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Abstract—The increasing market share of electric vehicles
(EVs) makes charging facilities indispensable infrastructure for
integrating EVs into the future smart grid. The promising
facility called park-and-charge station was recently proposed.
Existing studies on park-and-charge station mainly focus on
managing the charging distribution of onsite EVs, ignoring the
impacts of offsite EVs in the region. In this paper, we fill this
gap by leveraging the emerging vehicle-to-infrastructure (V2I)
communication technique to manage the charging schedule of
both onsite and offsite EVs. Specifically, we design a park-and-
charge management system, GreenBroker, which allows park-
and-charge stations to control the arriving rate by sending real-
time prices to EVs via V2I communications, and to control
the charging rate via real-time electricity state. We develop
a two-timescale stochastic optimization model, maximizing the
revenue of park-and-charge stations while ensuring a finite
charging delay of EV users. We derive the worst-case charging
delay of EVs and show that it provides an [O(1/V ), O(V )]
tradeoff between the revenue of charging stations and the worst-
case delay of EV users. We also demonstrate the efficacy of
GreenBroker via trace-data simulation.

I. INTRODUCTION

Electric vehicle (EV) is a crucial component in the future
intelligent transportation systems (ITS) [4]. Compared with
gasoline-powered vehicles, EVs have the potential benefit-
s of a higher power efficiency, a lower carbon emission
and a lower powering cost. With these promising benefits,
nonetheless, they also introduce a high penetration into the
power grid. With the increasing market share of EVs, the
integration of EV into smart grid has drawn much attention
from both academia and industry. And charging facilities are
indispensable infrastructure for such integration [5].

Among various charging facilities [4], [5], [8], a promising
facility called park-and-charge station was recently proposed.
It allows people to park their EVs at a parking lot while being
charged via onsite renewable energy, e.g., solar and wind
power. There are quite a few potential application scenarios
for this facility, include parking-lot charging at workplace,
shopping mall, and airport. Field experiments have been done
to explore its feasibility and benefits [3], [12]. Though these
experiments provide positive feedback , they mainly focus on
managing the charging distribution of onsite EVs and ignore
the impacts of offsite EVs.

How to manage the charging of offsite EVs is challenging
due to two key reasons. First, there is a lack of reliable
control channel between charging stations and EVs. Second,
there is a lack of systematic understanding of the trade-off
between revenue maximization of park-and-charge stations
and guaranteeing the delay for EV users.

In this paper, we cope with these issues by designing
GreenBroker, a park-and-charge management system to man-
age the charging of both onsite and offsite EVs. The first key

design decision is a reliable control channel between park-
and-charge stations and EVs in the region using the emerging
vehicle-to-infrastructure (V2I) communication. In this way,
GreenBroker can control the arriving rate of charging demand
by sending the charging prices to EVs, and control the
charging rate via real-time electricity generation and trading.
Second, we develop a two-timescale stochastic optimization
model to maximize the revenue of park-and-charge stations
while ensuring a finite charging delay of EV users [11].

Our main contributions in this paper are as follows:

• We study the novel problem of joint control of onsite
and offsite EVs for park-and-charge stations, and design
GreenBroker, a park-and-charge management system that
builds a control channel between stations and EVs using
the emerging V2I communication technique, and adopts a
two-timescale stochastic optimization model to maximize
the revenue of park-and-charge stations while ensuring finite
charging delays of EV users.

• Through theoretical analysis, we show that GreenBroker
provides a deterministic worst-case charging delay for EV
users. It achieves an [O(1/V ), O(V )] tradeoff between the
time-averaged revenue of park-and-charge stations and the
worst-case delay of EV users.

• We evaluate the performance of GreenBroker through
extensive real-world trace-data simulation.

II. SYSTEM DESCRIPTION

We consider a set of N EV park-and-charge stations,
denoted by i = 1, 2, . . . , N , operating in a discrete-time
model. In each station i, a charging point is equipped at
every parking spot. And we use j to denote a given EV user.
Time is divided into coarse-grained time slots, each of which
is of length T . Each coarse-grained time slot is denoted by
t = kT , where k = 0, 1, 2, . . . ,K . Given a coarse-grained
time slot t, we further divide it into F fine-grained time slots
each of which is of length ξ = T

F
. These fine-grained time

slots are denoted by τ = t+ 0, t+ ξ, . . . , t+ (F − 1)ξ.

1) V2I-Communication Enabled Park-and-Charge Sta-
tions. Figure 1 gives an overview on the operation of park-
and-charge stations. Each station is equipped with DSRC-
enabled communication devices to communicate with EVs in
the nearby region. For every charging station i, its operation
strategy is composed of three parts. The first part is the
electricity pricing strategy. It requires station i to decide
a nonnegative charging price (electricity pricing variables)
pi(t) at the beginning of each coarse-grained time slot t.
After deciding pi(t), the station i will broadcast the price to
all EV users who can arrive at station i by the end of time slot
t. We define a price cap pmax as the highest charging price.
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Fig. 1: An overview depicting how charging stations integrate

demand response of EV users into operation strategizing.

This cap is to prevent the speculation behavior of charging
stations. Then we have:

0 ≤ pi(t) ≤ pmax ∀ i and t. (1)

An EV user j may be close to multiple charging stations and
thus receive multiple prices pi(t)s. User j should select the
price of at most one charging station and transmits back to
each charging station.

The second part of operation strategy is electricity gen-
erating and trading strategy for charging stations. Assume
that every station i is equipped with on-site renewable energy
generator, e.g., solar panels and wind turbines, and the
electricity generated by renewable energy is free [10]. Park-
and-charge stations can sell the surplus electricity back to
the power grid. They can also purchase electricity from
power grid when the renewable energy is insufficient as
shown in Figure 1. At the beginning of each fine-grained
time slot τ , this strategy requires each station i to determine
three electricity generating and trading variables: ri(τ), the
amount of electricity to be generated by renewable source
during τ ; EGi(τ), the amount of electricity to be purchased
from the power grid during τ ; and EiG(τ), the amount of
electricity to be sold to the power grid during τ .

Because the prediction of renewable energy generation
capacity for a short time interval can be very accurate [7], the
station i is aware of its renewable energy generation capacity
Ri(τ). Then, we have the constraint on electricity generation
at station i in each fine-grained time slot:

0 ≤ ri(τ) ≤ Ri(τ) ∀ i and τ . (2)

In addition, due to the constraints of hardware and pol-
icy, both the purchased and the sold electricity within a
fine-grained time slot are also upper bounded, denoted by
Eτ−max

Gi and Eτ−max
iG , respectively.

0 ≤ EGi(τ) ≤ Eτ−max
Gi

∀ i and τ , (3)

0 ≤ EiG(τ) ≤ Eτ−max
iG

∀ i and τ . (4)

The third part is charging demand dropping strategy.
For a charging station i, it makes the dropping decision at the
beginning of every coarse-grained slot t to drop an amount
of di(t) charging demand of EV users so that their the worst-
case delay can be guaranteed.

We propose a dedicated proportional dropping for EV
charging request. This dropping policy leverages the fact
that the charging demand of EV users can be segmented.
Suppose there are M EVs parked in station i. For each
EV j, we denote its charging demand as Crj . If station i
decides to drop an amount of di(t) charging demand in time
slot t, a proportional dropping policy will drop an amount

of
Crj∑
j
Crj

di(t) charging demand. In this way, the charging

station prevents the “waiting for nothing” situation. Every EV
only suffers a small amount of unserved charging demand
while the fairness of all EVs are maintained. The dropping
variables are subject to constraint:

0 ≤ di(t) ≤ λt
max, (5)

where λt
max is the maximal arrival rate of EV charging

demand in a coarse-grained slot t. In addition, we assume
that the charging station will pay a total penalty of pmaxdi(t)
to EV users based on their respective dropped demand.

2) V2I-Communication Enabled EVs. Each EV is
also equipped with V2I communication devices for re-
ceiving the price and location information from charg-
ing stations and responding the charging decisions, e.g.,
where and how much to charge. For an EV j, a 5-tuple
{xj(t), yj(t), SOCj(t), Dj(t), Ej} vector is adopted to de-
note its basic information at the beginning of time slot t,
where {xj(t) and yj(t)} represent the geographic coordinates
of j, SOCj(t) and Dj(t) represent the state of charge and the
corresponding driving range of j. Ej is the maximal battery
capacity of EV j. We use Nj(t) to denote the set of charging
stations that EV j can arrive by t+T . Thus at the beginning
of t, EV user j will receive the price pi(t) from station i.

We use the following quadratic charging station selection
function to capture all the aforementioned demand response
preferences. Given an EV j at the beginning of slot t, we
use Prij(t) to denote the probability that j accepts the price

pi(t) provided by charging station i, and express it as

Prij(t) =

1−
( κppi(t)

κppmax+κs(1−SOCj(t))+κd(1−
dij(t)

Dj (t)
)

)2

|Nj(t)|
, (6)

where dij(t) is the distance from station i to {xj(t), yj(t)}
and κp, κs and κd are impact factors reflecting the rel-
ative importance of price, SOC, and distance on Prij(t).
For every EV j, this function has the following property:
∑Nj(t)

i Prij(t) ≤ 1.

III. REVENUE MAXIMIZATION FOR PARK-AND-CHARGE

FACILITIES: A STOCHASTIC OPTIMIZATION MODEL

In this section, we present a stochastic optimization model
for the revenue maximization of park-and-charge facilities.

A. Queueing Model for Park-and-Charge Facilities

Given a system of N charging stations owned by the same
entity, we use a vector of queues Q = {Q1, Q2, . . . , QN}
to record the charging demand pending at charging stations.
We have Qi(0) = 0 for every i. Since we further divide
each coarse-grained time slot t = kT into F fine-grained
time slots τ = t, t+ ξ, . . . , t+(F − 1)ξ, we first express the
evolving function of backlog in Qi

Qi(τ) =

{

Qi(t) when τ = t,
(Qi(τ − ξ)− µi(τ))

+ + λi(τ) otherwise.
(7)

where x+ equals to x if x is positive, and equals to 0
otherwise. In this equation, µi(τ) and λi(τ) are the service
rate and arrival rate of Qi in slot τ .

Given a park-and-charge station i, the service rate µi(τ)in
a given fine-grained time slot τ is composed of two parts,
the charging service rate and the leaving service rate, i.e.,
µi(τ) = µc

i(τ) + µl
i(τ). The charging service rate µc

i (τ)
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fulfills the charging demand of EV users, and is computed
as the sum of generated electricity and purchased electricity
without the sold electricity in a fine-grained slot τ :

µc
i (τ) = ri(τ) +EGi(τ)− EiG(τ) ∀i, (8)

which is nonnegative and bounded. The leaving service rate,
denoted by µl

i(τ), represents the charging demand canceled
by EV users voluntarily, e.g., leaving the park-and-charge
station i, during time slot τ . This rate is bounded but un-
controllable. For every EV user who canceled the remaining
charging demand, she will receive a refund. For simplicity,
we use pli(τ)µ

l
i(τ) to denote the total refund to users during

τ , where pli(τ) is the average refund price.

The arrival rate for the charging demand queue of station i
in fine-grained slot τ is computed as the charging demand of
arriving EVs during this period, which can be obtained from
EV users’ demand response over charging price pi(t). We
use Mi(τ) to denote the set of EVs that can arrive at station
i by the end of slot τ . By applying the quadratic pricing
function in Equation (6), a charging station i can calculate
the arrival rate of EV charging request during time slot τ as:

λi(τ) =

j∈Mi(τ)
∑

j

Prij(t)Crj , . (9)

where τ ∈ [t, t + (F − 1)ξ] and Crj = (1 − SOCj(t))Ej .
Summing up λi(τ), we can also get λi(t) =

∑

λi(τ).
With the evolving function of Qi on fine-grained time scale

in Equation (7), we can get the evolving function on coarse-
grained time scale. Because at the beginning of every time
slot t, charging station i will drop di(t) charging demand,
the coarse-grained evolving function can be expressed as:

Qi(t+ T ) = (Qi(τ)− µi(τ)− di(t))
+ + λi(τ), (10)

where τ = t+(F−1)ξ. We see that the backlogs of charging
demand queues reflects the delay experienced by EV users
via Little’s theorem [9]. To fulfill their charging demand
within finite delay, the park-and-charge facilities must ensure
stability on the queues of charging demand. To this end, we
define that a system of park-and-charge facilities is stable if
the following condition holds:

Qav , lim
K→∞

1

K

K−1
∑

k=0

N
∑

i=1

E{Qi(kT )} < ∞. (11)

B. Problem Formulation

In this paper, we focus on maximizing the revenue of park-
and-charge facilities. Given a charging station i, its income
in a coarse-grained time slot t = kT is composed of the
charging expense paid by EV users who accept the price pi(t)
and will arrive at station i by the end of t, and the income
made by selling electricity back to the power grid. Its cost is
the sum of the cost of electricity purchase from power grid,
the refund to EV users who cancel their charging demand
voluntarily (e.g., leaving the parking lot) and the penalty
brought by station proportionally dropping some charging
demand. Therefore, the revenue can be expressed as the
difference between its income and cost:

Revi(t) = pi(t)λi(t)− pmaxdi(t)− pli(t)µ
l
i(t)

+piG(t)EiG(t)− pGi(t)EGi(t)
= pi(t)λi(t)− pmaxdi(t)− plµ

l
i(t)

+

t+(F−1)ξ
∑

τ=t

(piG(t)EiG(τ )− pGi(t)EGi(τ )),

where pGi(t) and piG(t) are the prices for charging stations
to purchase and selling electricity from power grid.

We define that the system state ω includes electricity prices
(pGi, piG), renewable energy profile (Ri), user-cancellation
rate (µl

i), user-cancellation average refund price (pli) and the
status of EV users, and assume all these parameters in ω(t)
are i.i.d. over every time slot. The revenue maximization
problem (REV-MAX) for park-and-charge facilities is for-
mulated as the following stochastic optimization model:

max Revav , lim
K→∞

1

K

K−1
∑

k=0

N
∑

i=1

E{Revi(kT )}

over pi(t), ri(τ ), EiG(τ ), EGi(τ )
subject to (1)(2)(3)(4)(5)(11)

for each i, τ and t = kT .

(12)

IV. GREENBROKER: A PARK-AND-CHARGE

MANAGEMENT SYSTEM

We design the GreenBroker system. Its basic idea is to first
transform the REV-MAX problem into a series of one-shot
nonlinear optimization problems, and then decompose each
one-shot problem into three subproblems, each of which can
be solved by the station independently and efficiently.

A. Drift-Plus-Penalty Bound

We define a vector of ǫ-persistent virtual service queues
Z = {Z1, Z2, . . . , ZN}, one for each park-and-charge sta-
tion i in the REV-MAX problem. This technique was first
introduced for network utility maximization [9]. We have
Zi(0) = 0. The evolving function of virtual queues are:

Zi(t+ T ) =

{

(Zi(t) − µi(t) − di(t) + ǫ)+,
if Qi(t) > µi(t) + di(t),

0, if Qi(t) ≤ µi(t) + di(t).
(13)

where ǫ is a positive constant that satisfies ǫ ∈ [0, λt
max]. De-

noting Φ(t) = {Q(t),Z(t)}, we define a quadratic Lyapunov
function L(Φ(t)) as a scalar measurement of the aggregated
backlog of both actual queue Qis and virtual queue Zis:

L(Φ(t)) ,
1

2

N
∑

i=1

(Q2
i (t) + Z2

i (t)). (14)

This function represents the status of queue congestion in
charging stations. To ensure the stability of the charging
station system, we define the T -slot Lyapunov drift function
∆T (Φ(t)) as the expected difference of Lyapunov function.

∆T (Φ(t)) , E[L(Φ(t + T )) − L(Φ(t))|Φ(t)], (15)

In addition, we define a Lyapunov penalty function Pen(t):

Pen(t) , −
N
∑

i=1

Revi(t). (16)

We then propose the following theorem:

Theorem 1: Suppose ω(t) is i.i.d. over slots t. Assume that
the quadratic Lyapunov function in Equation (14) satisfies
E[L(Φ(0))] < ∞. Let V > 0 and t = kT , where k =
1, 2, . . .. Under all possible electricity pricing, generating,
trading and dropping actions that satisfy the constraints in
the REV-MAX problem, there exists a positive constant B1

such that the Lyapunov drift-plus-penalty function satisfies:

∆T (Φ(t)) + V E{PenT (t)|Φ(t)}
≤ B1 + θ1(t) + θ2(t) + θ3(t),

(17)

where

2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)



θ1(t) = E{

N
∑

i=1

λi(t)
(

Qi(t)− V pi(t)
)

|Φ(t)}, (18)

θ2(t) = E{

N
∑

i=1

t+(F−1)ξ
∑

τ=t

(

V pli(τ )µ
l
i(τ ) + V pGi(t)EGi(τ )

−V piG(t)EiG(τ )− (Qi(t) + Zi(t))µi(τ )
)

|Φ(t)},

(19)

θ3(t) = E{
N
∑

i=1

(V · pmax −Qi(t)− Zi(t))di(t)|Φ(t)}.

(20)

B1 = N(λt
max)

2+
N

2
(µt−c

max+µt−l
max)

2+
N

2
(λt

max+µt−c
max+µt−l

max)
2

(21)
B. Design Details of GreenBroker

Instead of maximizing the time average revenue of park-
and-charge stations over all time slots, we propose to min-
imize B1 + θ1(t) + θ2(t) + θ3(t), the upper bound of the
Lyapunov drift-plus-penalty function in Theorem 1. In this
way, we transform the REV-MAX problem into a series of
one-shot optimization problems P1(t).

P1(t): min θ1(t) + θ2(t) + θ3(t)
over pi(t), di(t), ri(τ ), EiG(τ ), EGi(τ )
subject to (1)(2)(3)(4)(5)

for each i,
(22)

where B1 is omitted from the objective function since it
is a positive constant. In P1(t), we can find that θ1(t)
only contains electricity pricing variables pi(t), that θ2(t)
only contains electricity generating and trading variables
ri(τ), EiG(τ) and EGi(τ), and that θ3(t) only contains
charging demand dropping variables di(t). Thus we can
further decompose problem P1(t) into:

Pprice(t): min θ1(t)
over pi(t)
subject to (1) for each i,

(23)

Ptrade(t): min θ2(t)
over ri(τ ), EiG(τ ), EGi(τ )
subject to (2)(3)(4) for each i,

(24)

Pdrop(t): min θ3(t)
over di(t)
subject to (5) for each i.

(25)

In order to solve problem Pprice(t) and Pdrop(t), we
only need that the charging station i solves two sub prob-
lems Pprice(i, t) and Pdrop(i, t). And to solve problem
Ptrade(t), we only need that the charging station i solves
a sub problem Ptrade(i, τ) for each τ ∈ [t, t + (F − 1)ξ].
All these subproblems can be solved by a charging station
independently. Therefore, we can propose, GreenBroker, an
online distributed algorithm.

In GreenBroker, each charging station i independently
makes online operation decisions, i.e., pi(t), ri(τ), EGi(τ),
EiG(τ) and di(t), only based on current queue backlog
Qi(t), Zi(t), and current system state ω(t). The GreenBroker
is online, fully distributed, and lightweight. Solving problem
Pprice(i, t) is essentially to find the minimal value of a
cubic function of pi(t). And solving problem Ptrade(i, τ) is
to solve a linear programming problem with three decision
variables ri(τ), EGi(τ) and EiG(τ). In addition, the optimal
solution to problem Pext

drop(i, t) can be quickly achieved by
Equation (26).

di(t) =

{

λt
max, if Qi(t) + Zi(t) > V · pmax,

0, if Qi(t) + Zi(t) ≤ V · pmax.
(26)

C. Performance Analysis

Theorem 2: (Revenue of GreenBroker) Suppose ω(t) is
i.i.d. over slots t and E[L(Φ(0))] < ∞. Let Revoptav de-
note the supremum time average revenue achievable by any
operation strategy that meets the constraints in the REV-
MAX problem and B1 be the constant given in Theorem 1.
The time-averaged revenue RevGC

av achieved by GreenBroker
with a fixed parameter ǫ ∈ [0, λt

max] and a fixed parameter
V > 0 satisfies the following bound:

RevGC
av ≥ Revoptav −

B1

V
. (27)

Theorem 2 indicates that in GreenBroker the time-
averaged revenue of park-and-charge stations increases lin-
early as EV does. Furthermore, we analyze the worst-case
delay provided by GreenBroker in terms of coarse-grained
time slots. To this end, we first propose the following lemma:

Lemma 1: Suppose ω(t) is i.i.d. over slots t and the
queue of charging request Qi(t) and the ǫ-persistent service
queue Zi(t) evolve according to Equations (7)(10) and E-
quation (13), respectively. Assume EVs are charged in FIFO
order, while the charging demand drop is performed with
proportional dropping. If Qi(t) ≤ Qmax

i and Zi(t) ≤ Zmax
i

are guaranteed for each coarse-grained time slot t, the worst-
case delay of any non-dropped EV charging demand is:

Wmax
i , ⌈

Qmax
i + Zmax

i

ǫ
⌉. (28)

Based on this lemma, we then propose the following
theorem on the worst-case delay of EV users in GreenBroker.

Theorem 3: (Worst-Case Delay of GreenBroker) Suppose
ω(t) is i.i.d. over slots t. For the REV-MAX problem,
running GreenBroker with a fixed parameter ǫ ∈ [0, λt

max]
and a fixed parameter V > 0 guarantees that the worst-case
delay of EV charging request at EV charging station i is:

Wmax
i = ⌈

2V · pmax + λt
max + ǫ

ǫ
⌉. (29)

V. NUMERICAL SIMULATION

We perform numerical simulations to demonstrate the
efficiency of GreenBroker. We set a coarse-grained time slot
as one-hour, and a fine-grained time slot as 10-minute. We
build a virtual traffic network with an area of 150×150km2.
16 park-and-charge stations are deployed as a 4×4 grid, each
of which has a maximal electricity purchasing and selling
threshold of 200kWh, a maximal EV charging service rate of
300kWh and a maximal EV charging request arrival rate of
1000kWh for every coarse-grained time slot. We randomly
choose the hourly wind power generation capacity profile
from 16 different locations in the United Sates [2] during a
same 48-hour period, one for each charging station. We use
hourly price data of 16 different places recorded by NYISO
[1] as the price information provided to each charging station,
and define a ratio of 0.4 for the sell back price. We define the
price cap pmax as 60$/kWh. We also set the impact factors
κp, κs and κd in Equation (6) as 0.1, 1 and 1, respectively.
We assume each EV has the same specifications including a
battery capacity of 40kWh, a maximal driving range of 120
miles and a driving speed of 60mph. After an EV arrives at
a charging station, in every coarse-grained time slot before it
is fully charged, the user has a probability randomly chosen
between 0.1 and 0.4 to leave and get the refund.

2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)



0 10000 20000 30000 40000
0

0.2

0.4

0.6

0.8

1

Time Averaged Queue Backlog (kWh)

 

 

CF−BE

GreenBroker − w/o drop

GreenBroker

(a) CDF of Qi
av when V = 20

0 10000 20000 30000 40000
0

0.2

0.4

0.6

0.8

1

Time Averaged Queue Backlog (kWh)

 

 

CF−BE

GreenBroker − w/o drop

GreenBroker

(b) CDF of Qi
av when V = 100

0 40 80 120 160 200
0

0.5

1

1.5

2x 10
5

V

T
o

ta
l 
D

ro
p

p
e

d
 D

e
m

a
n

d
 (

k
W

h
)

 

 

GreenBroker

(c) dtotal vs. V

0 40 80 120 160 200
10

3

10
4

10
5

10
6

V

T
im

e
 A

v
e

ra
g

e
d

 Q
u

e
u

e
 B

a
c
k
lo

g
 (

k
W

h
)

 

 

CF−BE

GreenBroker − w/o drop

GreenBroker

(d) Qav vs. V

Fig. 2: Light Traffic: Social Objectives.

Other than GreenBroker, we simulated another two strate-
gies of charging stations. The first one is the GreenBroker
without proportional demand drop, denoted as GreenBroker-
w/o drop. The other one is a naive Closest-First Best-Effort
(CF-BE) operation strategy. In this strategy, there is no
communication channel between EV and charging stations.
Each EV j selects the closest charging station. And charging
stations adopt a best-effort strategy to serve the EV users.

We evaluate the performance of all three algorithms under
two different traffic scenarios. In the Light Traffic scenario,
1000 EVs are uniformly distributed in the whole region. In
the Heavy Traffic scenario, the number of EVs is 2000.

Figures 2(a)-(d) present the performance of all three algo-
rithms in terms of backlog of charging demand queue in the
light traffic case. Figure 2(a) and 2(b) show the CDF of time-
averaged queue backlog Qi

av across all 16 stations. No matter
the V is small (i.e., 20) or large (i.e. ,100), GreenBroker can
control queues of charging demand at all, outperforming CF-
BE and GreenBroker-w/o drop. This is because when V is
small, GreenBroker makes every station drop a large amount
of charging request according to Equation (26) for guaran-
teeing the worst-delay. Figure 2(c) plots the total amount of
dropped demand dtotal of GreenBroker. We can see that the
total dropped demand approaches to zero when V = 100. In
Figure 2(d), we plot the time-averaged queue backlog Qav of
three algorithms. The performance of CF-BE is not affected
by the parameter V , therefore its Qav stays as a constant.
For both versions of GreenBroker, their Qavs increase as
V does. While this increase in the no-dropping version is
linear, the increase of Qav for GreenBroker is faster when
V is small. When V is large enough, both algorithms’
queue backlog Qav become the same and increases linearly.
Even when V is large, the time-averaged queue backlog
in GreenBroker is still smaller than that of CF-BE. These
observations demonstrate the efficiency of GreenBroker in
fulfilling the charging demand within finite delay.

Figure 3 shows the performance of GreenBroker and
its no-dropping version on maximizing park-and-charge s-
tations’ revenue. We do not include the CF-BE strategy
because it does not having any pricing strategy. The time-
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Fig. 3: Light Traffic: Revav vs. V .

averaged revenue Revav in both algorithms increase as V
does. When V is small, the revenue of GreenBroker is much
smaller than that of the no-dropping version. As V increases,
however, the revenue of GreenBroker increases fast. When V
is large enough, there will be zero charging demand dropped
according to Equation (26), hence zero penalty cost. In this
way, increasing V will have the same effect on increasing
total revenue in both algorithms. Hence, GreenBroker is
efficient in maximizing the revenue of charging stations. The
other results are omitted due to the space limit. Readers may
refer to [6] for details.

VI. CONCLUSION

We study the problem of maximizing the revenue of
park-and-charge stations while guaranteeing the delay for
EV users. We build a stochastic optimization model for
this problem, and design GreenBroker, a park-and-charge
management system which controls the arriving / charging
rate of EV users by charging pricing, electricity generation
and trading decisions. We analyze the theoretical bounds and
evaluate the performance via trace-data simulation.
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