (e.g., forwarding, discarding).

Let 𝑟𝑖𝑘 denote the 𝑘-th rule in the 𝑖-th forwarding table, and let

𝑚𝑖𝑘 , pri𝑖𝑘 , and 𝑎𝑖𝑘 denote the matching predicate, priority, and ac-

tion of 𝑟𝑖𝑘 respectively. The forwarding behavior of𝐶 is a function
2

®𝑏𝐶R (ℎ) = (𝑏1 (ℎ), . . . , 𝑏𝑁 (ℎ)),
where the action on the 𝑖-th device 𝑏𝑖 (ℎ) is determined by the rule

of the highest priority that can match ℎ:

𝑏𝑖 (ℎ) = 𝑎𝑖𝑘∗ , where 𝑘∗ = argmax

𝑟𝑖𝑘 ∈𝑅𝑖 ,𝑚𝑖𝑘 (ℎ)=1
pri𝑖𝑘 .

Example (Rule-based Representation). The table labelled R on the

upper left corner of Figure 2 is an example of the FIBs (rule-based

representation) of the 3-node network above the table. For compact

figure, we show the FIBs of the 3 switches in 3 columns (i.e., 𝑅𝑖 is for

switch 𝑆𝑖 ). For simplicity, we assume that the rules are forwarding

rules and use their next hop as the action, and that the rules are

2
This requires that a data plane configuration𝐶 does not have syntax errors caused by

ambiguous or conflicting forwarding rules, i.e., two rules with overlapping match, same

priority but conflicting actions. This typically indicates an error or can be resolved

using prior work such as FlowVisor [35].
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numbered by the row number. To illustrate how to read the table,

consider an example packet header ℎ1 whose destination IP address

is 10.0.1.2. At 𝑆1 (using 𝑅1), both rule 𝑟11 (⟨dip = 10.0.1.0/24, 2, 𝐴⟩)
and rule 𝑟13 (⟨dip = 0.0.0.0/0, 0, 𝑆3⟩) in 𝑅1 can match it, but rule 𝑟11
has a higher priority. Thus, the output of 𝑏1 (ℎ) is 𝐴. Looking up ℎ1
on 𝑆2 (using 𝑅2) and on 𝑆3 (using 𝑅3) with the same procedure, the

final output is a vector: 𝑏𝐶R (ℎ1) = (𝐴, 𝑆1, 𝑆1).
Equivalent Class Representation (Inverse Model). The equiv-
alent class representation of a network data plane is denoted as

𝑀 = {(𝑝 𝑗 , ®𝑦 𝑗 )} 𝑗 , where (𝑝 𝑗 , ®𝑦 𝑗 ) denote the 𝑗-th element in 𝑀 . ∀𝑗 ,
𝑝 𝑗 is a predicate and ®𝑦 𝑗 is an 𝑁 -dimension action vector, where 𝑦

𝑗
𝑖

specifies the action on the 𝑖-th device. In a valid equivalent class

representation 𝑀 , the entries are 1) unique: ∀𝑗 ≠ 𝑗 ′, ®𝑦 𝑗 ≠ ®𝑦 𝑗 ′ ; 2)
mutually exclusive: ∀𝑗 ≠ 𝑗 ′, ∀ℎ, 𝑝 𝑗 (ℎ) ∧ 𝑝 𝑗 ′ (ℎ) = 0; and 3) comple-

mentary: ∀ℎ, ∃ 𝑗 , 𝑝 𝑗 (ℎ) = 1. Given the characteristics of 𝑝 𝑗 , they

represent atomic predicates originally developed in [21].

In the equivalent class representation, the forwarding behavior

of 𝐶 can be expressed as a function

®𝑏𝐶𝑀 (ℎ) = ®𝑦
𝑗∗ , where 𝑝 𝑗

∗
(ℎ) = 1.

Inverse Model Transformation. While the network uses the for-

ward model (rule-based representation), the inverse model (equiva-

lent class representation), on the other hand, provides an efficient

data structure for use cases such that given the forwarding behavior

®𝑦 𝑗 , find the header spaces 𝑝 𝑗 . In general, a data plane verifier checks
whether an unacceptable ®𝑦 𝑗 exists. Hence, the goal of data plane
verification is to transform the forward model R to the inverse

model𝑀 , and R is equivalent with𝑀 , denoted as R ∼ 𝑀 , which is

defined as, if and only if ∀ℎ, ®𝑏𝐶R (ℎ) = ®𝑏
𝐶
𝑀
(ℎ).

Example (Equivalent Class Representation). The table labelled 𝑀 on

the lower left corner of Figure 2 is the inverse model of R. One
can observe that the network has 2 behaviors: (𝐴, 𝑆1, 𝑆1) for those
packet headers in 𝑝1 ∨ 𝑝2, and (𝑆3, 𝑆3,𝐺𝑊 ) for the rest. A data

plane verifier typically builds a graph data structure to represent

the vectors and runs graph algorithms to check properties on the

graph (e.g., no loop). The execution time of the graph algorithms

typically is negligible compared with the time to construct𝑀 .

Rule Updates and Inverse Model Updates. Upon updates in the

data plane such as rule insertions, deletions or modifications, the

rule-based representation transfers from the initial state R to the

final state R ′. Accordingly, the equivalence-class model must also

transfer from the initial state𝑀 to a final state𝑀 ′ where R ′ ∼ 𝑀 ′.
The right hand side of Figure 2 shows an example of the updated

models of the network, when rules are inserted in the 3 switches to

handle HTTP to the two subnets specially.

The preceding is a generalization of the computation process

of global atomic predicates [21] and APKeep [26]: the global AP

is solving the special case where there are no initial rules, i.e.,

R = (∅, . . . , ∅), while the APKeep work is solving the special case

where each update has only one rule.

3.2 Fast IMT Intuition
With the precise problem definition, we now give the design of

Fast IMT. Instead of giving the algorithm bottom up, we focus on

building intuitions in this section. A formal, bottom-up model of

Fast IMT and its correctness is in Appendix C.

Intuition I: Direct Transformation Revealing Native Update
Complexity. First consider direct transformation, which is compu-

tationally inefficient but gives us intuition on computing the effect

of an update in the forward model. In particular, consider how to

compute the predicate 𝑝 𝑗 for ®𝑦 𝑗 , for each equivalent class (𝑝 𝑗 , ®𝑦 𝑗 ).
Let 𝑝𝑖 (𝑎) denote the predicate that selects the header spaces for
which the 𝑖-th device takes action 𝑎. Then 𝑝𝑖 (𝑦 𝑗𝑖 ) is the union of

the effective predicate of each rule 𝑟𝑖𝑘 , whose action 𝑎𝑖𝑘 is 𝑦
𝑗
𝑖
, and

the effective predicate 𝑒𝑖𝑘 of rule 𝑟𝑖𝑘 1) satisfies the match condition

of 𝑟𝑖𝑘 , and 2) is not matched by a rule with a higher priority, i.e.,

𝑒𝑖𝑘 =𝑚𝑖𝑘 ∧ ¬
∨

pri𝑖𝑘′>pri𝑖𝑘

𝑚𝑖𝑘′ . (1)

For the header space to take ®𝑦 𝑗 , the predicate 𝑝 𝑗 must satisfy all

𝑝𝑖 (𝑦 𝑗𝑖 ), i.e., by taking their conjunction:

𝑝 𝑗 =
∧
∀𝑖
𝑝𝑖 (𝑦 𝑗𝑖 ) =

∧
∀𝑖

©­­«
∨

𝑎𝑖𝑘=𝑦
𝑗

𝑖

𝑒𝑖𝑘
ª®®¬ . (2)

Equations (1) and (2) show that the effects of a native update (i.e.,

an update in the forward model) can be global and quite complex

in the inverse model. The insertion of a new rule can reduce the

effective predicates of a large number of rules with lower priorities,

and these rules can have different actions. Meanwhile, the deletion

of a rule can increase the effective predicates of a large number of

rules with lower priorities, and these rules can also have different

actions. In both cases, multiple 𝑝 𝑗 s may need to be updated.

Intuition II: Per-Rule Updates Can be Inefficient. We now

build intuition on that per-rule updates are inefficient. Consider

two rules 𝑟1 and 𝑟2 with 𝑘1 and 𝑘2 (𝑘1 < 𝑘2) rules that have a higher

priority on the same device. To compute the effective predicates for

𝑟1 and 𝑟2, they need to visit 𝑘1 and 𝑘2 rules. However, as 𝑘1 < 𝑘2,

computing the union of the first 𝑘1 rules when processing 𝑟2 is

redundant, which is already computed when processing 𝑟1. Upon

an update storm, the redundancy can be quite substantial.

Such redundancy also exists when updating the 𝑝 𝑗 s. To be con-

crete, consider the updates in Figure 2, which install 6 new rules,

with 2 new rules in each switch shown in the top middle of the

figure. A simple approach to update the inverse model is to apply

the 6 updates one by one. On the other hand, one can verify from

the example that clearly the 6 updates can be combined and applied

together. Specifically, the 6 updates have only two distinct match

conditions (𝑝4 and 𝑝5). At the final inverse model shown in the

lower right corner, 𝑝4 and 𝑝5 do not appear individually, but appear

only as the union 𝑝3 = 𝑝4 ∨ 𝑝5.
Intuition III: Overwrite Operators Allowing Update Compo-
sition. To understand the essence why the updates can be com-

bined, consider the first update at 𝑆3 (first row of Δ𝑅3 in Figure 2),

as an inverse model overwrite operator (or overwrite for short):

(Δ𝑝 = 𝑝4,Δ𝑦), where Δ𝑦 specifies that it sets the action at 𝑆3
to 𝑆2, written as {𝑦3 = 𝑆2}. The effect of the operator is that for
each equivalent class (𝑝 𝑗 , ®𝑦 𝑗 ), if the intersection 𝑝 𝑗 ∧ Δ𝑝 is empty,

the operator has no effect; otherwise, the intersected header space

should be moved to the other equivalent class with device 𝑆3 taking

action 𝑆2 and the rest of ®𝑦 𝑗 not changed. The computation process

is similar to database join and we refer to it as a cross product.
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Figure 2: A simple example illustrating Fast IMT.

Now consider the second rule insertion (𝑝5, 𝑆2), Δ𝑦 and the

process are the same except that Δ𝑝 = 𝑝5. If we use (Δ𝑝 = 𝑝4 ∨
𝑝5,Δ𝑦), the two processes can be composed, improving efficiency.

Next consider the relationship between two overwrites at two

switches: the first update (𝑝4, {𝑦1 = 𝐴}) at 𝑆2 and the first at 𝑆3
(𝑝4, {𝑦2 = 𝑆1}). One can see that they have the same predicate

(𝑝4). We observe that this happens frequently, as often an update is

to set up a new network-wide flow, and the predicate selects the

same flow. Still using the overwrite operator perspective, we can

compose the two updates into a single one (Δ𝑝 = 𝑝4,Δ𝑦), where
Δ𝑦 is {𝑦2 = 𝑆1, 𝑦3 = 𝑆2}.

Both examples can be considered as applying a "reduce" operator

in the map-reduce framework [36]. In the first “reduce", the key is

Δ𝑦, and the predicates (Δ𝑝) are reduced (by predicate disjunction),

for those with the same key. In the second “reduce", the key is Δ𝑝 ,
and the updates (Δ𝑦) are reduced (by combining function effects).

Figure 2 illustrates these two “reduce" operators, shown as Reduce

I and Reduce II, respectively. One need to note that the "reduce"

operators guarantee the conflict-free property. We say that two

overwrite operators (Δ𝑝,Δ𝑦) and (Δ𝑝 ′,Δ𝑦′) have a conflict, if only
if Δ𝑝 and Δ𝑝 ′ intersect, and they write different actions at the same

device but with different actions.

Note that the preceding “map-reduce” process applies only to

conflict-free overwrite operators. As we discuss in Intuition I, a

native rule update can be complex and is not a conflict-free over-

write. The remaining key idea of Fast IMT is to turn native rule

updates into conflict-free overwrites
3
, which we show in the next

subsection. In particular, if an overwrite only changes the action of

a single device, we call it an atomic overwrite, and we denote the

set of atomic overwrite operators for device 𝑖 as Δ𝑀𝑖 . This process
can be considered as a “map" operation in map-reduce, where each

native rule update for device 𝑖 is mapped to a set of atomic over-

writes. Since Fast IMT can be considered a “map" followed by two

“reduce", we also refer to it as the MR2 algorithm.

3.3 Efficiently Computing Δ𝑀𝑖

Given an update block with 𝐾 updates for a flow table 𝑅𝑖 with 𝑇

entries, a naive, sequential algorithm can compute Δ𝑀𝑖 in 𝑂 (𝐾𝑇 )
complexity. This, however, is inefficient. We apply the list merge

idea and design Algorithm 1, which consists of two phases:merging

the native updates in the block and finding expanding rules (L3), and

then computing atomic overwrites for the expanding rules (L5).

Merging Native Updates. The merging (L7-28) is similar to merg-

ing two sorted list, where 𝑟 and 𝛿 represent the heads of 𝑅𝑖 and Δ𝑅𝑖
respectively

4
. A Boolean variable is used to indicate whether a rule

with higher priority is deleted, which means the effective predicate

of the current rule 𝑟 may expand. The algorithm iterates through

the updates (L12-25). It first locates where the update should be

3
We use “overwrite” to refer to “conflict-free overwrite” in the rest of the paper, as

long as there is no ambiguity.

4
Note that with the default wildcard rule with the lowest priority, 𝑟 will never reach

the end of 𝑅𝑖 so no check on 𝑟 is needed. The same observation applies to Calcu-

lateAtomicOverwrite(𝑅′𝑖 , 𝑅diff ) as well.
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Algorithm 1: Decomposing Native Rule Update Blocks

into Atomic Overwrites through Merging.

Input :Δ𝑅𝑖 - the block of native updates on the 𝑖-th device

Input :𝑅𝑖 - the sorted initial rule set before the update

Output :𝑅′𝑖 - the sorted final rule set after the update

Output :Δ𝑀𝑖 - the set of atomic overwrites that is equivalent to Δ𝑅𝑖
1 Δ𝑅𝑖 ← remove canceling updates in Δ𝑅𝑖
// (insert-after-delete or delete-after-insert)

2 Δ𝑅𝑖 ← sort Δ𝑅𝑖 by priority in the descending order

3 𝑅diff ← MergeBlockAndDiff(𝑅𝑖 ,Δ𝑅𝑖 )
4 𝑅′𝑖 ← 𝑅𝑖 // updates have been applied to 𝑅𝑖
5 Δ𝑀𝑖 ← CalculateAtomicOverwrite(𝑅′𝑖 , 𝑅diff )
6 return 𝑅′𝑖 ,Δ𝑀𝑖
7 Function MergeBlockAndDiff(𝑅𝑖 , Δ𝑅𝑖 )
8 𝑅diff ← empty list

9 higher_priority_rule_deleted ← false
10 𝑟 ← the rule with the highest priority in 𝑅𝑖
11 𝛿 = (op, 𝑟𝛿 ) ← the update with the highest priority in Δ𝑅𝑖
12 while 𝛿 ≠ NULL do
13 if 𝑟𝛿 is inserted/deleted after 𝑟 then
14 if higher_priority_rule_deleted then
15 Append 𝑟 to 𝑅diff // 𝑟 may expand

16 𝑟 ← get the next rule in 𝑅𝑖

17 else
18 if op is insertion then
19 Insert 𝑟𝛿 before 𝑟 // rule insertion
20 Append 𝑟 to 𝑅diff // New rules expand

21 else if op is a deletion (𝑟𝛿 = 𝑟 ) then
22 Delete 𝑟 from 𝑅𝑖 // rule deletion
23 higher_priority_rule_deleted ← true
24 𝑟 ← get the next rule in 𝑅𝑖

25 𝛿 ← get the next update in Δ𝑅𝑖

26 if higher_priority_rule_deleted then
27 Append remaining rules in 𝑅𝑖 to 𝑅diff

28 return 𝑅diff
29 Function CalculateAtomicOverwrite(𝑅′𝑖 , 𝑅diff)
30 Δ𝑀𝑖 ← ∅
31 𝑟 ← the rule with the highest priority in 𝑅′𝑖
32 𝑟𝛿 ← the rule with the highest priority in 𝑅diff
33 𝑝 ← 0 // accumulative predicate (

∨
pri𝑖𝑘′>pri𝑖𝑘 𝑚𝑖𝑘′)

34 𝑝𝑐 ← 1 // predicate of “no-overwrite” action
35 while 𝑟𝛿 ≠ NULL do
36 while 𝑟𝛿 has a lower/equal priority than 𝑟 and 𝑟 ≠ 𝑟𝛿 do
37 𝑝 ← 𝑝 ∨𝑚𝑟
38 𝑟 ← get the next rule in 𝑅′𝑖
39 eff ←𝑚𝑟𝛿 ∧ ¬𝑝 // effective predicate of 𝑟𝛿
40 Δ𝑀𝑖 ← Δ𝑀𝑖 ∪ {(eff , {𝑦𝑖 = 𝑎𝑟𝛿 }) }
41 𝑝𝑐 ← 𝑝𝑐 ∧ ¬eff
42 𝑟𝛿 ← get the next rule in 𝑅diff

43 Δ𝑀𝑖 ← Δ𝑀𝑖 ∪ {(𝑝𝑐 , ∅) }
44 return Δ𝑀𝑖

applied (L13-16). For an insertion update (L18-20), 𝑟𝛿 should be

inserted before 𝑟 and the new rule 𝑟𝛿 is also expanding. For a rule

deletion (L21-24), 𝑟 = 𝑟𝛿 and should be deleted. In the meantime,

rules with a lower priority in 𝑅𝑖 may expand (L14-15, L26-27) so

the indicator is updated (L23). For 𝐾 rule updates in a table with 𝑇

rules, this step takes 𝑂 (𝐾 lg𝐾 +𝑇 ) simple operations.

Computing Atomic Overwrites. To compute atomic overwrites,

a critical step is to compute the effective predicates of each expand-

ing rule. Flash uses the property that both 𝑅′
𝑖
and 𝑅

diff
are sorted.

The procedure is in L29-44. First, 𝑟 and 𝑟𝛿 are set to the head of 𝑅′

and 𝑅
diff

respectively. The algorithm iterates through 𝑅
diff

(L35-42).

First, it locates where 𝑟𝛿 is in 𝑅′
𝑖
. The predicate 𝑝 is the union of

all rules that have a higher priority than 𝑟𝛿 (L37), and the effective

predicate of 𝑟𝛿 , eff , is computed in L39. Then an atomic overwrite

(eff , {𝑦𝑖 = 𝑎𝑟𝛿 }) is added to Δ𝑀𝑖 (L40). The complementary predi-

cate is the predicate for the special “no-update” overwrite, and it

is maintained by subtracting the predicates of overwrites with a

concrete action (L41). This step takes𝑂 (𝑇 +𝐾) predicate operations
as each rule is visited only once.

Thus, the algorithm takes 𝑂 (𝐾 lg𝐾 +𝑇 ) simple operations and

𝑂 (𝑇 +𝐾) predicate operations, i.e., conjunction (∧), disjunction (∨),
or negation (¬), in the worst case. In practice, 𝑇 > 𝐾 and predicate

operations are much more expensive than a simple operation. Thus,

Algorithm 1 is much faster compared to per-update processing,

which takes 𝑂 (𝐾𝑇 ) simple and predicate operations.

3.4 Fast IMT in Action
While Fast IMT has reduced substantially amount of redundant

computation for a large number of updates, there are still engineer-

ing optimizations that can be adopted to further improve the speed

and resource consumption.

Input Space Partition. The complexity of Fast IMT depends on

the sizes of the inverse model and the updates, which are both

related to the number of rules in the data plane. By partitioning

the space into multiple subspaces, the number of valid pairs in the

update process can be reduced, as well as the number of affected

rules. Thus, it can substantially improve the speed of model update.

Fast Look-up for Overlapped Rules. The key step in computing

atomic overwrites (Δ𝑀𝑖 ) is to calculate the effective predicate of

each affected rule. One can see that the effective predicate of a rule

𝑟 will affect or be affected by another rule 𝑟 ′ only if their matches

overlap, i.e.,𝑚𝑟 ∧𝑚𝑟 ′ ≠ ∅. In some common scenarios, for example,

when the data plane mainly consists of longest prefix matching

rules, the number of overlapped rules is usually much smaller than

the number of rules on a device. To speed up the computation of

atomic overwrites, Flash uses a multi-dimension prefix Trie [24] to

enable fast look-up for overlapped rules.

Persistent Action Tree. A common operation is to compute the

new actions ®𝑦∗ by overwriting some elements in the old actions ®𝑦.
A naive solution, e.g., storing the vector as an array, may take linear

time and units. However, the overwriting process of multiple output

vectors may have the same sub output vector. Let ∥ ®𝑦∥≠0 denote
the number of non-zero elements in ®𝑦. In the overwriting process,

®𝑦 is from 𝑀 and ∥ ®𝑦∥≠0 is usually large. In contrast, ∥ ®𝑦∗∥≠0 often
equals to one. In Flash, a data structure called persistent action tree

(PAT) is introduced. PAT is a persistent [37] balanced binary search

tree, which only creates a chain until each node is modified by ®𝑦∗.
Thus, a single overwriting takes at most O(∥®𝑦∗∥≠0× lg ∥ ®𝑦∥≠0) time

instead of O(∥®𝑦∗∥≠0 + ∥®𝑦∥≠0).

4 CONSISTENT, EFFICIENT EARLY
DETECTION

In this section, we introduce how Flash systematically achieves

consistent, efficient, early detection. The motivation of consistent

early detection comes from the following observation: logically

centralized data plane verifiers like Flash need to collect FIB updates

either from a centralized database (as in SDN) or from distributed

devices, while large-scale networks today use distributed protocols.

Existing verifiers require complete knowledge of the data plane,
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Figure 3: An example of network update setting.

which may take a long time to arrive or even trigger out-of-order

deliveries. If the verifier waits until it receives all the updates, it

may suffer from intolerable delays or even become unavailable.

However, if a verifier simply applies all updates to a single model,

it may either report a transient error or even wrong results.

Specifically, Flash proposes solutions to the following two key

problems: (1) How to dispatch the rule updates to construct models

that are consistent with the converged state? (2) How to efficiently

compute verification results with incomplete information? We refer

to our solutions as consistent model construction and efficient early

detection (CE2D), respectively.

4.1 Consistent Model Construction
To achieve consistent model construction, Flash must (1) identify

consistent FIB updates, i.e., those that are computed from the same

network state; (2) identify potential converged states; (3) dispatch

consistent FIB updates (for correctness) of a potential converged

state (for efficiency) to the same verifier
5
. We have designed mecha-

nisms to construct consistent models for multiple routing protocols.

Below, we focus on broadcast state synchronization protocols (or

sync-state protocols for short), including link-state protocol OSPF/I-

SIS and general state synchronization protocol OpenR. We discuss

vector-based protocols (e.g., BGP) in Appendix D.1.

Identifying Consistent FIB Updates with Epoch. Flash uses

network state to denote the information which is used by routing

software to compute the forwarding rules (e.g., link states and prefix

configuration). As a network is evolving, its state also changes trig-

gered by different events (e.g., link failure). In sync-state protocols,

the state changes are propagated to the entire network.

Flash differentiates the rule updates computed from different

network states by dividing them into epochs. Specifically, each

epoch represents a snapshot of the global network state. As it is not

possible to determine whether updates are from the same network

state by only looking at the data plane, Flash augments the routing

software with an agent. The agent computes the tag
6
, a unique

identifier of an epoch, and associates the tag with FIB updates

computed from the state. Flash requires that the message delivery

between the agent and the dispatcher is serialized, i.e., updates

from the same device are always received in the same order as they

are generated. However, Flash does not have any constraints on

messages from agents on different devices.

5
Note that it is not a hard constraint to only run verifiers for converged states, which

can be useful when trying to locate the source of an error. However, it can reduce the

resource overhead when the network operators are only interested in the verification

result of potentially converged state.

6
In our OpenR implementation, Flash uses the hash value of the keys and versions of

the state variables as the epoch tag. We use an XOR based hash function in Boost [38]

that can compute the hash value of 1 million entries within 10ms on commodity

switches (e.g., Barefoot S9180-32X [39]). To reduce the probability of hash collision,

Flash may use multiple hash functions and concatenate the results.

Identifying Potential Converged State through Epoch Depen-
dency Tracking. As Flash requires a strict order between a device

and the dispatcher, if the dispatcher receives updates with 𝑡1 on

device 𝑖 before receiving those with 𝑡2, 𝑡1 cannot be the converged

state. Similarly, if we see 𝑡2 before 𝑡3 on device 𝑗 , even if 𝑡2 is the

most recent tag on device 𝑖 , we can infer that 𝑡2 cannot be the

converged state. This is referred to as the “happens-before” relation

in distributed systems, denoted as 𝑡1 ≺ 𝑡2. Flash maintains the most

recent tag for each device and a set of “active” epochs which has no

succeeding epochs. Once a new tag 𝑡new is received from device 𝑖 ,

whose old tag is 𝑡𝑖 = 𝑡old, Flash removes 𝑡
old

from the active set and

replaces 𝑡𝑖 with 𝑡new. If 𝑡new is not marked as inactive (by another

device), Flash adds 𝑡new to the active set. An epoch, whose tag is in

the active set, is a potential converged state.

Dispatching Consistent FIB Updates As the updates are associ-

ated with epoch tags, Flash maintains a mapping from an epoch tag

to a verifier. Specifically, upon receiving updates with a new epoch

tag 𝑡 from a device, Flash first appends the updates to the update

queue of the device, and checks whether 𝑡 is in the active set. If 𝑡 is

not in the active set, which means there will be future updates on

the same device, no further action is required. Otherwise, if 𝑡 is in

the active set, Flash finds (or creates one if not present) the verifier

for 𝑡 , and feeds the updates from the device’s update queue to that

verifier. In practice, Flash may need to adopt a back-off mechanism

to avoid rapid creation of verifiers due to control plane bugs or

improper handling of unstable links.

An example update setting is as shown in Figure 3. Consider the

updates triggered by two link failures: (𝑆,𝑊 ) and (𝐵,𝑌 ). Assume

the initial tag is 𝑡0 = [0, 0, . . . ]7 for each device, where the first/sec-

ond element is the version of link (𝑆,𝑊 )/(𝐵,𝑌 ). Assume that at

time 𝑇1, Flash receives updates from 𝑆 with tag 𝑡1 = [1, 0, . . . ] (af-
ter seeing the failure of (𝑆,𝑊 )), and from switches 𝐴 and 𝐵 with

tag 𝑡2 = [0, 1, . . . ] (after seeing failure of (𝐵,𝑌 )). At 𝑇1, 𝑡1 and 𝑡2
are potential converged states and are put in different verifiers

8
.

However, if at time 𝑇2 > 𝑇1, Flash receives updates from switch 𝑆 ,

𝐴 and 𝐵 with epoch tag 𝑡3 = [1, 1, . . . ], the dispatcher will mark

𝑡1 and 𝑡2 as inactive, and creates a new verifier for 𝑡3 as 𝑡3 is now

active. Then, if Flash receives updates tagged with 𝑡2 from switch

𝐸, Flash simply appends the updates to the queue of 𝐸, and does

not dispatch them to any verifier. When it receives updates with

𝑡3 from 𝐸, it flushes the updates to the verifier associated with tag

𝑡3. Figure 4 (a) shows the models constructed for each epoch and

shows an example of an inconsistent state at the bottom.

4.2 Consistent Early Detection for General
Regular Expression Requirements

We first specify how Flash performs consistent early detection for

general requirements specified in regular expressions (see Appen-

dix B for detail), including waypoint routing, shortest path, anycast,

and multicast, etc. Specifically, Flash leverages the automata the-

ory [40] to transform this problem into an incremental reachability

query problem on a decremental verification graph [41].

7
To better illustrate the partial happens-before relationship between epochs, we use

the logical clock vector as the tag only in this example.

8
Note that with a logical clock vector, one may even conclude that both 𝑡1 and 𝑡2 will

not be the converged state. However, in practice, it may not be able to derive the causal

relationship with the “happens-before” observations.
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[0, 1, …] B->Y is down A, B

[1, 1, …] S->W and B->Y
are down S, A, B, E

inconsistent network link state nodes computed and
sent in rule updates inconsistent inverse model

S: S->W is down and B->Y is up
A, B: S->W is up and B->Y is down S, A, B dstIP=10.0.0.0/24: [S->A, B->E, A->S]

dstIP=10.0.0.0/24:
[S->W, W->A, A->B, B->Y, E->C, Y->C, C-> D]

dstIP=10.0.0.0/24: [S->A]

dstIP=10.0.0.0/24: [A->S, B->E]

Epochs

dstIP=10.0.0.1/24: [S->A, A->B, B->E, E->C]

Verification graphsInverse models

(b) The verification graph GP for the requirement and G. For an EC in a consistent model,
Flash incrementally remove edges from GP, and checks reachability to destination for
efficient early detection. Green area: GP after Update1 in epoch [1,1,...]; Red area: GP after
Update 2 in epoch [1,1,...]. An error is found before W, Y, and C send in their rule updates.

(a) Flash uses epochs to differentiate network states, and constructs models for different states in 
parallel. Given a network state, Flash constructs its model using only the rules of synchronized 
nodes, i.e., nodes who used the given state, computed its rule updates and sent them to Flash

Figure 4: An illustration to consistent, efficient early detection for the update setting in Figure 3.

Verification Graph and Consistent Partial Verification. Flash
computes the verification graph [40, 42–44] as the cross product

automata𝐺𝑝 of the network automata and the requirement expres-

sion automata, for each packet space 𝐻 and a set of sources 𝑠𝑟𝑐𝑠 .

The initial verification graph contains all paths in 𝐺 that (1) start

from 𝑠𝑟𝑐𝑠 , and (2) match all the regular expressions.

Consider the network and requirement in Figure 3. The require-

ment is that packets in subspace ℎ that enters at 𝑆 must reach 𝐷

along a simple path traversing one of𝑊 and 𝑌 . Figure 4(b) shows

the verification graph with initial state 𝑆1 and accepting state 𝐷1.

With this graph, verification of the requirement expression is

equivalent to finding a path that can reach an accept state in the

verification graph. Specifically, if there exists such a path consist-

ing of only synchronized nodes, the requirement is consistently

satisfied. And if there exists a path consisting of only synchronized

nodes to the reject state, the requirement is consistently unsatisfied.

Otherwise, the verification result is unknown.

Decremental Update andReachability Query.Withmore nodes

becoming synchronized, the set of possible requirement-compliant

paths in the network for this epoch are monotonically decreasing.

Consider the example in Figure 3, after receiving Update 1 as in Fig-

ure 4(b), the verification graph only contains the nodes and edges in

the green area. After further receiving Update 2, no valid path is in

𝐺𝑃 , which means the requirement in Figure 3 cannot be satisfied, no

matter how ℎ is forwarded by other devices. The reachability query

in such a decremental graph (i.e., edges are always removed, but

never added) has a constant time complexity [41]. The details and

pseudocode of the algorithm, as well as how it is extended to per-

form early detection for more complex traffic patterns (e.g., anycast,

multicast, and coverage requirements [27]), is in Appendix D.2.

4.3 Consistent Early Loop Detection
Loop detection is a basic task. However, expressing loop detection

requires complex regular expressions and hence is not efficient.

Thus, we design a specific CE2D algorithm to check loop(s). A

naive approach is to delete unsynchronized nodes and then check

if there is a loop in the synchronized nodes, which is simple but can

miss early detection opportunities. An alternative is to keep the

unsynchronized nodes but assume that an unsynchronized node

can take any potential next hop, and the system enumerates all

A

B C

X

A

B C & X

Connected component of unsynchronized
nodes C and X is compressed as a hyper node

(a) C and X are unsynchronized.

A

B C

X

(b) X is unsynchronized.

Figure 5: Examples of all-pair loop-detection.

combinations, which can be computationally expensive. Flash com-

bines the best of these two approaches by introducing a technique

called hyper node compression.

Hyper Node Compression. Each connected component of unsyn-

chronized nodes is compressed as a hyper node to reduce the cost

of enumeration. Let 𝑈 denote a connected component of unsyn-

chronized nodes, which is replaced by a hyper node 𝑤 . For each

(𝑢, 𝑣) ∈ 𝐸,𝑢 ∉ 𝑈 and 𝑣 ∈ 𝑈 , remove (𝑢, 𝑣) and add an edge (𝑢,𝑤) to
𝐸. Verifying this graph with hyper nodes will give the same result

as the second approach, but avoids the enumeration of paths in 𝑈 .

Consider the example in Figure 5. In Figure 5(a), when sync =

{𝐴, 𝐵}, we can merge unsynchronized nodes 𝐶 and 𝑋 into a hyper

node, denoted as 𝐶&𝑋 . In this case, there can potentially be a loop,

e.g., 𝐵→𝐴→𝐶&𝑋→𝐵, which is 𝐵→𝐴→𝑋→𝐵 in the original graph, or

be no loop, e.g., 𝐵→𝐴→𝐶&𝑋→out, which is 𝐵→𝐴→𝑋→𝐶→out. Thus,

the final result is not determined. However, if 𝐶 is synchronized,

as in Figure 5(b), Flash reports that as long as 𝑋 does not drop

the packet
9
, there will be a loop in the final state. This cannot be

detected if only synchronized nodes are verified.

Incremental Detection. Instead of detecting loops from all pos-

sible nodes, Flash only detects loops that contain the nodes that

just become synchronized. Let 𝑉𝑆 and 𝑉 ′
𝑆
denote the old and new

set of synchronized nodes accordingly. If no loop is detected in

the old graph, a new loop in the new graph must contain a node

in 𝑉 ′
𝑆
\ 𝑉𝑆 . Combining hyper node abstraction and incremental

detection, Flash incrementally examines new synchronized nodes.

If a loop composed of only synchronized nodes is found, the error

is reported. Details of the algorithm are given in Appendix D.3.

9
In certain cases such as ACL, dropping packets is considered acceptable. This algo-

rithm only needs a small revision to work in that case, i.e., making explicit “DROP”

action as forwarding to a “virtual switch”.
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Table 2: Settings used in the evaluation.

Setting Topology FIB Generation FIB Scale Update Generation Update Scale Arrival Pattern
Name |𝑉 |/ |𝐸 |

LNet-apsp Subspace
LNet-apsp

LNet

6,016 /

43,008

StdFIB: Shortest path

from each node to the

hosts connected to the

rack switches

2.9 × 105
3.2 × 107 Insert each rule in a

sequence and then delete it

in the same order from the

sequence

5.8 × 105
6.4 × 107

Updates burst into the

verifierLNet-ecmp Subspace
LNet-ecmp

StdFIB*: StdFIB with

source match ECMP

3.0 × 105
3.7 × 107

6.0 × 106
7.4 × 107

LNet-smr Subspace
LNet-smr

StdFIB* with suffix

match routing

2.6 × 106
3.7 × 107

5.2 × 106
7.4 × 107

Airtel-trace Airtel 1 68 / 260

Extracted from dataset

6.89 × 104 Extracted from dataset

(as a single sequence)
1.42 × 107

Stanford-trace Stanford 16 / 37 3.84 × 103
Same as LNet-apsp

7.68 × 103
I2-trace

Internet2 9 / 28

1.26 × 105 2.25 × 105

I2-OpenR-loop
Generated by correct

OpenR software 216

Each OpenR switch

computes the correct FIB

updates upon receiving

state syncing messages

from link events

Dynamic

Updates are sent to the

verifier according to the

reaction of real OpenR

software under link

events

I2-OpenR/1buggy-loop-lt
Generated by buggy

OpenR software

Same as the I2-OpenR-loop
setting, with one switch

running a buggy OpenR

software that generates

incorrect FIB updates

Same as the I2-OpenR-loop
setting with one or more

switches are configured

with an init/max 60s FIB

computation backoff

I2-trace-loop-lt Extracted from dataset 1.26 × 105 Extracted from dataset <1.26 × 105

5 EVALUATION
We fully implement Flash and conduct extensive evaluations us-

ing various settings, including a real data plane sampled from a

large network (LNet), to answer key questions including but not

limited to the following: (1) What is the performance of Flash in a

real-world, large-scale network with a large number of updates?

How robust is the performance of Flash under different settings?

(§5.2) (2) What is the performance of Flash with the arrival pattern

of FIB updates from real routing suits? (§5.3) (3) How does each

optimization technique contribute to the overall performance im-

provement? (§5.4) (4) What is the overhead (cost) of Flash in terms

of computational demand? (§5.5)

5.1 Methodology
Settings. The performance of network verification depends on

multiple factors, including topology, FIB pattern, FIB update arrival

pattern, and the requirements. For Fast IMT, the settings follow the

naming convention of A-B, where A denotes the network topology,

and B denotes the FIB generation. For example, LNet-apsp denotes
that the setting is using the LNet, a proprietary network based on

the Fabric network architecture [45], and the FIB rules are generated

by running an all-pair shortest path algorithm. For CE2D, the set-

tings follow the naming convention of A-B-C[-D], where A denotes

the network topology, B denotes the FIB generation, C denotes

the property to be verified (all-pair reachability and loop-freeness),

and the optional D, if present, indicates that there are long-tail

arrivals. For example, I2-OpenR/1buggy-loop-lt represents that

1) the network is using the Internet2 topology; 2) the FIB rules are

generated by real OpenR software except for one switch, which

is running a buggy OpenR instance; 3) the verifier is configured

to check the loop-freeness requirement; and 4) there are long-tail

arrivals. The details of the settings are summarized in Table 2.

Server Configuration. All evaluations are conducted on cloud

Ubuntu servers with 8 vCPUs (2.5GHz) and 32GB memory. The OS

is Ubuntu(x64) 18.04.4 LTS with OpenJDK v17.0.3 installed.

Flash Verifier Implementation. Flash is implemented in ∼4,000
lines of Java code. We release the source code in the form of a

library with all presented features. Developers can easily write

adapters that feed rule updates to Flash and extend CE2D to achieve

customized verification functions.

Flash Device Agent Implementation. Our device agent (if the
consistent, early detection feature is needed) can be implemented by

patching an open-source modular routing platform adopted in real-

world production networks. In particular, we take the open-source

routing software OpenR [33] as the platform in our evaluation.

OpenR is a state synchronization protocol that stores its state vari-

able (i.e., Adj, Prefix) in a K-V store, and computes the routes using

a Decision and Fib module. Our extension has around 150 lines of

C++ code. Through the extension, rule updates computed from the

same network state are encapsulated into Thrift [46] messages with

tags attached, and are sent to the verification system.

Delta-net and APKeep Implementations. We compare Flash

with two state-of-the-art data plane verification systems, Delta-net

and APKeep, because their evaluations have demonstrated that

they achieve the highest performance. (1) Delta-net∗: Since we
do not have access to the source code, we implement Delta-net

ourselves in Java following the pseudocode in [25]. Given that

Delta-net represents each longest-prefix match as an interval, we

directly extend it to handle multi-field match and generic ternary

match by representing each match as multiple intervals. We use

Delta-net∗ instead of Delta-net in the results to indicate that it is

our implementation. (2) APKeep∗: Similar to Delta-net, APKeep

has no open source implementation and we implement APKeep

following the pesudocode in [26]. We use APKeep∗ to indicate

our implementation. We use the default “delay merge” parameter
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Table 3: Overall performance.

Setting

Total Model Update Time (s) Memory Usage (MB) # Predicate Operations (10
5
)

Delta-net
∗
(speedup) APKeep

∗
(speedup) Flash Delta-net

∗
APKeep

∗
Flash Delta-net

∗
(speedup) APKeep

∗
(speedup) Flash

LNet-apsp Subspace 0.7 (0.3×) 34.1 (15×) 2.3 29 66 55 6 (0.4×) 71 (5×) 14

LNet-ecmp Subspace 26 (1.4×) > 36,000 (>1895×) 19 1,249 > 1,096 211 281 (20×) > 9,529 (681×) 14
LNet-smr Subspace 285 (71×) 1,004 (251×) 4 6,792 31 15 1,485 (26×) 239 (4×) 57
Airtel-trace 12 (0.9×) 85 (6.5×) 13 5 37 70 141 (141×) 1,321 (1,321×) 1
Stanford-trace 0.06 (0.5×) 0.58 (4.8×) 0.12 3 9 9 1 (1×) 4.3 (4.3×) 1

I2-trace 0.4 (0.3×) 6.9 (4.9×) 1.4 16 52 52 4 (2×) 56 (28×) 2

101 102 103 104 105

LNet-ecmp

LNet-smr

36000

36000

36000

36000

19

4

 Time (s)
101 102 103 104 105

32000

32000

32000

32000

211

15

 Memory (MB)

 Delta-net*
 APKeep*
 Flash

 Delta-net*
 APKeep*
 Flash

Figure 6: Total model update time (s) and memory consump-
tion (MB) for update storms in baseline settings.

(i.e., 0) in our evaluations. We apply optimizations to Delta-net
∗

and APKeep
∗
, and ensure that they have similar results on datasets

reported in [25] and [26] respectively.

5.2 Effects of Fast IMT
In this section, we present the evaluation of Fast IMT by focusing

on model construction in different network settings.

Baseline: Benefits of Flash upon Update Storms in Large-
scale Networks with Complex Forwarding Behaviors.We first

evaluate Delta-net
∗
, APKeep

∗
, and Flash as they are, in our target

large-scale networks (LNet-ecmp and LNet-smr), to demonstrate

the overall performance gain of Flash. In the baseline evaluation,

we generate the updates by putting the rule insertions of all the

switches in a sequence, feed the update sequence to the verifier, and

measure the execution time and memory consumption to construct

the inverse model. We kill the JVM if the execution time exceeds

10 hours. Figure 6 shows the result: Flash (green) finishes in 19 and

4 seconds for LNet-ecmp and LNet-smr respectively, while neither

Delta-net
∗
(blue) nor APKeep

∗
(orange) can finish within 10 hours.

Hence, for LNet-smr, Flash outperforms Delta-net* and APKeep
∗

by 9,000× (10 hours divided by 4 seconds). The memory consump-

tion of Flash (green) is also substantially lower (up to 2 orders of

magnitude in both settings). While the setting seems extreme, it

does happen when the verifier is bootstrapping or running on de-

mand (e.g., for network planning [31, 47] or reachability analysis of

Virtual Private Cloud [48]). Thus, we conclude that Flash is fast and

memory efficient for data plane verification in large-scale networks.

Benefits and Robustness of Fast IMT. Then, we analyze the

benefits of Fast IMT as a standalone model construction method, by

applying the subspace partition idea to Delta-net
∗
and APKeep

∗
in

large-scale networks, as subspace partition can be widely effective

for large networks. Besides execution time and memory consump-

tion, we also count the number of predicate operations (see §3.3)

for each evaluation setting.

The top rows of Table 3 show the results. For example, the row

with the name “LNet-smr Subspace” shows the results when sub-

space partition is applied to all in the LNet-smr. Still, we observe

longer model update time for Delta-net* and APKeep
∗
, which is

1.4× (26s/19s) and >1895× respectively that of Flash in LNet-ecmp,
and 71× (285s/4s) and 251× in LNet-smr. The memory footprint of

Flash is also smaller in these two settings. For example, Flash uses

15MB in LNet-smr, while Delta-net∗ and APKeep
∗
use 6,792MB

and 31MB respectively. Except the LNet-apsp Subspace setting,

Flash also reduces the number of predicate operations substantially

(20×/681× for Delta-net
∗
and APKeep

∗
respectively in LNet-ecmp,

and 26×/4× in LNet-smr).
For completeness, we next use smaller networks and report the

result for three settingswidely used in literature: Airtel-trace [25],
Stanford-trace [18] and I2-trace [49]. The last 3 rows of Table 3
show the result. We can see that the model update time of APKeep

∗

is 4.8-6.5× that of Flash. In such smaller networks, Delta-net
∗
per-

forms the best, with model update time at only 30-90% of Flash. This

is true also for some large networks, for example, for LNet-apsp
Subspace. However, we see that the number of predicate operations

of Delta-net
∗
is higher (up to 141× in Airtel-trace) than Flash.

The efficiency of Delta-net
∗
comes from its simple, efficient data

structure, which works efficiently for prefix-based rules. However,

this representation can suffer significant performance degradation

for non-prefix rules, as shown in the LNet-smr and LNet-ecmp
results; similar degradation results are reported in [26].

Thus, we conclude that Flash is robustly fast under various topolo-

gies, FIBs, and update settings. In settings with large networks and

complex forwarding behaviors (e.g., LNet-smr and LNet-ecmp), Flash
achieves substantial gains compared with the state-of-the-art.

Impact of Block Size ThresholdwhenCooperatingwithCE2D.
Last, as updates may continuously arrive in practice, Flash may

choose to update the inverse model and perform CE2D before

processing all the rule updates. This behavior is configured by the

block size threshold (BST) parameter𝐵, which forces Flash to update

the model after processing equal or more than 𝐵 rule updates. To

understand how this parameter affects the performance of Flash,

we vary the BST value and measure the model construction time

for the settings used in Table 3.

Figure 7 shows the results. The x-axis denotes the proportion

of the BST value and the FIB scale, as the FIB scale determines the

number of updates in our evaluation and varies significantly in each

setting. The y-axis is the normalized model update speed, computed

as 𝑇
baseline

/𝑇𝑥 , which categorizes how fast the model update speed

is compared to the baseline, where the BST value is infinite and

the model is updated after processing all updates. We make the

following observations: First, as the threshold increases, the overall

trend is that the model update speed will increase and stay at a

relatively high level. Second, most settings can reach more than 60%

and up to >100% (LNet-apsp, LNet-ecmp, and I2-trace) efficiency
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Figure 9: CE2D verification report time.

of the baseline with 𝑥 ≈ 0.04. The only exception is LNet-ecmp
Subspace, which only reaches ∼0.2 when 𝑥 ≈ 0.04 and > 0.8 when

𝑥 ≈ 0.5. However, as the speed-up of Flash in LNet-smr Subspace
is >70×, Flash can still be as >14× fast as the state-of-the-art. Thus,

we conclude that Fast IMT is more efficient with a larger block size

threshold. However, performance improvements can still be obtained

when the threshold is no less than 4% of the FIB scale.

5.3 Effects of CE2D
Now we present the evaluation results of CE2D to demonstrate its

efficacy, performance benefits, and robustness in extreme settings.

Ability to Achieve Consistent Early Detection.We first conduct

an evaluation to verify that CE2D can provide consistent early

detection results. Specifically, we run a simulation using the I2-

OpenR-loop setting. We use Mininet [50] to construct a network

with the Internet2 topology. A real OpenR instance is running on

each switch and connects to Flash through the host network. We

trigger the FIB computation by bringing down two links (chic-alta

and chic-kans) consecutively in Mininet. We compare CE2D with

two strategies: (1) per-update verification (PUV), which checks the

property after processing a single rule update (e.g., [18, 25, 26]),

and (2) block-update verification (BUV), which checks the property

after processing a block of updates (e.g., [47]). We record on the

verifier the time of the FIB updates from each switch, and the time

when the verifier reports a deterministic result.

The results are shown in Figure 8. A cross point (𝑥,𝑦) represents
that the FIB update of switch 𝑦 is received at time 𝑥 since the link

down events are triggered, and the color indicates the epoch tag. A

dot point (𝑥,𝑦) represents that the verifier strategy 𝑦 reports a de-

terministic result at time 𝑥 , where orange indicates a loop and blue

indicates no loops. As we can see, the two simultaneous link failures

trigger the FIB re-computation multiple times on each switch. With

both PUV and BUV, the verifier reports two transient loops (the

orange dots), which is inconsistent with the final verification result.

Meanwhile, Flash does not report false-positive errors and guarantees

that the verification result is consistent.

Benefits of CE2D upon Long-tail Arrivals. One may question

how much performance the CE2D can improve when long-tail ar-

rivals happen. Thus, we evaluate the effects of CE2D in two settings

where loops occur: I2-OpenR/1buggy-loop-lt, I2-trace-loop-lt.
For each setting, we run 50 independent random trials and in each

trial, we simulate the long-tail effect by configuring one random

node to delay 60s before sending the updates. We measure the time

when Flash reports a deterministic result.

The results are shown in Figure 9. The x-axis is the report time

and the y-axis is the Cumulative Distribution Function (CDF). We

limit the range of the x-axis to [0ms, 1,000ms]: if a curve does not

reach y=1 at 1,000ms, the result is achieved at 60s, i.e., after receiving

the updates from the dampened node. We see in the figure that

point (153.7ms, 0.68) is on the curve of I2-OpenR/1buggy-loop-lt,
indicating that Flash can detect the loop in less than 153.7ms in

68% of the trials, which is substantially smaller (> 390×) than the

60s baseline. In I2-trace-loop-lt, Flash can detect the loop early

within 760ms in all the trials, yielding a 79x speed-up. Thus, we

conclude that the improvement of CE2D can be quite common (68%

to 100%) and substantial (79 to > 390) upon long-tail arrivals.

Effects of Multiple Dampened Switches. Now we investigate

the effects of CE2D when there are multiple dampened switches.

We use the I2-trace-loop-lt setting, which uses the real net-

work topology and update sequence from the Internet2 dataset. We

enumerate the number of dampened devices 𝐷 from 1 to 7. For

each 𝐷 , we configure Flash to check loops using CE2D and run 50

independent random trials. The results are shown in Figure 10. In

72.5% (i.e., 145/200) of the cases, Flash can detect consistent loops

within 800ms, 75× as fast as a complete verification. dampened

devices 𝐷 grows, the probability of successful consistent early de-

tection becomes lower. For example, CE2D can still detect the error

within 800ms in more than 90% of the cases when 𝐷 ≤ 3, and in

∼20% of the cases when 𝐷 = 7, i.e., 77.8% of the switches are damp-

ened. Thus, we conclude that CE2D can detect errors early even with

limited and partial knowledge of the data plane.

5.4 Micro Benchmark
In this section, we present micro benchmarks that evaluate the

effects of several optimization techniques in Flash.

Effects of PAT in Large-scale Networks. We show the effects

of persistent action tree (PAT, see §3.4) by analyzing the results in

Table 3. Note that the total model update time includes both the

time to create and delete equivalence classes (denoted as𝑇𝐸𝐶 , which

is handled by the persistent action tree (PAT) in Flash (§3.4) and

independent of the number of predicate operations, and the time to

process the predicates (denoted as 𝑇𝑂𝑃 ). In Table 3, we see that the

model construction time improvement is larger than the #predicate

operations improvement of Flash over APKeep
∗
in the top 3 large-

scale network settings, e.g., 15x and 5x for LNet-apsp respectively.

The reason is that in smaller networks, the model construction

time is dominated by𝑇𝑂𝑃 , and the performance gain mainly comes
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from the reduction of #predicate operations
10
. Meanwhile, in large

networks, 𝑇𝐸𝐶 becomes dominant in the overall performance, and

Flash benefits more from the performance gain of PAT.

Effects of MR2. To better understand how MR2 (§3.2) contributes

to the overall performance gain of Flash, we conduct a breakdown

analysis of the 3 phases in the model construction: computing

atomic overwrites (Map), overwrite aggregation (i.e., Reduce I/II),

and applying overwrites. We measure the total time of each phase

for APKeep
∗
, Flash and a variant of Flash, referred to as Flash

(per-update mode), where the block size threshold is set to 1.

Figure 11 shows the time breakdown of APKeep
∗
, Flash (per-

update mode) and Flash in the I2-trace setting. While Flash intro-

duces some overhead of overwrite aggregation (0.42s), computing

atomic overwrites (3.85×) and applying overwrites (12.30×) are ac-
celerated comparedwith APKeep

∗
. Note that it takes longer to apply

the overwrites in Flash (per-update mode) (4.84s) than APKeep
∗

(4.55s) because the cross product computation is not optimized for

a single rule update. Thus, we conclude that with overwrite aggrega-

tion, MR2 enables Flash to improve the performance by substantially

reducing the time to compute the atomic conflict-free model overwrites

and to apply the aggregated overwrites.

Efficiency of Decremental Verification Graph. Last, we show
the efficiency of performing consistent early detection for regular-

expression-based requirements using the decremental verification

graph approach (§4.2). Specifically, we use the LNet-apsp Subspace
setting and check all-pair ToR-to-ToR reachability. Flash generates

5,376 verification graphs in total, and 48 verification graphs for each

subspace verifier. The rule insertions of each switch are packed

as a batch. We verify the reachability after processing each batch,

and measure the execution time of the verification for a single

subspace verifier using (1) the decremental graph query (DGQ, see

§4.2) approach, and (2) model traversal (MT, i.e., traversing the

model from each source ToR using depth-first traversal).

Figure 12 shows the CDF of verification time. We can see that

DGQ (blue) is closer to the y-axis than MT (orange). The me-

dian, mean, 99-percentile, and maximum time of DGQ and MT

are 0.58/0.84/4.74/19.57ms and 772.98/1,522.22/5,513.76/7,466.87ms

respectively. Compared with MT, Flash improves the 99-percentile

execution time by ∼1,163× (4.74ms v.s. 5,513.76ms). Thus, we can

conclude that the decremental verification graph approach substan-

tially improves the verification performance of regular expression

based requirements and enables efficient consistent early detection.

10
Note that JDD [51], the BDD library used in Flash, uses caches for predicate opera-

tions. Thus,𝑇𝑂𝑃 does not scale linearly with the #predicate operations improvement.

5.5 Computational Overhead Quantification
One concern is that Flash may have large computational overheads

and hence demand a large amount of computational resources.

To quantify the demand, we consider the resource overhead and

operational cost of the largest setting in Table 2: LNet-ecmp (6,016

nodes and 3.7 × 107 rules). We consider two deployment settings.

We first evaluate the setting of deploying dedicated servers for

continuous verification. For LNet-ecmp, Flash partitions a subspace

for each pod and hence has a total of 112 subspaces. Each subspace

verifier requires 1 (v)CPU, 211MB memory for the inverse model,

and 336MB memory for the verification graphs to check all-pair-

ToR reachability, and each machine requires <4GB memory to run

the JVM and store the rules. Thus, the total computation overhead

is 112 (v)CPUs, <62GB (61.26GB) (for model and verification graphs)

+ 4GB (for rules and JVM) memory. If the subspace verifiers are

deployed on 𝑘 machine with dedicated resources, each machine

requires ⌈ 112
𝑘
⌉ (v)CPUs and ⌈ 62

𝑘
⌉ + 4GB memory. To get a sense of

the cost of the resources in a data center, we apply the availability

and pricing of AWS EC2 (US Ohio) [52] on 2022/7/1, to obtain that

Flash needs 4 c6g.8xlarge (32 vCPUs and 64GB memory) instances.

The estimated cost is $2.74/hour.

We next evaluate the one-shot deployment setting where an op-

erator uses on-demand computation resources to verify LNet-ecmp.
Also selecting 4 c6g.8xlarge (32 vCPUs and 64GBmemory) instances,

Flash completes the one-shot verification in 21s: 1s to receive the

rule updates, 19s for model construction, and 939ms for reachability

check. Assuming each instance stays up for 1 minute and using

AWS pricing data, the system costs $4.352/hour or $0.07/run.

6 RELATEDWORK
We now discuss related studies in various fields that motivate the

design and implementation of Flash.

Network Verification for Large-scale Networks. Due to the

great importance, network verification for large-scale networks

have been studied by various studies (e.g., [6, 9, 10, 19, 20, 30–32]).

Some designs focus on the control plane (e.g., [9, 10]), which is

complementary to data plane verification that Flash focuses on,

and some only apply to specific network structures (e.g., symmetry

and surgery [20]) and specific requirements (e.g., RCDC [30]) while

Flash targets more generic network and requirements. Libra [19]

proposes to scale the verification of large-scale networks through

distributed computing. It divides the header space into minimal

atomic subspaces, where each subspace must have the same for-

warding behavior and is essentially an equivalent class in Flash,

and distributes the verification of these subspaces to a cluster of
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verifiers. The design of subspace partition in Flash is motivated by

Libra. However, the main purpose of subspace partition in Flash is

to reduce queuing of FIB updates and the memory cost. Thus, Flash

allows multiple ECs to be verified in a subspace.

Some large-scale networks use simulation-based control plane

verification tools (e.g., [6, 31, 32]). Flash can be a good complement

to these studies by verifying the generated rules. Recent studies

(e.g., [47, 53]) are pioneers in this direction.

Data Plane Representations for Verification. Data plane rep-
resentation is the core data structure of data plane verification.

Some data plane verification tools [15, 17, 18, 27, 28] use the flow

table representation, and develop computation models on top of

it (e.g., the SAT model [17], the header space algebra and packet

transformation function [18], and the Datalog model [27]). Another

set of data plane verification tools [21–26] use equivalent classes

as the data plane representation. Equivalent classes decouple the

header space analysis and the verification of requirements, and

both steps can be efficiently carried out if the number of ECs is

small. Recent studies (e.g., [26, 54]) also mitigate the explosion of

EC by maintaining multiple sets of ECs and lazily computing the

cross product. The EC approaches also benefit from efficient data

structures to manipulate header spaces: Delta-net [25] develops

an interval-based data structure which is efficient when handling

prefix-based rules, while others (e.g., APKeep [26] and Flash) use Bi-

nary Decision Diagrams (BDD) for memory efficiency under more

general settings. Among the EC approaches, Flash is the first to

design efficient data structures to store and manipulate the actions,

which only become critical when applying to large-scale networks.

DNA [47] also independently develops two ideas of batching up-

dates. Specifically, the “batch insertion and deletion” idea is the

same as the “remove canceling updates” (L1 in Algorithm 1), and

the “batch forwarding behaviors on the same device” idea is similar

to “aggregation by action” (Reduce I) in Flash but is more restric-

tive: the aggregated updates must have the same actions before

and after the update. As Flash takes a more in-depth analysis of the

block update problem, the optimizations developed in Fast IMT are

generic and can be applied to other EC implementations.

Automata Theory in Networking. The decremental verification

graph idea is motivated by studies [42–44, 55] that apply automata

theory to policy routing. These studies model network and routing

constraints as automatons. By computing the product automaton,

these studies can identify network paths that satisfy the routing

constraints. Flash also computes the product automaton but uses it

for verification purposes, combining with recent approach in fast

reachability check [41].

7 EXTENSIONS AND DISCUSSIONS
We discuss three aspects where Flash can potentially be extended:

requirement specification, data plane models, and implementations.

Requirement Specification. Currently, Flash uses path regular

expressions (PRE) to express requirement specifications. While PRE

is simple and easy to comprehend, it typically requires assumptions

such as shortest paths to avoid state explosions, and cannot be easily

extended to support non-shortest-path algorithms. As Flash uses

the requirement specification to build the decremental verification

graph (DVG) that encodes all valid paths, one potential extension is

to take the DVG directly as an input. Thus, Flash can potentially be

interfaced with the frontend of many SDN programming languages

(e.g., [42, 43, 55–59]) which also computes the set of all valid paths.

Data Plane Models. Flash focuses on the data plane model where

packets are forwarded only based on headers and there are no

header rewrites, as discussions with operators suggest that header

rewrites mostly take place at end hosts (e.g., [60]) in our target large-

scale network. However, it might be desirable to extend Flash for

stateful routing (e.g., P4 [61] and NPL [62]) or to support common

header rewrites, such as NAT or tunnels. Stateful routing requires

extensions to Fast IMT. Specifically, the forwarding function model

®𝑏 (ℎ) needs to be revised as
®𝑏 (ℎ, 𝑠) where 𝑠 denotes the states. If the

actions may change the header or the state, extensions to CE2D are

required. There are two directions to handle header/state rewrites in

Flash. The first direction (e.g., [26]) is to guarantee that any packet,

if rewritten, belongs to exact one EC before and after the rewrite.

Another direction is to enable recursive queries (e.g., [54]). CE2D

must be extended, e.g., by adding links between the decremental ver-

ification graph of different ECs. As the non-determinism increases

when header rewrites can be performed on unsynchronized nodes,

the benefits of CE2D may be reduced. Both approaches can break

the subspace partition, as the EC after header rewrite may belong

to another partition or even on another machine.

Implementation. Flash already comes with many optimizations.

One potential extension to further improve the performance ben-

efits of Flash is to leverage parallelism and pipelining. Currently,

the Fast IMT and CE2D of a subspace verifier run on the same core.

With more CPUs, we can decouple these two steps, and parallelize

the requirement verification for each EC. Fast IMT may also be par-

allelized by leveraging recent BDD libraries (e.g., [63]) that allow

efficient concurrent BDD/predicate operations.

8 CONCLUSION
We presente Flash, a fast and scalable system that addresses two im-

portant issues in data plane verification for large-scale networks: up-

date storm and long-tail update arrival. Flash contributes two new

ideas: fast inverse model transformation that achieves throughput-

optimized block update processing, and consistent, efficient, early

detection that enables consistent verification with partially com-

plete data plane information. Extensive experiments on large-scale

datasets demonstrate the efficacy and efficiency.
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(a) (b) (c)

Figure 13: Update storm in inter/intra-domain routing. Red
solid lines: BGP announcements; red dashed lines: IGP an-
nouncements; blue lines: routing paths. (a) - Initial state. (b) -
Inter-domain link failure. (c) - Intra-domain link recovery.

Figure 14: Accumulative distribution of updates.

Appendices are supporting material that has not been peer-

reviewed.

A UPDATE STORM ANALYSIS
As scales and complexities of computer networks grow [64], it is not

uncommon that a large number of data plane updates are triggered

by a single root cause both in real networks and in large-scale

simulations.

Prior work [65] has shown that a single failure in the Internet

topology can trigger bursts of BGPwithdraws (up to 100,000), which

can lead to FIB changes in intra-domain networks. For example,

consider the network in Figure 13(a), assume it receives 10K prefixes

from AS-1 and AS-2 and the optimal path for the 10K prefixes is

through border router A, as shown in Figure 13(a). After the failure

of a remote inter-domain link, the prefixes are withdrawn from

AS-1 and the new optimal path is to forward packets through router

B, as shown in Figure 13(b). For a 3-node topology, the change will

trigger 30K FIB updates.

A link change in the intra-domain may also trigger a large num-

ber of FIB updates. Consider the network in Figure 13(c), when a

new link is set up from C to B, the optimal intra-domain path is

changed from C - A - B to C - B. Thus, it will trigger 10K updates for

the selected prefixes. We evaluate the scenario of Figure 13 using

FRR[66], Figure 14 shows the accumulative distribution of updates

when we trigger the link events. When link A-Internet fails, we

receive 10K
11

burst updates from A in 0.48s, and 1.36s after link

B-C is set up, we receive 10K burst updates from C in 0.58s.

Network simulations [6, 13, 31, 32, 67] have been reported to ef-

fectively reduce the risk of conducting complex network operations

11
We also received 10K FIB updates from C when link A-Internet fails, but the updates

from C have not changed its original FIB, thus these updates are not reported.

POD 0 POD 1 POD 2 POD 3
P prefixes P prefixes P prefixes P prefixes

K P |𝑅 | |Δ𝑅 |
4 2 160 56

8 4 2,560 512

16 8 40,960 4,352

32 16 655,360 35,840

32 32 1,310,720 71,680

Figure 15: Update storm in network planning: connecting a
new POD to the data center network. 𝐾 - Fat tree parameter;
𝑃 - prefix per pod; |𝑅 | - # of total rules after the change; |Δ𝑅 | -
# of modified rules.

reqs ::= req∗
req ::= (𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑝𝑎𝑐𝑒, 𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑃 )
𝑃 ::= 𝑃 and 𝑃 (Set Intersection)

| 𝑃 or 𝑃 (Set Union)

| not 𝑃 (Complementary)

| cover 𝑃 (Coverage)

| hop∗ (Regular Expression)

hop ::= ID (Select by ID)

| [𝑙𝑎𝑏𝑒𝑙 op 𝑣𝑎𝑙] (Select by label)

| . (Any)

| * (Repeat)

| ˆ (Start of Path)

| $ (End of Path)

| > (Packet Destination)

op ::= = (Eqals)

| contains (Contains)

| matches (Matches a regular expression)

Figure 16: Requirement Specification Language.

in production networks. State-of-the-art network simulation tools

such as FastPlane [32] can compute the RIB and FIB of a network

of more than 2,000 routers in a few hundreds of seconds, and the

scale of the RIB and FIB entries can be up to hundreds of millions.

For example, consider the scenario shown in Figure 15, assume

the network has a 𝐾-ary Fat tree topology and each POD has 𝑃

prefixes. When 𝐾 = 32 and 𝑃 = 32, 1,310,720 FIB rules and 71,680

FIB changes are generated by BGP simulation when a new pod is

added to a data center network.

Feeding these entries to a data plane verifier leads to both long

verification time and large memory consumption. The large number

of updates can also be challenging even for incremental data plane

verifiers [25, 26, 28]. While one can resort to the divide-and-conquer

approach [19], the cost depends on both the partition method and

the complexity of the data plane and can still be very large. For

example, in a dataset of 6million FIB updates in a Clos topologywith

6,000 switches, even if we divide the header space into 112 partitions,

a reproduced version of a state-of-the-art data plane verifier [26]

takes tens of minutes to hours to complete the verification for one

partition. Further increasing the number of partitions can certainly

help reduce the scalability challenges posed by the update storm but

inevitably increases the cost to verify one network configuration.

B A DECLARATIVE REQUIREMENT
SPECIFICATION LANGUAGE.

Verification Requirement Specification Language. Figure 16
gives a simplified grammar of the requirement specification lan-

guage in Flash. For switches with external ports (e.g., a ToR switch
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or a border router), Flash attaches a virtual node to each external

port. For each virtual node, Flash assigns the set of IP prefixes

to the prefixes label, which indicates that the virtual node owns

the prefixes. In this way, operators can select any external des-

tinations. On a high-level, a requirement is specified by a tuple

of (packet_space, 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 , path_set). The semantic means for ev-

ery packet in packet_space, when it enters the network from any

device in 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 , the network must be forward it along at least

one sequence of devices belonging to path_set specified as a reg-

ular expression. For example, tuple (sip = 10.0.1.0/24 𝑎𝑛𝑑 dip =

10.0.2.0/24, [𝑆], 𝑆 . ∗𝑊 .∗ > $) specifies that for any packet with a

source IP in 10.0.1.0/24 and a destination IP in 10.0.2.0/24 entering

network at device S, it must be able to reach at least one device

with an external port reachable to the destination of a packet while

waypointing device𝑊 . The language can expressive requirement

on common communication patterns such as unicast, anycast and

multicast. It also provides a cover key word, when used together

with path_set, means every pkt ∈ packet_space entering the net-

work from a device 𝑣 ∈ 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 , it must be forwarded along all

paths in path_set that starts from 𝑣 . With this key word, the lan-

guage can express requirements such as “all redundant shortest

paths should be available" [27].

C A FORMAL THEORY OF IMT
C.1 Basic Concepts
Input and Output. The inverse model transformation (IMT) can

be applied beyond networking. Thus, we use the term input as a

generalization of header field, and the term output as a generaliza-

tion of network-wide forwarding behaviors. First, we define the basic

elements of IMT theory. IMT does not deal with a concrete input

but with a set of inputs, predicate is a boolean function that specifies

a specific set of inputs and is a key concept in IMT.

Definition 1 (Input Space, Predicate and Selection.). Let 𝐿

denote the number of bits for an input, the input space X ≜ {0, 1}𝐿 is

the set of all possible input values. A predicate is a boolean function

𝑝 : X ↦→ {0, 1}, and the selection of a predicate is defined as 𝜎𝑝 ≜
{𝑥 ∈ X|𝑝 (𝑥) = 1} ⊆ X. Let P denote the space of predicates on

X, i.e., P ≜ X ↦→ {0, 1}. Let p0 denote the predicate that ∀𝑥 ∈ X,
p0(𝑥) = 0, i.e., 𝜎p0 = ∅.

As introduced in §3.2, a basic operator to compute model update

is the overwrite operator. In the paper, we use 𝑦3 = 𝑆2 to denote the

behavior of rewriting the output (i.e., actions in the context of the

paper) on 𝑆3 to forwarding to 𝑆2. The output space 𝑌𝑖 specifies valid

values for the 𝑖-th output (e.g., the next hop on the 𝑖-th device). This

operator can be expressed as a vector in the output space, with the

introduction of “no-update”, i.e., 0 (note that this is different from a

numerical zero, which can be potential valid output). For example,

𝑦3 = 𝑆2 can be expressed as (0, 0, 𝑆2).

Definition 2 (Output Space and Output Overwrite.). For a

system with 𝑁 outputs, let 𝑉𝑖 denote the space of all valid values for

the 𝑖-th output. Let 𝑌𝑖 ≜ 𝑉𝑖 ∪ {0} denote the space of the 𝑖-th output,

a binary operation overwrite←𝑖 : 𝑌𝑖 × 𝑌𝑖 ↦→ 𝑌𝑖 is defined as:

𝑎 ←𝑖 𝑏 =

{
𝑎 if 𝑏 = 0,
𝑏 otherwise

LetY ≜ 𝑌1 × · · · ×𝑌𝑁 , we define←: Y ×Y ↦→ Y as below: ®𝑎 ←
®𝑏 = (𝑎1 ←1 𝑏1, . . . , 𝑎𝑖 ←𝑖 𝑏𝑖 , . . . , 𝑎𝑁 ←𝑁 𝑏𝑁 ) . Let 0𝐾 = 0, . . . , 0︸  ︷︷  ︸

𝐾

,

we have ®0 = (0𝑁 ) is the identity element.

Forward Model. We now give the formal model of the forward

model, i.e., rule-based representation. In particular, we focus on the

case where rules have no conflicts, as mentioned in §3.1.

Definition 3 (Rule). A rule 𝑟 consists of 3 parts: a match predi-

cate (denoted as 𝑟 .pred ∈ P), a priority (denoted as 𝑟 .pr ∈ N), and an
output vector, denoted as (𝑟 .®𝑦).

Definition 4 (Well-behaved Forward Model (Rule-based

Representation)). A rule-based representation 𝑅 is well-behaved if

and only if (1)∀𝑟𝑖 ≠ 𝑟 𝑗 ∈ 𝑅,𝜎𝑟𝑖∩𝜎𝑟 𝑗 ≠ ∅⇔ (𝑟𝑖 .pr ≠ 𝑟 𝑗 .pr)∨(𝑟𝑖 .®𝑦 ←
𝑟 𝑗 .®𝑦 = 𝑟 𝑗 .®𝑦 ← 𝑟𝑖 .®𝑦), i.e., there are no conflicts for overlapped rules; (2)
∀𝑖 ∈ [1, 𝑁 ], ∀𝑥 ∈ X, ∃𝑟 ∈ 𝑅, (𝑥 ∈ 𝜎𝑟 ) ∧ (𝑟 .𝑦𝑖 ≠ 0) = 1, i.e., outputs

for domain X is fully specified.

Based on the well-behaved forward model, we can define its

behavior function, which represents the outputs for a given input.

In the context of networking, the output vector gives the action of

a packet header on each device. For each input 𝑥 , its behavior is

specified by the rule 𝑟 that can match the input, i.e., 𝑟 .pred (𝑥) = 1,

and has the highest priority. This behavior model mimics the FIB

forwarding behavior.

Definition 5 (Behavior Function of 𝑅). Each well-behaved

forward model 𝑅 uniquely defines a behavior function
®𝑏𝑅 : X ↦→ Y.

Specifically, let 𝑅𝑖 ≜ {𝑟 ∈ 𝑅 |𝑟 .𝑦𝑖 ≠ 0}. ∀𝑖 ∈ [1, 𝑁 ], ∀𝑥 ∈ X, ®𝑏𝑅 (𝑥) ≜
(𝑏𝑅1 (𝑥), . . . , 𝑏𝑅𝑁 (𝑥)) where

𝑏𝑅𝑖 (𝑥) ≜ 𝑟 .𝑦𝑖 , 𝑟 = argmax

𝑟 ∈{𝑟 ∈𝑅𝑖 |𝑥 ∈𝜎𝑟 }
𝑟 .pr.

Inverse Model.We now give the definition of the inverse model.

Each inverse model is a set of (𝑝, ®𝑦) pairs, where 𝑝 ∈ P is a pred-

icate and ®𝑦 ∈ Y is an output vector. Clearly, the space of models

is a subset of P × Y. However, inverse models must satisfy the

constraints, as in Definition 6. We define a boolean function im

which takes a subset of P × Y, and returns 1 if it is an inverse

model, and 0 otherwise.

Definition 6 (Inverse Model (Eqivalent-class Represen-

tation)). 𝑀 = {(𝑝 𝑗 , ®𝑦 𝑗 )} |𝑀 | is an inverse model, or simply a model,

i.e., im(𝑀) = 1, if and only if (1) ∀𝑖 ≠ 𝑗 ∈ [1, |𝑀 |], ®𝑦𝑖 ≠ ®𝑦 𝑗 , i.e., each
output vector is unique; (2) ∀𝑖 ≠ 𝑗 ∈ [1, |𝑀 |], 𝜎𝑝𝑖 ∩𝜎𝑝 𝑗 = ∅, i.e., selec-
tions of the predicates are mutually exclusive; (3)

⋃
𝑖∈[1, |𝑀 | ] 𝜎𝑝𝑖 = X,

i.e., all the predicates fully cover the target input space X.
Similarly, we can also define the behavior function of 𝑀 . As

the predicates are mutually exclusive but complete, the predicate

of one and only one pair (𝑝, ®𝑦) can match the input. The output

vector of the input 𝑥 is the associated ®𝑦. From the definition of an

inverse model’s behavior function, we can see that it is very easy

to compute its inverse function, which is exactly the reason why

we call𝑀 the inverse model.

Definition 7 (Behavior Function of𝑀). Each inverse model

𝑀 uniquely defines a behavior function
®𝑏𝑀 : X ↦→ Y. Specifically,

®𝑏𝑀 (𝑥) ≜ ®𝑦𝑀 (𝑝), ∃𝑝 ∈ P𝑀 , 𝑝 (𝑥) = 1.
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Definition 8 (Inverse Behavior Function). Each inversemodel

𝑀 ∈ M define an inverse behavior function b
−1
𝑀

: Y ↦→ X∗:

b
−1
𝑀 ( ®𝑦) =

{
𝜎𝑝𝑀 ( ®𝑦) if ®𝑦 ∈ Y𝑀
∅ otherwise.

The key operator, which is used to manipulate inverse models, is

defined in Definition 9. This operator is to overwrite (see Figure 17

for a formal definition) the outputs of a model 𝑀 with refined

outputs in𝑀 ′. If𝑦𝑖 of a refined output contain 0 for some 𝑖 ∈ [1, 𝑁 ],
which means “do not modify”, the operator only performs a partial

update.

Definition 9 (Model Overwrite). The model overwrite opera-

tor ⊗ :M ×M ↦→ M is defined as

𝑀 ⊗ 𝑀 ′ =
{( ∨
∀( ®𝑦,𝑝𝑖 ) ∈𝑀⊗

𝑝𝑖 , ®𝑦
)
| ∀®𝑦 ∈ Y𝑀⊗

}
and

𝑀⊗ = {𝑝𝑀 ( ®𝑦) ∧ 𝑝𝑀′ ( ®𝑦′)), ( ®𝑦 ← ®𝑦′ | ∀®𝑦 ∈ Y𝑀 ,∀®𝑦′ ∈ Y𝑀′}.

The (𝑝, ®𝑦) pairs in𝑀⊗ enumerate all possible refinement com-

binations, and 𝑀⊗ ⊂ Y × P satisfies all properties of an inverse

model except the uniqueness of output vectors. By ensuring this

property, the final result of the model overwrite operator is also

an inverse model. We can easily prove that model overwrite is

associative but not commutative in the general case.

Lemma 1 (Model Overwrite is Associative.). (𝑀1 ⊗ 𝑀2) ⊗
𝑀3 = 𝑀1 ⊗ (𝑀2 ⊗ 𝑀3).

Equivalent Model. If a forward model 𝑅 and an inverse model𝑀

define the same behavior function, we say these two models are

equivalent.

Definition 10. Equivalent Inverse Model. We say a well-behaved

forward model 𝑅 and an inverse model𝑀 are equivalent, if and only

if ∀𝑥 ∈ X, ®𝑏𝑅 (𝑥) = ®𝑏𝑀 (𝑥)

In practice, the system typically specifies the forward rule 𝑅 (e.g.,

forwarding rules installed on the data plane) but not the inverse

model𝑀 . Thus, we define the inverse model transformation (IMT)

problem.

Definition 11 (Inverse Model Transformation). For a well-

behaved forward model 𝑅, find𝑀 ∈ M such that 𝑅 ∼ 𝑀 .

C.2 Natural Transformation
We lay the foundation of Fast IMT by introducing natural transfor-

mation. We refer to this approach as natural transformation because

its computation process is the most natural way to derive an in-

verse model from a forward model. It is an adoption of the approach

introduced in [21].

The idea is to leverage that the inverse model both defines a

behavior function and an inverse function. Thus, we can construct

𝑀 by computing the inverse function of
®𝑏𝑅 . First, we find the pre-

image for each value of the 𝑖-th output, and then the pre-image

of an output vector ®𝑦 is the intersection of the pre-images of 𝑦𝑖 ,

∀𝑖 ∈ [1, 𝑁 ]. Second, we enumerate all combinations of each 𝑦𝑖 and

the set of potential ®𝑦 contains those whose pre-image is not empty.

𝐿, 𝑁 ∈ N+

Rule Set Space R = {𝑅 | 𝑅 ⊆ N+ × P × Y}
Inverse Model Space M = {∀𝑀 ⊂ P × Y | im(𝑀) = 1}
Input 𝑥 ∈ X = {0, 1}𝐿
Predicate 𝑝 ∈ P = X ↦→ {0, 1}
Selection 𝜎𝑝 = {∀𝑥 ∈ X | 𝑝 (𝑥) = 1}
Output ®𝑦, ®0 ∈ Y = 𝑌1 × · · · ×𝑌𝑁
Rule set 𝑅,𝑈 ∈ R
Rule 𝑟 = (pr, pred, ®𝑦) ∈ 𝑅
Rule set for the 𝑖-th output 𝑅𝑖 = {𝑟 ∈ 𝑅 |𝑟 .𝑦𝑖 ≠ 0}
Behavior function

®𝑏𝑅 , ®𝑏𝑀 : X ↦→ Y
𝑖-th output defined by 𝑅 𝑏𝑅𝑖 = 𝑟 .𝑦𝑖 , 𝑟 = argmax

𝑟∈𝑅𝑖 ,𝑟 .pred (𝑥 )=1
{𝑟 .pr }

Output set of 𝑅 𝑌𝑅𝑖 = {𝑟 .𝑦𝑖 |∀𝑟 ∈ 𝑅𝑖 }
Rules with output 𝑦𝑖 in 𝑅𝑖 𝑅−1𝑖 (𝑦𝑖 ) = {𝑟 ∈ 𝑅𝑖 | 𝑟 .𝑦𝑖 = 𝑦𝑖 }
Inverse model 𝑀, 𝜒 = {(𝑝, ®𝑦) }𝐾 ∈ M
Inverse behavior function

®𝑏−1
𝑅
,
®𝑏−1
𝑀

: Y ↦→ X∗
Output space of a model Y𝑀 = { ®𝑦 | ∃(𝑝, ®𝑦) ∈ 𝑀 }
Output of 𝑝 in M ®𝑦𝑀 (𝑝) = ®𝑦, ∃( ®𝑦, 𝑝) ∈ 𝑀
Predicate space of𝑀 P𝑀 = {𝑝 | ∃(𝑝, ®𝑦) ∈ 𝑀 }
Predicate of ®𝑦 in𝑀 𝑝𝑀 ( ®𝑦) = 𝑝, ∃(𝑝, ®𝑦) ∈ 𝑀
Natural transformation 𝜙 : R ↦→ M

𝑎 ←𝑖 𝑏 =

{
𝑎 if 𝑏 = 0,
𝑏 otherwise

(Overwrite on𝑌𝑖 )

®𝑦 ← ®𝑦′ = (𝑦1 ←1 𝑦
′
1
, . . . , 𝑦𝑁 ←𝑁 𝑦′𝑁 ) (Overwrite on Y)

eff (𝑟, 𝑅𝑖 ) ≜ 𝑟 .pred ∧ ¬
∨

𝑟 ′∈𝑅𝑖 ,𝑟 ′ .pr>𝑟 .pr
𝑟 ′.pred (Effective Predicate)

vectorize𝑖 (𝑦) = (0, . . . , 0︸  ︷︷  ︸
𝑖−1

, 𝑦, 0, . . . , 0︸  ︷︷  ︸
𝑁−𝑖

) (Output Expansion)

Figure 17: Key notations & basic operations.

For the first step, it can be observed that each 𝑥 will bematched
by one rule 𝑟 in 𝑅𝑖 , ∀𝑖 ∈ [1, 𝑁 ]. The rule selection, denoted as

𝑟𝑅𝑖 : X ↦→ N+ × P × Y, is a function. Thus, one can compute the

effective predicate (see Figure 17), which represents the pre-image of

𝑟 , i.e., 𝑟−1
𝑅𝑖
(𝑟 ). In the context of networking, the effective predicate

represents the union of all packet header values that will bematched

by the rule. Based on the computation logic of the forward model,

the input must be matched by 𝑟 .pred and must not be matched by

any rule with a higher priority, i.e.,

eff (𝑟, 𝑅𝑖 ) ≜ 𝑟 .pred ∧ ¬
∨

𝑟 ′∈𝑅𝑖 ,𝑟 ′.pr>𝑟 .pr
𝑟 ′.pred .

Note this is exactly Equation (1).

Then, for the 𝑖-th output, the pre-image of 𝑦𝑖 can be computed

as the union of all rules whose output is equal to 𝑦𝑖 , i.e.,

PreImage(𝑦𝑖 ) =
⋃

𝑟 ∈𝑅−1
𝑖
(𝑦𝑖 )

𝜎
eff (𝑟,𝑅𝑖 ) = 𝜎

∨
𝑟∈𝑅−1

𝑖
(𝑦𝑖 )

eff (𝑟,𝑅𝑖 ) ,

which is exactly Equation (2).

For the second step, instead of directly enumerating all possible

combinations, we observe that by expanding 𝑦𝑖 ∈ 𝑌𝑖 to Y (see

Figure 17), and pairing it with the pre-image we just computed for

each 𝑦𝑖 , an inverse model is obtained for each 𝑖 ∈ [1, 𝑁 ]. We denote

this model as Φ𝑖 (𝑅) and the enumeration can be equally yet more

efficiently computed using the model overwrite operator ⊗.
Hence, we define the natural transformation, which is an instance

of direct transformation, in Definition 12.

Definition 12 (Natural Transformation). For a well-behaved

rule set 𝑅, the natural transformation 𝜙 : R ↦→ M is defined as
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𝜙 (𝑅) = Φ1 (𝑅) ⊗ · · · ⊗ Φ𝑁 (𝑅) where

Φ𝑖 (𝑅) =


©­­«

∨
𝑟 ∈𝑅−1

𝑖
(𝑦𝑖 )

eff (𝑟, 𝑅𝑖 ), vectorize𝑖 (𝑦𝑖 )
ª®®¬ | ∀𝑦𝑖 ∈ 𝑌𝑅𝑖

 .
With the definition of natural transformation, we now prove its

equivalence property.

Theorem 1 (Natural Transformation is Eqivalent). 𝑅 ∼
𝜙 (𝑅).

Proof. ∀𝑥 ∈ X, let ®𝑦 = ®𝑏𝑅 (𝑥). Given the definition of equiva-

lence, we need to prove that
®𝑏𝜙 (𝑅) (𝑥) = ®𝑦.

Consider the 𝑖-th output, given the definition of behavior model

of 𝑅, there exists exactly one rule 𝑟∗ that matches 𝑥 and has the

output 𝑦𝑖 . Thus, we have

𝑥 ∈ 𝜎𝑟 ∗ .pred \
⋃

𝑟 ∈𝑅𝑖 ,𝑟 .pr>𝑟 ∗ .pr
𝑟 .pred

= 𝜎𝑟 ∗ .pred∧¬∨𝑟∈𝑅𝑖 ,𝑟 .pr>𝑟∗ .pr 𝑟 .pred = 𝜎
eff (𝑟 ∗,𝑅𝑖 ) .

When 𝑁 = 1, 𝜙 (𝑅) = Φ1 (𝑅). Let 𝑝∗ =
∨
𝑟 ∈𝑅−1

𝑖
(𝑦𝑖 ) eff (𝑟, 𝑅𝑖 ), we

have 𝑥 ∈ 𝜎
eff (𝑟 ∗,𝑟𝑖 ) ⊆ 𝜎𝑝∗ since 𝑟∗ ∈ 𝑅−1𝑖 (𝑦𝑖 ). Given the definition

of the behavior function of an inverse model, we have
®𝑏𝜙 (𝑅) (𝑥) =

𝑦𝑖 = ®𝑏𝑅 (𝑥) and the theorem holds for 𝑁 = 1.

Now consider the case where 𝑁 > 1. Again we know there exists

exactly one rule 𝑟∗
𝑖
∈ 𝑅𝑖 that matches 𝑥 and returns the output 𝑦𝑖

on the 𝑖-th output. Thus, let 𝑝∗
𝑖
=
∨
𝑟 ∈𝑅−1

𝑖
(𝑦𝑖 ) eff (𝑟, 𝑅𝑖 ), we have

𝑥 ∈ 𝜎𝑝∗
𝑖
.

Let 𝑝∗ =
∨
𝑖∈[1,𝑁 ] 𝑝

∗
𝑖
, its associated output in 𝜙 (𝑅) is ®𝑦∗ =

vectorize1 (𝑦1) ← · · · ← vectorize𝑖 (𝑦𝑖 ) ← · · · ← vectorize𝑁 (𝑦𝑁 ).
Clearly, 𝑥 ∈ ⋂

𝑖∈[1,𝑁 ] 𝜎𝑝∗𝑖 = 𝜎∧
𝑖∈[1,𝑁 ] 𝑝𝑝∗

𝑖

= 𝜎𝑝∗ . Given the defini-

tion of the behavior function of the inverse model,
®𝑏𝜙 (𝑅) (𝑥) = ®𝑦∗.

Note that ∀𝑗 ≠ 𝑖 ∈ [1, 𝑁 ], the 𝑖-th element of vectorize𝑗 (𝑦 𝑗 ) is
0 (“no-overwrite”). Thus,

®𝑏𝜙 (𝑅) (𝑥) = ®𝑦∗ = ®𝑦 = ®𝑏𝑅 (𝑥), and the

theorem holds for 𝑁 > 1. □

C.3 Fast IMT
We start from the natural transformation and now introduce Fast

IMT. We outline the basic idea: we show that Fast IMT can compute

a set of atomic overwrites for a block of rule updates. While normal

overwrites are only associative, atomic overwrites are commutative.

Thus, they can be reorganized and aggregated (i.e., with Reduce I

and Reduce II), while still guarantee that the final inverse model is

equivalent.

Atomic Overwrites Generated by Fast IMT. Let 𝑅 denote the

forward model before the updates, and 𝑅′ denote the one after

the updates. Consider the atomic overwrites generated on the 𝑖-

th device. Fast IMT computes an atomic overwrite for each rule

in 𝑅
diff

(L40 in Algorithm 1), which is either a new rule (L20 in

Algorithm 1), or a rule whose priority is smaller than at least one

deleted rule (L15 in Algorithm 1). Note that the action is {𝑦𝑖 =

𝑎𝑟𝛿 }, which is essentially vectorize𝑖 (𝑟𝛿 .𝑦𝑖 ). Fast IMT selects these

rules because their effective predicate is potentially expanding, i.e.,

𝜎
eff (𝑟,𝑅) ⊆ 𝜎eff (𝑟,𝑅′) .

Definition 13 (Expanding Rules). Let 𝑅 and 𝑅′ denote the

forward model before and after some updates, a rule is an expanding

rule in 𝑅′ if and only if (1) 𝑟 ∈ 𝑅′ \ 𝑅: 𝑟 is just inserted into 𝑅′, or
(2) 𝑟 ∈ 𝑅 and ∃𝑟 ′ ∈ 𝑅 \ 𝑅′, 𝑟 ′.pr > 𝑟 .pr: a rule 𝑟 ′ with a higher

priority is deleted.

Definition 14 (Atomic Overwrites). Let 𝑅 and 𝑅′ denote the
forward model before and after the updates, and Δ𝑅𝑖 denote the set
of expanding rules on the 𝑖-th output. The set of atomic overwrites

Δ𝑀 =
⊗

𝑖∈[1,𝑁 ] Δ𝑀𝑖 , where

Δ𝑀𝑖 =
⊗
𝑟 ∈Δ𝑅𝑖

{ (
eff (𝑟, 𝑅′

𝑖
), vectorize𝑖 (𝑎𝑟 )

)
,

(
¬ eff (𝑟, 𝑅′

𝑖
), ®0

) }
.

We can eff (𝑟, 𝑅′
𝑖
) the master predicate of the atomic overwrite.

Atomic Overwrites Guarantee Equivalence.We now show that

by applying the atomic overwrites to the inverse model of 𝑅, we

can get a model that is equivalent of 𝑅′. To prove that, we first

introduce equivalent inverse models, and a few lemmas which can

be trivially proved.

Definition 15 (Model Eqivalence). We say two inversemodels

𝑀1 and𝑀2 are equivalent, denoted as𝑀1 ≡ 𝑀2, if and only if∀𝑥 ∈ X,
®𝑏𝑀1
(𝑥) = ®𝑏𝑀2

(𝑥) .

Lemma 2. If 𝑅 ∼ 𝑀1 and 𝑅 ∼ 𝑀2,𝑀1 ≡ 𝑀2.

Lemma 3. If𝑀1 ≡ 𝑀2,𝑀1 ⊗ 𝑀 ≡ 𝑀2 ⊗ 𝑀 .

Lemma 4. If𝑀1 ≡ 𝑀2 and 𝑅 ∼ 𝑀1, 𝑅 ∼ 𝑀2.

Theorem 2. Let 𝑅 and 𝑅′ denote the forward model before and

after the update, and Δ𝑀 denote the atomic overwrites. If 𝑅 ∼ 𝑀 ,

𝑅′ ∼ 𝑀 ⊗ Δ𝑀 .

Proof. The key to the proof is based on the following derivation.

First, we already know 𝑅 ∼ 𝜙 (𝑅) (Theorem 1). With Lemma 2, we

have𝑀 ≡ 𝜙 (𝑅). Thenwith Lemma 3, we have𝑀⊗Δ𝑀 ≡ 𝜙 (𝑅)⊗Δ𝑀 .

Again, we have 𝑅′ ∼ 𝜙 (𝑅′) (Theorem 1). If we can prove that

𝜙 (𝑅) ⊗ Δ𝑀 ≡ 𝜙 (𝑅′), with Lemma 4, we have 𝑅′ ∼ 𝑀 ⊗ Δ𝑀 .

Now we prove that 𝜙 (𝑅) ⊗ Δ𝑀 ≡ 𝜙 (𝑅′).
Consider 𝑁 = 1. Let Δ𝑅 denote the set of expanding rules in 𝑅′,

numbered from 1 to 𝐾 . Let 𝑟𝛿
𝑘
denote the 𝑘-th rule in Δ𝑅. ∀𝑥 ∈ X,

assume it is matched by 𝑟 ′ ⊂ 𝑅′. There are two cases.

First, consider the case where 𝑟 ′ ∈ Δ𝑅. Without loss of gen-

erality, assume it is matched by the 𝑘-th rule in Δ𝑅, i.e., 𝑟 ′ = 𝑟𝛿
𝑘
.

Let 𝑦∗ = 𝑏𝑅 (𝑥) and assume 𝑥 is matched by 𝑝∗ in 𝜙 (𝑅), we have
(𝑝∗, 𝑦∗) in 𝜙 (𝑅). Note that the effective predicates of the rules for
the same output are mutually exclusive. As 𝑥 is matched by the

𝑘-th rule in Δ𝑅, it will not be matched by any other rule in Δ𝑅,
i.e., ∀𝑗 ≠ 𝑘 ∈ [1, 𝐾], 𝑥 ∉ 𝜎

𝑟𝛿
𝑗
.pred

. Thus, ∀𝑗 ≠ 𝑘 ∈ [1, 𝐾], 𝑥 will

match the complementary predicate ¬ eff (𝑟𝛿
𝑗
, 𝑅′). Then, we have

𝑏𝜙 (𝑅)⊗Δ𝑀 (𝑥) = 𝑦∗ ← 0← · · · ← 𝑟𝛿
𝑘
.𝑦 ← · · · ← 0 = 𝑦∗ ← 𝑟𝛿

𝑘
.𝑦 =

𝑟 ′.𝑦 = 𝑏𝜙 (𝑅′) (𝑥).
Now consider the case where 𝑟 ′ ∉ Δ𝑅. Thus, 𝑟 ′ ∈ 𝑅. This time,

∀𝑗 ∈ [1, 𝐾], 𝑥 will match the complementary predicate ¬ eff (𝑟𝛿
𝑗
, 𝑅′).

Then we have 𝑏𝜙 (𝑅)⊗Δ𝑀 = 𝑟 ′.𝑦 ← 0← · · · ← 0 = 𝑟 ′.𝑦 = 𝑏𝜙 (𝑅′) .
Then we can use induction to prove the theorem. We omit the

details here. □
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Correctness of MR2. With Theorem 2, we now prove the correct-

ness of MR2, in particular, Reduce I and Reduce II. A key to the proof

is that atomic overwrites are commutative. Thus, we can move the

atomic overwrites that has the same output vector together. As the

model overwrite operator (⊗) is associative (lemma:assoc), they

can be computed first without hurting the equivalence. Then the

idea is to prove that the result is the same as Reduce I (aggregation

by action), and will prove the correctness of Reduce I. Similarly,

we move aggregated overwrites that are from different outputs but

have the same predicate together. We follow the same strategy to

prove Reduce II (aggregation by predicate).

We now present the proofs.

Theorem 3 (Atomic Overwrites are Commutative). Let 𝜒

and 𝜒 ′ denote two atomic overwrites,𝑀 ⊗ 𝜒 ⊗ 𝜒 ′ = 𝑀 ⊗ 𝜒 ⊗ 𝜒 ′.

Proof. There are two cases. First, consider that 𝜒 and 𝜒 ′ are
both on the 𝑖-th device and are computed for 𝑟 ∈ 𝑅′

𝑖
and 𝑟 ′ ∈

𝑅′
𝑖
respectively. We already show in Theorem 2 that eff (𝑟, 𝑅′

𝑖
) ≠

eff (𝑟 ′, 𝑅′
𝑖
). Let 𝑝 = eff (𝑟, 𝑅′

𝑖
) and ®𝑦 = vectorize𝑖 (𝑟 .𝑦𝑖 ), and 𝑝 ′ =

eff 𝑟 ′, 𝑅′
𝑖
and ®𝑦′ = vectorize𝑖 (𝑟 ′.𝑦𝑖 ), we have[ (

𝑝, ®𝑦
)(

¬𝑝, ®0
) ] ⊗ [ (

𝑝 ′, ®𝑦′
)(

¬𝑝 ′, ®0
) ] = 

(
𝑝, ®𝑦

)(
𝑝 ′, ®𝑦′

)(
¬ (𝑝 ∨ 𝑝 ′) , ®0

) =
[ (
𝑝 ′, ®𝑦′

)(
¬𝑝 ′, ®0

) ] ⊗ [ (
𝑝, ®𝑦

)(
¬𝑝, ®0

) ]
Now consider the case 𝜒 and 𝜒 ′ are on different devices. Assume

that 𝜒 is on the 𝑖-th device and computed for 𝑟 ∈ 𝑅′
𝑖
, and that

𝜒 ′ is on the 𝑗-th device and computed for 𝑟 ′ ∈ 𝑅′
𝑗
respectively.

Let 𝑝 = eff (𝑟, 𝑅′
𝑖
) and ®𝑦 = vectorize𝑖 (𝑟 .𝑦𝑖 ), and 𝑝 ′ = eff 𝑟 ′, 𝑅′

𝑗
and

®𝑦′ = vectorize𝑗 (𝑟 ′.𝑦 𝑗 ), we have

[ (
𝑝, ®𝑦

)(
¬𝑝, ®0

) ] ⊗ [ (
𝑝 ′, ®𝑦′

)(
¬𝑝 ′, ®0

) ] = 
(
𝑝 ∧ 𝑝 ′, ®𝑦 ← ®𝑦′

)(
𝑝 ∧ ¬𝑝 ′, ®𝑦

)(
𝑝 ′ ∧ ¬𝑝, ®𝑦′

)(
¬ (𝑝 ∨ 𝑝 ′) , ®0

)
 ,

and [ (
𝑝 ′, ®𝑦′

)(
¬𝑝 ′, ®0

) ] ⊗ [ (
𝑝, ®𝑦

)(
¬𝑝, ®0

) ] = 
(
𝑝 ∧ 𝑝 ′, ®𝑦′ ← ®𝑦

)(
𝑝 ∧ ¬𝑝 ′, ®𝑦

)(
𝑝 ′ ∧ ¬𝑝, ®𝑦′

)(
¬ (𝑝 ∨ 𝑝 ′) , ®0

)
 .

Only the first entry in the product is different. However, as we know,

≠ 𝑖 , vectorize𝑗 (𝑦 𝑗 )𝑖 = 0, and vice versa. Thus, vectorize𝑖 (𝑟 .𝑦𝑖 ) ←
vectorize𝑗 (𝑟 ′.𝑦 𝑗 ) = vectorize𝑗 (𝑟 ′.𝑦 𝑗 ) ← vectorize𝑖 (𝑟 .𝑦𝑖 ). □

Theorem 4 (Correctness of Reduce I). Assume there are 𝐾

atomic overwrites on the 𝑖-th device with the same output vectorize𝑖 (𝑦𝑖 ):
𝜒1, . . . , 𝜒𝐾 , and 𝑝𝑘 is the master predicate (see Definition 14) of the

𝑘-th atomic overwrite.⊗
𝑘∈[1,𝐾 ]

𝜒𝑘 =

{( ∨
𝑘∈[1,𝐾 ] 𝑝𝑘 , vectorize𝑖 (𝑦𝑖 )

)(
¬
( ∨

𝑘∈[1,𝐾 ] 𝑝𝑘 , ®0
) }

Proof. The proof is quite straight-forward, according to the

definition of model overwrite operator (Definition 9). □

Theorem 5 (Correctness of Reduce II). Assume there are 𝐾

overwrites 𝜒1, . . . , 𝜒𝐾 , with the same master predicate 𝑝 , and the

output vector of the 𝑘-th overwrite is vectorize𝑖𝑘 (𝑦𝑖𝑘 ).⊗
𝑘∈[1,𝐾 ]

𝜒𝑘 =

{ (
𝑝, ®𝑦∗

)(
¬𝑝, ®0)

}
where ®𝑦∗ is defined as

𝑦∗𝑖 =

{
𝑦𝑖𝑘 if ∃𝑘 ∈ [1, 𝐾], 𝑖𝑘 = 𝑖

0 otherwise

,∀𝑖 ∈ [1, 𝑁 ]

D APPENDIX FOR CONSISTENT, EFFICIENT
EARLY DETECTION

D.1 Consistent Model Construction for
Vector-Based Control Planes

We extend the mechanism presented in Section 4.1 for state-sync

protocols to vector based control planes (e.g., BGP). In particular,

inspired by the distributed convergence detection mechanism for

interdomain routing [68], Flash lets switches running vector based

control planes append causal relation information: what is the direct

cause of an FIB update (e.g., receiving a BGP announcement), and

what is the immediate action after computing an FIB update (e.g.,

sending a BGP announcement), in every FIB update sent to the

dispatcher. With such information, the dispatcher can then use a

centralized version of the convergence detection algorithm in [68]

to decide what FIB updates belong to the same event and hence

need to be put in the same model.

D.2 FCPV Algorithm for Regular Expression
Based Requirements

The basic pseudocode of fast, consistent partial verification of regu-

lar expression based requirement is in Algorithm 2. The algorithm

maintains a global data structure, ecTable, which stores a product

graph for each equivalent class. In the beginning, it contains an

entry whose EC matches all packet headers, and the product graph

is complete (L1). Once a new model is ready, the algorithm iterates

through all equivalent classes to update their product graph and

verify reachability (L6-16). Specifically, it first checks whether the

product graph for ec already exists. If not, ec is split from an old

one, denoted as ec
′
(L9-10), the algorithm duplicates the product

graph of ec
′
and creates a new entry for ec.

12
Then the algorithm

updates the product graph for ec by pruning the edges that are not

compatible with the ec’s action on each newly synchronized node 𝑣

(L12-13). If an ec fails the reachability test, an error is reported that

the requirement cannot be satisfied. After processing all current

equivalent classes, the split ECs are removed from ecTable (L17-18).

Handle anycast and multicast. Algorithm 2 is presented im-

plicitly assuming requirements are on unicast flows, i.e., there is

only one accept state in the product graph. When the requirement

is for anycast or multicast flows, a product graph has a set of 𝐾

destinations (i.e., accept states). In such cases, Algorithm 2 needs

to be changed in Line 17. For anycast, given one source 𝑠𝑟𝑐 , out

of 𝐾 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑠𝑟𝑐, 𝑑𝑠𝑡) queries, there must be one and only one

returning true; otherwise, an error is found early. For multicast,

12
This is always correct because in each epoch, the FIB updates belong to a set of

newly synchronized nodes, i.e., the outputs on these nodes in the old model are the

same (0, actually). Thus, an old EC either maps to a new EC if there is exactly one entry

in the update model with the same predicate, or is split to multiple ECs otherwise.
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Algorithm 2: Fast Consistent Partial Verification for

Regular-expression Requirements.

1 Initialization: ecTable = {𝐻 ↦→ CreateProductGraph(𝐺, rexpr, Portin) };
2 Function ConsistentPartialVerification(ctx) :
3 EC ← GetEC(ctx .𝑀) ;
4 Δsync ← ctx .sync \ sync;
5 sync ← ctx .sync, 𝐷 ← ∅;
6 foreach ec ∈ {ec ∈ EC | ec ∩𝐻 ≠ ∅} do
7 if ec ∉ ecTable then
8 (ec′,𝐺′

𝑃
) ← FindEntryToSplit(ecTable) ;

9 ecTable [ec] ← 𝐺𝑃 ;

10 𝐷 ← 𝐷 ∪ {ec′ };
11 end
12 𝐺𝑃 ← ecTable [ec];
13 foreach 𝑣 ∈ Δsync do
14 𝐺𝑃 ← PruneIncompatibleEdges(𝐺𝑃 , ec, 𝑣) ;
15 end
16 ecTable [ec] ← 𝐺𝑃 ;

17 if not Reachable(ec,𝐺𝑃 ) then
18 return Unsatisfied

19 end
20 end
21 foreach ec

′ ∈ 𝐷 do
22 Delete(ecTable [ec′ ]) ;
23 end
24 return UNKNOWN
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Figure 18: Verification time after processing different num-
bers of updates.

given one source 𝑠𝑟𝑐 , all 𝐾 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑠𝑟𝑐, 𝑑𝑠𝑡) queries must return

true; otherwise, an error is found early.

Handle coverage requirements. Algorithm 2 focuses on “exis-

tence" requirements, i.e., a valid path that match a regular expres-

sion must exist. Another category of important requirements is

the "coverage" requirements, i.e., all paths that match a regular

expression must exist [27]. One example of such requirements is

the intent “all redundant shortest paths should be available" in

Azure [27]. Flash handles this type of requirements by first con-

structing the product graph, based on regular expressions. Then

the early detection of coverage requirement is equivalent to check

whether each node in the product graph has an FIB that forwards

to all its neighbors in the product graph at all time; If not, an error

is found early.

D.3 FCPV Algorithm for All-Pair Loop-Freeness
The pseudocode of the algorithm is shown in Algorithm 3. It first

constructs the hyper graph (L2), and then starts to detect loops (L6).

Algorithm 3: Fast Consistent Partial Loop Detection

1 Function ConsistentPartialLoopDetect(ctx)
2 𝐺hyper ← BuildHyperGraph(𝐺, ctx .sync)
3 Δsync ← ctx .sync \ sync
4 sync ← ctx .sync, potentialResults← ∅
5 for 𝑣 ∈ Δsync do
6 results← DetectLoop(𝑣, {ec ∈ ctx .𝑀 }, ∅, false)
7 if a deterministic loop is found then
8 return {Loop}
9 potentialResults← potentialResults ∪ results

10 return potentialResults

11 Function DetectLoop(𝑣, EC, path, hyper)

12 if EC = ∅ then
13 return ∅
14 potentialResults← ∅
15 if 𝑣 is external then
16 return {NoLoop}
17 else if 𝑣.is_hyper and 𝑣.is_biconnected then
18 potentialResults← potentialResults ∪ {Loop}
19 else if 𝑣 ∈ path and hyper = true then
20 return {Loop}
21 else if 𝑣 ∈ path and hyper = false then
22 abort Loop

23 foreach (𝑣,𝑢) ∈ 𝐺hyper do
24 validEC ← EC ∩ EC (𝑣,𝑢) , path′ ← path ∪ {𝑣 }
25 𝑟 ← DetectLoop(𝑢, validEC, path′, hyper ∨𝑢.hyper)
26 potentialResults← potentialResults ∪ 𝑟
27 return potentialResults

If a deterministic loop, i.e., loop with only synchronized nodes, is

found (L7-8, L22), it gives the consistent early detection result of a

loop. The detection function verifies a path where the last node is 𝑣 ,

for a set of equivalence classes EC. path denotes the path segment

without attaching 𝑣 and hyper denotes whether the path contains

a hyper node. The detection method checks various conditions

(L15-22) to determine whether the result of the path is already

known. If not, it extends the path to each potential next hop 𝑢 for

potential ECs that can take the path from 𝑣 to 𝑢 (L24), and collects

all potential results of those extended paths (L25-26).

D.4 Proof of Achieving Consistent Early
Detection

We first define consistent, early detection. Let 𝑀𝐾 denote the in-

verse model of the final data plane state after applying 𝐾 updates,

and 𝑀𝑘 be the model after applying only 𝑘 < 𝐾 updates. Early

detection means that a verification function ver checks a require-

ment 𝑟𝑒𝑞 on model𝑀𝑘 , i.e., ver (𝑟𝑒𝑞,𝑀𝑘 ). We focus on the common

verification requirements, i.e., regular expression based path require-

ments and loop-freeness. Since 𝑀𝑘 only has partial information

of the network, ver (𝑟𝑒𝑞,𝑀𝑘 ) can give either a concrete result (i.e.,

satisfied/unsatisfied) or unknown.

Definition 16 (Consistent early detection). For a verifi-

cation requirement req, for any initial model 𝑀 and 𝐾 updates, if

∃𝑘 ≤ 𝐾 , ver(𝑀𝑘 , 𝑟𝑒𝑞) gives a concrete result and ver(𝑀𝑘 , 𝑟𝑒𝑞) =
ver(𝑀𝑘+1, 𝑟𝑒𝑞) = · · · = ver(𝑀𝐾 , 𝑟𝑒𝑞), we say that ver achieves con-

sistent early detection for 𝑟𝑒𝑞.

We prove that the verification approach of Flash on the consis-

tent model achieves consistent early detection. Formally, given a
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consistent inverse model𝑀𝑘 . For a loop detection requirement 𝑟𝑒𝑞𝑙 ,

let ver𝑙 denote the verification function that checking loops using

the hyper abstraction in §4.3, when ver𝑙 (𝑀𝑘 , 𝑟𝑒𝑞𝑙 ) gives concrete
result, ver𝑙 achieves consistent early detection.

Proof. If ver𝑙 does not achieve consistent early detection, then

according toDefinition 16,∃𝑘 ′ > 𝑘 : ver𝑙 (𝑀𝑘 , 𝑟𝑒𝑞𝑙 ) ≠ ver𝑙 (𝑀𝑘′, 𝑟𝑒𝑞𝑙 ).
That means the loop check result is changed after applies 𝑘 ′ updates.
Since ver𝑙 only checks loops among synchronized nodes, the only

way to break a loop is to update the FIB of the synchronized nodes,

however,𝑀𝑘 is a consistent model that guarantees no updates on

synchronized nodes, thus such 𝑘 ′ doesn’t exist. □

For checking regular expression based path requirements on

consistent models, the proof is similar (doesn’t exist 𝑘 ′ to change a

path among the synchronized nodes) and omitted.

E COMPLEMENTARY EVALUATION RESULTS
E.1 Analysis on Decremental Verification Graph
In addition to the results in §5.4, we show how the verification

time changes as the number of processed updates increases. The

results are in Figure 18. As we can see, the verification time of MT

increases as more rule updates are finished, while the trend does

not show in the DGQ approach. The reason is that the computation

complexity of model traversal is𝑂 ( |𝑉 |×(|𝑉 |+|𝐸 |)), and asmore rule

updates are finished, |𝐸 | is increasing. Meanwhile, DGQ computes

connected components of the verification graph in the beginning,

whose complexity is𝑂 ( |𝑉 | + |𝐸 |), and |𝐸 | is decreasing as more rule

updates are finished.

F ARTIFACT APPENDIX
Abstract
The artifact provides an implementation of Flash using Java. It

includes all key components in the paper and the necessary datasets

for reproducing the evaluation results in the paper.

Scope
The artifact allows to validate the following evaluation results:

(1) The effects of Fast IMT: Table 3.

(2) The effects of CE2D: Figure 8, Figure 9, Figure 10, and Fig-

ure 12.

(3) The micro benchmark: Figure 7 and Figure 11.

Note that the exact values may vary on different machines (even

with the same CPU and memory configuration).

The artifact is only allowed for research purpose.

Contents
The artifact includes the following contents:

(1) An implementation of Flash.

(2) The implementations of APKeep [26] and Delta-net [25]

according to their pseudocode.

(3) The datasets (LNet topology is anonymized) evaluated in the

paper.

Hosting
The artifact is hosted at GitHub (commit b22993 on the sigcom22-

artifact branch).

Requirements
A server with at least 32GB free memory is required to run the arti-

fact. And the following dependencies are required: JDK 17, Maven

3.8+, and Python 3.6+. We recommend using Ubuntu Server(x64)

18.04.4 LTS, which has been tested, as the operating system and

using the scripts in the artifact to install all necessary software.
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