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MonkeyKing: Adaptive Parameter Tuning on Big Data
Platforms with Deep Reinforcement Learning
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Abstract
Choosing the right parameter configurations for recurring jobs running on big data analytics platforms is difficult
because there can be hundreds of possible parameter configurations to pick from. Even the selection of param-
eter configurations is based on different types of applications and user requirements. The difference between the
best configuration and the worst configuration can have a performance impact of more than 10 times. However,
parameters of big data platforms are not independent, which makes it a challenge to automatically identify
the optimal configuration for a broad spectrum of applications. To alleviate these problems, we proposed
MonkeyKing, a system that leverages past experience and collects new information to adjust parameter config-
urations of big data platforms. It can recommend key parameters, which have strong impact on performance
according to job types, and then combine deep reinforcement learning (DRL) to optimize key parameters to im-
prove job performance. We choose the current popular deep Q-network (DQN) structure and its four improved
algorithms, including DQN, Double DQN, Dueling DQN, and the combined Double DQN and Dueling DQN, and
finally found that the combined Double DQN and Dueling DQN has a better effect. Our experiments and eval-
uations on Spark show that performance can be improved by *25% under best conditions.

Keywords: big data platforms; performance optimization; parameter tuning; deep reinforcement learning

Introduction
In recent years, traditional computing models in the era
of big data have gradually failed to meet performance
and efficiency requirements, resulting in some excellent
big data processing platforms, such as Hadoop,1

Spark,2 and Storm.3 The execution engines of big
data platforms have evolved into efficient and complex
systems with multiple configurable parameters, and the
impact of parameters may vary from applications or
clusters. Besides, users can adjust parameters according
to specific application requirements.

Related experiments have shown that choosing the
right parameter configurations can greatly improve
the performance of an application, and improper selec-
tion may significantly degrade the performance, and
increase the average operating cost by 2–3 times, and
in the worst case by 12 times.4 The default parameter
configurations cannot meet the performance require-
ments of big data platform users, so researchers have

done a lot of work to find the optimal parameter con-
figurations for applications and clusters. Obviously, it is
impossible to check the impact of different values of all
tunable parameters on performance, as their combina-
tion is nondeterministic polynomial time-hard. In the
past, we used expert experience and manual operations
to adjust parameters to improve performance, but it was
expensive and time-consuming.

Currently, there are two main ways to tune the config-
uration parameters of big data analytics platforms. First,
parameters can be manually adjusted by trial and error.5

Although it is intuitive and effective, the inefficiency and
time-consuming due to large parameter space and com-
plex interactions between parameters cannot be ignored.

Second, some researchers have proposed a cost-based
performance modeling method to tune parameters of
Hadoop platform.6 However, the underlying implemen-
tation mechanisms vary widely among platforms, so we
cannot use this method directly on other platforms. At
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the same time, cost-based modeling is a white-box ap-
proach that requires an in-depth understanding of the
internal structure of systems. And using a cost-based
model to capture system complexity due to the inclusion
of the software stack and hardware stack7 is very difficult.
Therefore, it is a challenging task to adjust a wide range
of big data analytics platform applications by automati-
cally searching all possible parameter configurations.

For the complexity of big data platforms, complex
business configurations, cumbersome manual configu-
ration, and error-prone problems all become the vital
issues.8 Different users have different requirements
for parameter configuration, which makes the above
problems more prominent. Our solution is to be able
to predict the efficiency of subsequent system execution
through machine learning algorithms and finally con-
vert it into a regression problem. Traditional machine
learning can be used to regress and optimize parame-
ters. However, there are some problems. For example,
algorithms rely heavily on the amount and quality of
training data. In big data platforms, it is difficult to gen-
erate enough sample data for training because sample
acquisition comes at the expense of time and cost.

In this article, we study reinforcement learning (RL)
techniques because RL is a subfield of machine learning
related to decision-making and action control.9 RL is a
way to simulate interactive learning between agent and
environment. It only receives some good or bad feedback
every time it takes action. Through these accumulated
feedbacks, it can adjust and optimize actions and finally
iteratively generate the optimal strategy. In recent years,
with the advancement of deep neural network (DNN)
technology, the combination of deep learning (DL) and
deep reinforcement learning (DRL) has achieved good
results in many real and complex environments, such
as DeepMind’s Atari results10,11 and AlphaGo.12 Inspired
by these results, we study deep Q-network (DQN) algo-
rithm and propose using a DRL technique that combines
Double DQN13 and Dueling DQN14 to dynamically train
optimal parameter configuration to improve job perfor-
mance.

The contributions of our work are summarized as
follows:

� For the explosion problem of parameter combina-
tion, we can select the key parameters for different
jobs that have an impact on performance by using
a feature selection technique called LASSO.
� For the parameter optimization problem, we le-

verage DRL techniques to dynamically tune pa-

rameters and verify their versatility through
experiments.
� For the problem of recurring jobs, we have

designed a historical information base to save job
running information, so as to effectively recom-
mend suitable parameters for different workloads.

The rest of the article is organized as follows. Back-
ground and motivation are shown in the Background
and Motivation section. Preliminary will be listed in
the Preliminary section. The specific design ideas of
MonkeyKing will be proposed in the MonkeyKing
Design section. The implement will be given in the
Implementation section. Experimental methodology
and results are given in the Experiments and Evalua-
tion section. Discussion is shown in the Discussion sec-
tion. The related work is discussed in the Related Work
section. Finally, the conclusions are summarized in the
Conclusion section.

Background and Motivation
In this section, we show the importance and challenges
of choosing the best parameter configurations. We also
present the feasibility of DRL in parameter tuning.

Big data platforms have received more and more at-
tention, but they have hundreds of configurable param-
eters, and the setting of parameters is complicated,
which hinders the popularity and application of big
data platforms to a certain extent. In general, the
performance-related parameters of big data platforms
can be divided into several different types, such as run-
time environment, shuffling behavior, compression
and serialization, memory management, execution be-
havior, and network. There are also complex interac-
tions between different types of parameters. A single
tuning technology is not suitable for solving such prob-
lems, and a huge search space makes the use of trial and
error unrealistic. In addition, jobs running on big data
platforms are also rich in types such as WordCount,
Sort, PageRank, machine learning tasks, and image
processing tasks.15 The dependency analysis of param-
eters for each job type is also extremely complex.

Parameter optimization is an important branch of
performance optimization for big data platforms. How-
ever, developing high-performance computing using
big data platforms is not straightforward. If parameter
configurations are not properly set, the job may be ex-
ecuted for a long time, and the benefits of big data plat-
forms as fast calculation engines cannot be fully
demonstrated. For resource parameters, if set too low,
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the cluster resources may not be fully utilized and the
operation will be very slow. If set too large, the queue
does not have enough resources to provide, which
can cause various exceptions.16 In general, choosing
the right resource parameters for big data analytics
platform has the following challenges.

The explosion of parameters search space
Big data platforms have hundreds of configurable pa-
rameters so far, and each parameter has at least two
tunable values, which causes the parameter space to ex-
plode exponentially, and its impact cannot be exam-
ined in detail. The large parameter space and the
complex interactions between parameters make it im-
possible to manually adjust parameters through trial
and error.

The selection of key parameters
The total parameters’ number of big data platforms
has reached hundreds of thousands, but not all pa-
rameters are suitable for tuning, and only a small
number of parameters affect performance. We cannot
directly determine which parameters have an impact
on performance. It is unwise to randomly select pa-
rameters or adjust all parameters. To this end, we
have specifically proposed a method of selecting key
parameters.

The diversity of applications
The demand for applications for the amount of re-
sources on big data platforms varies by their diversity.
In other words, parameters that affect performance of
the current application do not necessarily apply to
other applications at the same time. Therefore, before
resource parameter allocation, we also need to sepa-
rately analyze the impact of parameters on different
types of applications.

The reuse of historical information
Repetitive analysis jobs are typically performed on big
data platforms,17 so the reuse of historical information
is particularly important. If important information can
be extracted from historical information, the efficiency
of subsequent analysis will be greatly improved and the
cost will be reduced.

In previous research and work, most researchers
only focused on parameter optimization. Of course, pa-
rameter optimization is necessary and important, but
the work of parameter selection cannot be ignored.
For instance, as one of the most popular big data plat-

forms, Spark has over 180 parameters, more than 150
of which are configurable parameters, it is not easy to
pick out the parameters that have strong impact on
cluster performance. We used to rely on expert experi-
ence and other scholars’ recommendations, which are
effective but not very accurate. For big data platforms,
different cluster environments and workloads have dif-
ferent sensitivity to parameters. Even with expert rec-
ommendation, it takes time and cost. Therefore, we
need a simple and efficient algorithm that can recom-
mend the required parameters in a short time.

DRL is an end-to-end perception and control system
with strong versatility. Its learning process can be de-
scribed as: (1) at each moment, agent interacts with en-
vironment to obtain a high-dimensional observation
and uses DL to perceive observation to obtain a specific
state feature table; (2) evaluating the value function of
each action based on the expected reward, and map-
ping the current state to the corresponding action
through a certain strategy; (3) Environment reacts to
this action and gets the next state. By continuously cy-
cling the above process, the optimal strategy for achiev-
ing the goal can be finally obtained. The DRL principle
framework is shown in Figure 1.

With the continuous development of RL technology,
many areas have successfully applied RL and made
good progress. Mnih et al.18 used recent advances in
training DNNs to develop a novel artificial agent,
termed a DQN, that can learn successful policies di-
rectly from high-dimensional sensory inputs using
end-to-end RL. AuTO19 is an end-to-end automated
traffic optimization system based on RL that collects
network information, learns from past decisions, and
performs operations to achieve operator-defined

FIG. 1. DRL principle framework. DRL, deep
reinforcement learning.
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goals. Hansen20 presented a novel definition of the RL
state, actions and reward function that allows a DQN to
learn to control an optimization hyperparameter. Ma
et al. proposed ANANKE,21 a scheduling system
addressing these challenges. It extends the state-of-
the-art in portfolio scheduling for data centers with a
reinforcement-learning technique and proposes vari-
ous scheduling policies for managing complex work-
flows. Yan et al.22 developed CAPES based on Lustre
file system, a model-free DRL unsupervised parameter
adjustment system driven by DNN, which aims to find
the optimal value of tunable parameters in computer
systems. Yan et al.22 used DQN to establish a parameter
tuning system, which effectively proves the contribu-
tion of DQN to parameter optimization, but they
mainly focus on the hyperparameter optimization of
machine learning algorithms.

Based on the current research status of parameter
optimization and DRL technology, in our strategy,
DQN-based algorithms are used to automate parame-
ter tuning to improve job performance.

Preliminary
In this section, we mainly introduce the working prin-
ciple of MapReduce for big data platforms and several
principles of DRL technologies.

MapReduce
MapReduce is a parallel scalable computing model with
good fault tolerance, mainly for batch processing of mas-
sive offline data. MapReduce consists of a JobTracker
and a TaskTracker. JobTracker is responsible for re-
source management and job control, and TaskTracker
is responsible for running tasks.

In Map phase, the input file is split into splits, and each
split is used as input to a map task. The intermediate re-
sult of input data processed by the map stage is written to
the memory buffer and determines which partitioner the
data is written to. When the written data reaches the
threshold of memory buffer, a thread is started to write
the data in the memory to the disk. During the data writ-
ing process, the MapReduce framework sorts the keys. In
Reduce phase, when all map tasks are completed, each
map task forms a final file, and the file is divided by re-
gion. Before reduce task starts, it will start a thread to
get the map result data to the corresponding reduce
task and continuously merge the data to prepare for the
data input of reduce. After all the map tasks are com-
pleted, the reduce task is started, and the output is finally
stored in Hadoop Distributed File System.

Deep Q network
For the problem of large state set size, just like our pa-
rameter tuning, DQN is a good solution. The basic idea
of DQN comes from Q-Learning. But the difference
with Q-Learning is that its Q value is calculated by a
neural network called Q network. The optimal action-
value function Q�(s¢, a¢) in multiple experiments is:

Q(s, a) = Es¢~e[rþ c max Q�(s¢, a¢)js, a]: (1)

Multiple Q values can be obtained by multiple exper-
iments in state s. When the number of experiments
tends to infinity, this expected value tends to the true
Q(s, a). In DQN, each Q value is estimated through
the network:

Q(s, a; h) � Q�(s, a): (2)

The input of DQN is the state vector corresponding
to our states, and the output is the action value function
Q of all actions in this state. The main skill used by
DQN is experience replay, which saves the rewards
and status updates obtained by each interaction with
the environment for the subsequent update of the tar-
get Q value. There is an error in the target Q value
obtained by experience replay and the Q value calcu-
lated through the Q network, and a loss function Li

can be introduced to minimize the error. It can be
expressed as:

Li(hi) = Es, a~q(:)[(yi�Q(s, a; h))2], (3)

where yi is expressed as shown in Eq. (5). When calcu-
lating the value of yi, the parameter hi� 1 is used after
the last network update.

yi = rþ c maxaQ(s¢, a¢jhi� 1): (4)

Double deep Q network
The target Q value of DQN is directly obtained by
greedy algorithm. Although the maximum value can
quickly make the Q value close to the possible optimi-
zation target, it is easy to cause over estimation, and the
final algorithm model has a large bias. To solve this
problem, Double DQN achieves the problem of elimi-
nating overestimation by decoupling the selection of
the target Q value action and the calculation of the tar-
get Q value. The structure of Double DQN is shown in
Figure 2.

In double deep Q-network, it is no longer directly
looking for the maximum Q value in each action in
the target Q network, but first finding the action
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corresponding to the maximum Q value in the current
Q network.

amax = arg maxaQ(s¢, a¢; hi� 1): (5)

Then use this selected action amax to calculate the
target Q value in the target network. The final target
Q value is expressed as:

yi = rþ cQ(s¢, arg maxaQ(s¢, a¢; hi); hi� 1): (6)

Dueling deep Q network
With the help of Double DQN, we solved the problem
of overestimation of the DQN algorithm, and the con-
vergence of DQN can also be improved by using Duel-
ing DQN.

In Figure 3, Dueling DQN attempts to optimize al-
gorithm by optimizing the structure of neural network.
It considers dividing the Q network into two parts. The
first part is only related to state s and has nothing to do

with action a to be used. This part is called value func-
tion and is written as V(s; h, a). The second part is re-
lated to state s and action a. This part is called
advantage function and is recorded as A(s, a; h, b).
Then, the final value function can be re-expressed as:

Q(s, a; h, a, b) = V(s; h, a)þA(s, a; h, b), (7)

where h is the network parameter of public part, a is the
network parameter of the unique part of value func-
tion, and b is the network parameter of the unique
part of advantage function.

MonkeyKing Design
In this section, a parameter optimization system named
MonkeyKing is proposed for modeling the performance
as it is a key component in an auto-tuning system. Next,
we will elaborate and analyze objective function, overall
design, the two important modules and so on.

FIG. 2. The structure of Double DQN. DQN, deep Q-network.

FIG. 3. The structure of Dueling DQN.
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Objective function
We analyzed various performance indicators for per-
formance and noted that job completion time ( JCT)
can directly and effectively reflect whether performance
has improved. The perfect thing is that we can get JCT
directly from the log information generated by the sub-
mitted job. From this, we can dedicate the goal to min-
imize the JCT that satisfies the constraints under a
given set of configuration parameters. Considering
the general situation that users want performance im-
provement while ensuring CPU utilization, we have
added CPU utilization constraints.

We are committed to optimizing performance by
adjusting big data platforms’ configuration parameters.
First, we need to define the objective function. The ob-
jective function can be described by a formula as:

max P = F(c, u)

s:t: u � umin
, (8)

where P denotes the performance of big data platforms,
c represents the valid value of a given set of configura-
tion parameters, u is the CPU utilization of jobs, F in-
dicates a function of P about c and u, umin in the
constraint indicates the lowest CPU utilization, which
is a variable that users can define in advance according
to different requirements. Our goal is to find the opti-
mal solution that satisfies the objective function, which

is the optimal configuration parameter value that satis-
fies the constraint.

Overall design
Referring to Figure 4, MonkeyKing consists mainly of
three modules: Parameter Selection Module, Parameter
Tuning Module, and historical information base. Mon-
keyKing is a combination of both parameter selection
and parameter optimization. We first select the key pa-
rameters that have a great influence on performance
from the original parameter set through Parameter
Selection Module and then deliver them to Parameter
Tuning Module. When a workload is running, it will
generate corresponding parameter configuration infor-
mation and job log. The environment based on DQN
algorithm interacts with parameter configuration and
log information in the cluster to obtain corresponding
actions, states, and rewards. At the same time, the cal-
culation results of these two modules will be saved in
the historical information base.

Parameter selection module
First, we pay attention to the parameter selection sec-
tion because this work is done before parameter opti-
mization. We cannot and do not have to study all the
parameters because this is a dimensional disaster prob-
lem, and only a subset of parameters actually affects

FIG. 4. The overview of MonkeyKing.
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performance. Our goal is to determine this minimal sub-
set that has a strong impact on the performance of big
data platforms with hundreds of tunable parameters
for diversity job types and job sizes. Filtering out param-
eters that are not related to performance or have a weak
impact on performance, leaving important parameters
not only reduces the difficulty of learning tasks but also
allows subsequent tuning learning processes to build
models on only a small number of parameters. This is
very helpful in mitigating dimensional disasters.

The parameter selection module mainly includes pa-
rameter data processing and feature selection using
LASSO. In this module, we skillfully combine some exist-
ing high-efficiency technologies, such as One-Hot coding
technology, principal components analysis (PCA) di-
mensionality reduction technology, and LASSO feature
selection technology. The details of this work are
shown in the Parameter Selection Module in Figure 1.

Parameter tuning module
The parameter optimization problem of big data plat-
forms is obviously a parameter combination problem,
which results in a large parameter search space. For
this reason, we apply DRL techniques, including four
DQN frameworks. Previous work has been performed
to apply DRL techniques to hyperparameter optimiza-
tion, thus improving the efficiency of algorithms. How-
ever, we cannot directly apply this approach to big data
platforms because there are hundreds of parameters in
big data platforms that are inconsistent in type.

DRL formulation of parameter tuning

Markov decision process. Each parameter of Spark has
a certain range of variation, so state space can be set as
a set of all valid values of key parameters. Action space
includes actions that can adjust key parameters, and re-
ward is performance improvement after executing
Spark job. It is represented by JCT in our application
scenario. Agent is in the environment. At time t, a cer-
tain state st takes action at to reach the next state stþ 1,
and at the same time obtains corresponding reward rt.
Agent can take action in stþ 1, get new state and reward.

State space. The state space contains all the states in the
parameter tuning scenario. For parameters, we can use
their valid values to represent state. Since we also con-
sider different workloads, we should also include infor-
mation such as job type and job size. It can be
expressed as: (para1, para2, ., paraN, Jtype, Jsize).

Action space. The action space is a combination of all the
actions we can take. The processed parameter values are all
numeric types. For each numeric parameter, we can take
three adjustment actions: increase, decrease, and un-
changed. So we use the action space containing these
three actions to describe the transition between states.

Rewards. Rewards are feedback to the agent on how
good its actions are. The reward can be obtained after
the completion of a job. At time step t, the value of re-
ward depends on the ratio of the completion time (T¢)
of job under a set of new configuration parameters
obtained by taking a certain action and the JCT (T)

under the default configuration parameters, ratio = T¢
T .

Therefore, at time step t, reward can be expressed as:

rt =
1 (ratio < 1 and u � umin)

� 1 (ratio > 1 and u � umin)

0 (ratio = 1 or u < umin)

8<
: : (9)

Historical information base
We found that to get the running information of jobs, it
is often necessary to run jobs repeatedly, but it is time-
consuming. If we can extract the running information
of jobs and save it to a database, we can query the da-
tabase when needed, which can improve efficiency and
usability. For the problem of parameter tuning, we
need properties such as job type, parameter informa-
tion, and completion time. Therefore, we have designed
a historical information base to store the key parame-
ters and parameter weights (the degree of impact on
performance) calculated by the parameter selection
module and the optimal values of the key parameters
calculated by the parameter optimization module.
The detailed design of the database is shown in
Table 1. After each job runs, the relevant job type,

Table 1. Design of historical information base

ID JobName executor.memory Weight1 executor.cores Weight2 . ParaN WeightN

1 WordCount 4g 2.437 3 3.558 . Optimum/default value Weight value
2 Sort 4g 2.977 2 3.034 . Optimum/default value Weight value
3 PageRank 4g 2.341 1 3.284 . Optimum/default value Weight value
4 Kmeans 4g 2.602 1 2.988 . Optimum/default value Weight value
. . . . . . . . .
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parameter name, parameter value, and weight are saved
in the database. N is the number of parameters. For key
parameters, the database stores the optimized values,
and the non-key parameters store the default values.
Once values changes, the original information of the
database is overwritten with new values.

The above content introduces the main design ideas
of MonkeyKing. In the following part, we will conduct
experiments based on the system on Spark platform.

Implementation
In this section, we mainly introduce the specific mod-
ule design and implementation in the previous section.

Data preprocessing
The step of parameter data preprocessing needs to be
completed before the feature selection, and the purpose
of data preprocessing is to normalize the parameter
data. This is necessary because parameter values are
not always contiguous and not all digital data but con-
tains many categorical values. In our proposed solution,
first convert all functions to ‘‘virtual’’ variables using
One-Hot encoding23 and then normalize the data.

One-Hot encoding is proposed because most of the
algorithms are calculated based on the metrics in the
vector space, to make the nonpartial relationship vari-
able values have no partial order and the distances to
the dots are equal.24 Using One-Hot coding, the
value of the discrete feature is extended to the Euro-
pean space. A certain value of the discrete feature cor-
responds to a certain point in the European space,
which makes the distance calculation between the fea-
tures more reasonable. After the One-Hot encoding of
the discrete features, the features of each dimension can
be regarded as continuous features.

Although One-Hot coding solves the problem that
classifiers cannot handle attribute data well, it expands
the feature to some extent. When the number of cate-
gories increases, the feature space becomes very large.
In this case, PCA25 can generally be used to reduce
the dimensions. And the combination of One Hot
encoding and PCA is also very useful in practice.
PCA is one of the most widely used data reduction al-
gorithms. Its main idea is to map the n-dimensional
features to the k-dimension. This k-dimensional is a
new orthogonal feature, also called the principal com-
ponent, which is a k-dimensional feature reconstructed
on the basis of the original n-dimensional features.

The job of PCA is to sequentially find a set of mutu-
ally orthogonal coordinate axes from the original space.

The selection of new coordinate axes is closely related
to the data itself. Wherein, the first new coordinate
axis selection is the direction with the largest variance
in the original data, and the second new coordinate
axis selection is the plane orthogonal to the first coor-
dinate axis, so that the variance is the largest, and the
third axis is the first one. The variance of the plane or-
thogonal to the two axes is the largest. By analogy, n co-
ordinate axes can be obtained. In this way, most of the
variances are included in the first k axes, and the sub-
sequent axes contain almost zero variance. The remain-
ing axes can then be ignored, leaving only the first k
axes with most of the variance. In fact, this is equivalent
to retaining only the dimensional features that contain
most of the variance, while ignoring the feature dimen-
sions containing the variance of almost zero, to achieve
dimensionality reduction of the data features.

After using PCA for dimensionality reduction, the
data dimensions will reduce from n to k, which is
n >> k. Then, we normalize the data using the
Z-score method, which subtracts the mean and divid-
ing by the standard deviation. Since the original data
are more variegated, the accuracy is reduced, and the
process of standardization can effectively improve the
accuracy.

Parameter selection with LASSO
After adopting the PCA techniques of the previous sec-
tion, we will consider how to exact the most key param-
eters from the preliminary set of features.

As we known, linear regression is a statistical
method that can be used to determine the strength of
the relationship between one or more dependent vari-
ables and each of the independent variables. The rela-
tionship between the independent variable and the
dependent variable can be modeled based on the
weight of a linear predictor function estimated from
the data. The most common method of fitting a linear
regression model is the ordinary least squares (OLS),
which estimates the regression weight by minimizing
the residual squared error.26 We could use OLS to de-
termine important parameters, but it has two signifi-
cant drawbacks in high(er) dimensional settings.
First, OLS estimate has low deviation but high variance,
and the high variance reduces the prediction and vari-
able selection accuracy of the model. Second, OLS esti-
mates that it is difficult to interpret the number of
features because it never removes irrelevant features.

To avoid high variance and irrelevant features dis-
turbance problems, we use a regularized version of
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the least squares method called LASSO, which reduces
the effects of unrelated variables in linear regression
models by penalizing models with large weights. Com-
pared with other regularization and feature selection
methods, LASSO’s main advantage lies in its interpret-
ability, stability, and computational efficiency.27 There
is also practical and theoretical work supporting its effec-
tiveness as a consistent feature selection algorithm.28

LASSO works by adding the L1 penalty (the constant
k multiplied by the sum of the absolute weights of the
loss functions). Each nonzero weight contributes to the
penalty, so it can force other weights to zero by effec-
tively narrowing some weights. We consider features
with zero weight as irrelevant features, LASSO can au-
tomatically distinguish features with nonzero weights
(related features) and features with zero weight (unre-
lated features). In the nonzero weight feature, we get a
ranking of the extent to which features affect perfor-
mance according to the size of weights. The number
of features with nonzero weights depends on the
strength of their penalty, which can be controlled by
adjusting the value of k. LASSO reduces the variance
and creates a more stable model by reducing the
value of the smaller weight to zero, thus improving
the prediction accuracy of the OLS estimate.

As with the usual regression scenarios, we construct
a set of independent variables (X) and a dependent var-
iable (Y) based on historical data obtained from previ-
ous job logs. In our application scenario, X is the
parameter of the Spark platform, and Y is the corre-
sponding JCT. First, a high penalty is set in the
LASSO algorithm, and the weights of all features are
zero. Then reduce the penalty in small increments,
gradually distinguish between nonzero weights and
zero weights, and sort according to the values.

To avoid the disaster of dimensional explosion and
to DL methods, we reduce the number of parameters
as much as possible. We analyzed and summarized
all configurable parameters, filtered some parameters
that could not be adjusted. First, we use the PCA to
reduce some dimensions. Then, we take LASSO algo-
rithm into the remaining parameter candidate set.
The two stages can not only reduce the overall dimen-
sion calculation but also obtain more accurate key pa-
rameters. Finally, we selected the smallest candidate
parameter set that affected performance. In our Spark
application scenario, we selected 55 adjustable param-
eters from all spark platform parameters, which were
reduced almost half dimensions after PCA algorithm.
And after the LASSO algorithm, a total of 14 key pa-

rameters were selected as the parameters that seriously
affected the JCT of Spark platform. We can conclude
that the PCA step improves the performance and the
LASSO technology is very sufficient to select key pa-
rameters relevant to JCT in cases.

Experiments and Evaluation
In this section, we verify the effectiveness of MonkeyK-
ing on a 10-node Spark cluster, including one master
node and nine slave nodes. Each node has also the
same software stack: Ubuntu 14.04.3, Spark 2.2.0,
Hadoop 2.7.2, Hibench 7.0, Java 1.8.0, and Scala
2.11.4. Two kinds of hardware configurations existed
in the cluster. In the parameter tuning module, we
used several different DRL algorithms, including
DQN, Double DQN, Dueling DQN introduced in the
system design section, and the combination of Double
and Dueling DQN. Next, we will introduce benchmark,
evaluation metrics, experimental results and analysis,
and so on.

Benchmark
HiBench is a big data benchmark suite that helps assess
speed, throughput, and system resource utilization of
big data frameworks.29 The frameworks it supports
are: HadoopBench, SparkBench, StormBench, Flink-
Bench, and GearpumpBench. HiBench has a total of
19 test directions, which can be roughly divided into
6 test categories: micro, ml (machine learning), sql,
graph, websearch, and streaming. We select four
kinds of benchmarks from the HiBench benchmark
suite, including WordCount, Sort, PageRank, and
Kmeans. These workloads are easy to understand and
represent a true Spark application with a wide range
of applications.

Competing methods
Because of the resilient distributed dataset and localiza-
tion technology of the Spark platform, there are fewer
existing works to tune Spark parameters than Hadoop
platform. They adopt different underlying execution
mechanisms. For example, Starfish30 is specially designed
for Hadoop platform and optimized by combining with
the system framework, not only parameters tuning sys-
tem. For fairness, we compared MonkeyKing with two
methods, including C5.0 decision tree,31 and exist rule
of thumb native Spark recommendations from indus-
try leaders.32 These methods are chosen because they
are the state-of-the-art in the relevant areas, that is,
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C5.0 is very efficient multiclassification method of tra-
ditional machine learning.

The default parameters value of native Spark is
designed to afford all kinds of applications, which can-
not be used to compare different applications. To have
a fair comparison to MonkeyKing, we select the better
parameters value for different type workloads based on
gounaris2018methodology. This adaption significantly
enhances the performance of native Spark. For C5.0
comparison, first, sampling was conducted on the pa-
rameter space, and 50 parameter lists were generated
for each application to be used for testing. Each of pa-
rameter list was tested three times. However, the big-
gest problem is that in the process of collecting
training data, which parameter values need to be fur-
ther explored. Since the parameter space is huge, sparse
sampling is selected at this time. In particular, it is nec-
essary to search the space of different parameter sub-
sets in detail, and to collect data evenly and randomly
within the range of different.

All methods are implemented on Spark2.2.0 platform:
DQN, Double DQN, Dueling DQN, and MonkeyKing
are implemented using tensorflow,33 C5.0 is taken from
its authors, and parameters setting of native Spark is
taken from the study of Gounaris and Torres.32

Evaluation metrics
In the experiment, we chose computational perfor-
mance as an evaluation metric. The performance aspect
is mainly reflected by comparing JCT. If JCT is greatly
reduced, then MonkeyKing is proved to be available. It
is judged whether MonkeyKing is valid by comparing
the parameters obtained by the comparison algorithm
with the default determination of parameters configu-
ration in terms of performance improvement. For com-
parison of several different algorithms, we chose
convergence as a criterion.

Experimental results and analysis

Parameter selection for spark. Spark currently has
more than 150 configurable parameters.34 We studied
Spark’s 175 configurable parameters, analyzed and
summarized the 10 categories listed in Table 2, and ex-
cluded a total of 120 unneeded parameters based on the
classification results. In addition, based on the adjust-
ment recommendations of other researchers, we finally
selected a candidate subset of 55 parameters.

Then, we collect the obtained 55 parameter-related
parameter data as raw data samples in the historical

data information and input them to the parameter se-
lection module for different job types. After data pre-
processing and feature selection, we finally get the
weight of each feature, that is, the degree of impact
on performance of Spark jobs. Due to space limitations,
we only show the first 14 parameters as representative
in Table 3.

From the results in Table 3 and Spark tuning guide
recommendations,2 we compiled 10 parameters that
have the strongest impact on Spark performance as ex-
perimental objects.

Convergence test. To demonstrate the convergence
of MonkeyKing, we run 10 times for 4-type application
by the same workloads with the same data size on

Table 2. Classification of Spark configuration parameters

Category Example Total

Related to safety or
recommended to be used
with caution (once modified,
it can cause irreparable
damage.)

acls.enable 20

Related to waiting time or
number before the next
operation

rpc.numRetries 19

Related to application name, file
name, file list, file information,
save path

app.name 19

Recommended default values memory.fraction 17
For low version or other

deployment mode
shuffle.memoryFraction 9

Port, IP address, hostname, URL ui.port 8
Related to dynamic allocation dynamicAllocation.enabled 7
Related to whether the web UI,

progress bar, and console are
displayed

ui.enabled 4

Related to algorithm io.encryption.keygen.algorithm 2
Others files.overwrite 15
Sum / 120

Table 3. The effect of parameters on different workloads

Parameter WordCount Sort PageRank Kmeans

driver.cores 1.432 3.107 2.008 1.417
driver.memory 3.256 2.842 3.119 2.705
executor.cores 3.558 3.034 3.284 2.988
executor.memory 2.437 2.977 2.341 2.602
default.parallelism 2.156 2.235 1.704 2.430
serializer 2.607 2.429 1.834 2.017
rdd.compress 1.093 0.998 1.024 0.968
shuffle.compress 3.647 0.826 2.034 1.287
shuffle.spill.compress 1.894 3.227 2.736 2.304
reducer.maxSizeInflight 2.808 2.360 2.489 2.542
io.compression.codec 2.001 2.048 2.164 2.019
files.useFetchCache 1.872 1.530 1.309 1.488
shuffle.file.buffer 1.526 1.249 1.007 1.103
broadcast.compress 1.122 1.046 0.857 1.114
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MonkeyKing. The different applications are as follows.
The sort application is 320 MB data size. The Word-
Count application is 3.2 GB. The PageRank application
is 3.6 GB. The K-means application is 3.6 GB. Figure 5
shows the JCT for different applications by MonkeyKing
in a single heterogeneous cluster. The results demonstrate
that MonkeyKing achieve better convergence trend for
different applications in heterogeneous environments.

Effectiveness test with different DRL algorithms. In
the choice of specific algorithms, we are mainly based
on DQN because it has developed into a very mature
technology and contains various DQN variants. We fi-
nally chose several popular frameworks: DQN, Double
DQN, Dueling DQN, and the combination of Double
and Dueling DQN. The initial sample data size used in
the experiment was 200. The minimum CPU utilization
umin we determined was 10% based on the range of CPU
utilization for the actual operation of the four jobs. After
using LASSO to calculate the key parameters, we sepa-
rately explored the effects of training with four different
DQN architectures for the optimization of these param-
eters. Our findings show that the combination of Double
and Dueling DQN has more outstanding performance,
as shown in Figure 6. DQN has the most training

time, while the combination of Double DQN and Duel-
ing DQN has the least training time.

This is because Double DQN solves the problem of
overestimation in DQN, and Dueling DQN im-
proves the network structure, so this method converges
faster than the other three. The experimental results of
MonkeyKing are represented by this combination
algorithm.

We leverage MonkeyKing to calculate the optimal
configuration of the above parameters. Then, we rep-
resent the change in performance by comparing the
JCT under the parameter configuration recommen-
ded by our approach with the JCT under the default
parameter configuration. Affected by limited cluster
resources, we may not be able to achieve the best
value recommended by the industry, we can only
find a set of optimal configurations based on existing
resources.

Impact analysis of different key parameters. Monkey-
King can prove that parameter tuning is important and
necessary. This can be seen in the single parameter tun-
ing results. We tuned 10 parameters to determine their
impact on job performance, respectively. Figure 7 com-
pares various JCTs achieved by MonkeyKing with 10

FIG. 5. Learning curves of different workloads.
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parameters, respectively. The Figure 7a-d shows the per-
formance of Wordcount, Sort, PageRank, and K-means,
respectively. Based on Figure 7, we further analyzed per-
formance improvement of different parameters impact-
ing, respectively. Figure 8 shows that parameter tuning
is useful. We can see that the impact of these 10 param-
eters on performance is roughly in the range of 6%–36%
from results. Besides, the impact of the same parameter
on different types of jobs is different. The results demon-
strate MonkeyKing achieve shortest training time than
other DRL approaches in heterogeneous environments.
This is due to the fact that the MonkeyKing adopts the
double DQN and dueling DQN composition framework
to speed up training time.

Effectiveness test with different approaches. We
mainly study parameter combination tuning because
JCT is affected by multiple parameters at the same time.
Experiments show that MonkeyKing can effectively ad-
just the combination of parameters and can significantly
reduce JCT and improve performance. The performance
results of four different types of job are shown in Figure 9.
Figure 9a-d shows the performance of Wordcount, Sort,
PageRank, and K-means, respectively. In this part of the
experiment, we used the small job size of 1.2 GB. Spark
clusters are affected by various factors, so there is no
guarantee that the completion time of each job is exactly
the same. For this reason, we also run all comparison ex-
periments more than 10 times and label all standard de-
viation in the results figures. We also analysis the

standard errors for all competing approaches with differ-
ent applications. And Figure 10 shows that the Mon-
keyKing almost achieves all the best standard errors in
different applications.

We can draw a conclusion that WordCount perfor-
mance increased by an average of 24.8%, Sort perfor-
mance increased by an average of 19.7%, PageRank
performance increased by an average of 18.5%, and
Kmeans performance increased by an average of 21.7%.
The results demonstrate that MonkeyKing achieve bet-
ter performance improvement than other approaches
in heterogeneous environments. We also find that C5.0
achieves slight performance improvement compared
with the native approach. This is due to the fact that
the main contribution of MonkeyKing relies on the
DRL and adaptive configuration in heterogeneous envi-
ronments.

Scalability of MonkeyKing. We also studied the rela-
tionship between job size and parameter tuning.35 It
can be inferred from the results that the larger the job
size, the more obvious the effect of MonkeyKing perfor-
mance improvement compared with the C5.0 and native
Spark. Figure 11 shows the performance changes of the
four benchmarks for different job sizes. In summary,
with the increase of job size, the effect of performance
improvement is more obvious. Figure 11a shows the op-
timization effect of WordCount; WordCount has 22.7%
performance gain when the job size is 1 GB and 26.4%
performance gain when the job size is 6 GB. Figure 11b

FIG. 6. Comparison of four DQN algorithms.
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FIG. 7. (a–d) Performance improvement of single parameter tuning with different applications.
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represents the optimization effect of Sort benchmark. We
can see that Sort has 20.6% performance gain when
the job size is 1 GB and 25.5% performance gain
when the job size is 6 GB compared with the native
Spark. Figure 11c represents the optimization effect of
PageRank, which illustrates that PageRank has 21.2%

performance gain when the job size is 1 GB and
24.4% performance gain when the job size is 6 GB.
Figure 11d shows the optimization effect of Kmeans.
Kmeans has 20.7% performance gain when the job
size is 1 GB and 22.9% performance gain when the
job size is 6 GB. The C5.0 method also works in

Fig. 7. (Continued ).

FIG. 8. Performance improvement of single parameter tuning.
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FIG. 9. (a–d) Performance improvement of parameter combination tuning.
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terms of scalability, but not as well as what the Mon-
keyKing achieved.

Discussion
In this section, we mainly discuss the specific contribu-
tions of this article and the direction that is worth
studying in the future.

Parameters tuning
Parameter tuning is a very important research task in
many aspects. For example, big data analysis platform,
hyperparameter tuning in AutoML, compiler parame-
ter tuning, and Database system parameter tuning. In
the current very hot research field of AutoML, some
current research methods mainly use learning-based

Fig. 9. (Continued ).

FIG. 10. Standard errors of competing approaches with different applications.
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FIG. 11. (a–d) The optimization effect for different job size.
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method to study the automatic tuning of hyperpara-
meters. Their goal optimize a learning algorithm to
make the right parameters choice when faced with
these network degrees of freedom.36–38 But in the
field of big data analysis platform, the goal is to opti-
mize the whole platform performance at runtime.
The challenges are different for different scenarios.
How to simultaneously leverage selecting a learning al-
gorithm and setting its hyperparameters is a big chal-
lenge in AutoML research. Hundreds of configuration
parameters have high dimensionality, naive exhaustive
search is not feasible is a big challenge in big data anal-
ysis platform. Therefore, we cannot use ‘‘one-size fits
all’’ approach to solve different challenges in different
scenarios.

Performance optimization
In view of the performance optimization problem of
Spark platform, this article improves from the perspec-
tive of parameter tuning and proposes a system called
MonkeyKing based on DRL algorithm. Although the
use of RL to solve optimization problems is not new,
and even some researchers have made good progress
on parameter optimization problems, the existing use
of RL techniques to study parameter problems focuses
on optimizing the hyperparameters of machine learn-
ing algorithms. The number of configuration parame-
ters of Spark is not only hundreds but also includes
different types. To this end, we define the Markov Deci-

sion Process that conforms to the Spark parameter op-
timization scenario.

Performance modeling
Specifically, we divide MonkeyKing into two key mod-
ules: parameter selection and parameter tuning. Com-
pared with previous studies, in addition to applying
RL techniques to solve Spark performance tuning, we
have also added parameter selection work. Considering
parameter selection is because other parameter optimi-
zation problems (such as hyperparameter optimization)
do not involve a lot of parameters, and unlike Spark plat-
form, only individual parameters will affect perfor-
mance. At the same time, we also considered job type,
obviously different types of jobs have different optimal
configurations. In the parameter selection module,
with the help of LASSO algorithm, we can recommend
different parameter configurations for different types of
jobs. In the parameter tuning module, we mainly apply
the mature DQN framework in DRL technology. We
have studied four frameworks: DQN, Double DQN,
Dueling DQN, and the combination of Double DQN
and Dueling DQN. The results show that the combina-
tion of Double DQN and Dueling DQN has better con-
vergence.

Scalable space
We are pleased to apply DRL to Spark’s parameter tun-
ing and achieve acceptable results. It is worth mention-
ing that this technology can also be extended to the

Fig. 11. (Continued).
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parameter optimization of other big data analysis plat-
forms, such as Hadoop and Storm. Although the struc-
ture of each platform is not exactly the same, there are
differences in parameters, the ideas provided by Mon-
keyKing are universal. Although MonkeyKing provides
great convenience for our parameter tuning work, there
are still some imperfections. For example, the system
training time is too long, and the convergence of DQN
needs to be improved. These issues are the work that
we will study now and for some time to come.

Related Work
Much of the previous work on auto-tuning on big data
analytics platform focused on choosing the best cost or
performance design, which we describe in turn. The
popularity of big data analytics platforms has made
big data analysis fast and efficient. However, many de-
fault resource configurations are no longer sufficient
for program developers. Therefore, many researchers
have analyzed parameters to improve performance by
modifying the configuration. At present, the parameter
optimization of big data analytics platforms can be
summarized in the following three aspects.

Cost-based optimization
Cost-based optimization refers to the performance cost
required by calculating the various stages of task execu-
tion process, and the corresponding optimization
scheme is obtained. Starfish30 is a self-tuning system,
which is based on cost modeling to search for the job
configurations required for MapReduce workloads.
But Starfish only works for Hadoop, and the mecha-
nisms between other parallel distributed platforms
and Hadoop are quite different. SBAC-PAD 201639

presented a novel Impala simulation framework that
simulates the behavior of a complete software stack
and the activities of cluster components (such as stor-
age, networking, processors, and memory) using a
shared-nothing parallel database architecture. Impala
aims to bridge the gap between near real-time data
analysis on the Hadoop stack to help IT professionals
understand their performance behavior. AROMA40 au-
tomates job configuration and resource allocation
through leveraging a two-phase machine learning and
optimization framework for heterogeneous clouds.

Performance-based optimization
Performance-based optimization is the monitoring of
performance data or other data. By analyzing the mon-
itoring results, performance bottleneck is obtained, and

then, performance can be optimized. Alipourfard et al.4

proposed CherryPick, a system that can adaptively mine
the best cloud configuration for big data analysis, using
Bayesian optimization to build performance models for
various applications. While CherryPick is ideal for re-
source allocation issues for large applications. Lee and
Jos41 proposed an approach that avoids problems of pre-
vious self-tuning approaches based on performance
models or resource usage; the proposed approach uses
a fuzzy-prediction controller for self-optimization of
the number of concurrent MR jobs. Shi et al.42 discussed
the impact of MapReduce and Spark on large-scale data
analysis, where the impact of parameters on the plat-
form is not much. Petridis et al.43 studied some related
parameters that have a significant impact on Shuffle
and Compress phases of Spark and proposed a parame-
ter tuning method based on trial and error. Bao et al.44

used Latin hypercube sampling to generate effective
samples in the high-dimensional parameter space, and
multiple bound-and-search to select promising configu-
rations in the bounded space suggested by the existing
best configurations. Yigitbasi et al.45 used the support
vector regression model on Hadoop platform for auto-
tuning. Although the algorithm works well, it is obvious
that the trial and error method is time-consuming.
Wang et al.46 analyzed the shortcomings of cost-based
modeling methods and proposed a new method based
on machine learning to optimize Spark configuration.
Wang et al.47 proposed a speculative parallel decompres-
sion algorithm based on Apache Spark to extend paral-
lelism and improve the decompression efficiency of
large-scale data sets.

Heuristic-based optimization
The heuristic-based optimization method mimics the
way machine learning is done, storing some good con-
figurations in a certain number of experiments that
have been run in the optimizer. Gopalan and Suresh48

proposed an improved Hadoop Fair Scheduler delay
scheduling and implementation in Hadoop. The pro-
posed algorithm does not blindly wait for the local
node, but first estimates the time to wait for the local
node to use for job, and avoids waiting if the location
is not possible within the predefined delay threshold
while completing the same location. The authors pres-
ent a heuristic approach to reducing the operational
costs of virtual machines running Hadoop in the
study of Shyamasundar et al.49 Heuristics are simple
and efficient, extending the number of Hadoop nodes
based on the type and size of jobs submitted.
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Conclusion
In this article, to solve the problems of key parameter
selection and tuning for different job types of big
data platforms and reuse of historical information, we
propose a system called MonkeyKing. MonkeyKing
mainly includes three parts: parameter selection, pa-
rameter tuning, and historical information base. First,
the feature selection technique is used in parameter se-
lection module to determine the parameters that have
the strongest impact on performance of jobs, and
then, DRL algorithms are selected in parameter tuning
module to dynamically optimize parameters. At the
same time, the historical information base will save
the running information of jobs for subsequent reuse.
In terms of the selection of key parameters, we conduct
research on different job types, enabling our method to
recommend relevant key parameters for different
workloads. In terms of parameter tuning, we choose
DQN structure and its four classic algorithms. We fi-
nally found that the combination of Double DQN
and Dueling DQN is more convergent and the
obtained parameter optimal value is more stable. The
experimental results show that compared with the
C5.0 and native parameter configuration, the recom-
mended parameter configuration of MonkeyKing can
effectively reduce JCT by *25%.
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