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Abstract—Real-time routing is a basic element of closed-loop,
real-time sensing and control, but it is very challenging due to
dynamic, uncertain link/path delay. A basis of real-time routing
is determining probabilistically guaranteed path delays, but this
problem is NP-hard and it may well have to be solved by
resource-constrained devices in a distributed manner; the highly
varying nature of link/path delay makes it necessary to adapt
to in-situ delay conditions in real-time routing, but it has been
observed that delay-based routing can lead to instability and
low data delivery performance in general. To address these
challenges, we propose the minimum-delay (MD) algorithm that
computes probabilistic path delay bounds in pseudo-polynomial
time via dynamic programming, and the algorithm is amenable to
lightweight, distributed implementation. For enabling adaptivity
while addressing instability in real-time routing, we propose a
multi-timescale-adaptation (MTA) framework that ensures long-
term optimality while addressing short-term dynamics at the
same time. We evaluate the performance of MD- and MTA-based
real-time routing through a testbed of 130 TelosB motes, and
we find it outperform existing real-time routing protocols by a
significant margin, for instance, improving the packet delivery
ratio and deadline catching ratio by a factor up to 6.04 and 6.67
respectively.

I. INTRODUCTION

Besides deployments for open-loop sensing such as envi-

ronmental monitoring, embedded wireless networks are in-

creasingly being explored for real-time, closed-loop sensing

and control. For instance, wireless networking standards such

as the IEEE 802.15.4e, WirelessHART, and ISA SP100.11a

have been defined for industrial monitoring and control [1]–

[3], wireless sensor networks have been deployed for indus-

trial automation [4], [5], and the automotive industry has

also been exploring the application of wireless networks to

intra-vehicular sensing and control [6]. In wireless networked

sensing and control, message passing (or messaging for short)

across wireless networks is a basic enabler for coordina-

tion among distributed sensors, controllers, and actuators. In

supporting mission-critical tasks such as industrial process

control, wireless messaging is required to be reliable (i.e.,

having high delivery ratio) and in real-time [7].

In multi-hop wireless networks, a basis for reliable, real-

time messaging is real-time routing. Yet real-time routing in

wireless sensing and control networks is significantly chal-

lenged by the dynamics and uncertainties in link/path delay,

i.e., the time taken to successfully deliver a packet across a link

or path. Not only do the inherent spatiotemporal wireless link

dynamics and wireless interference introduce uncertainties in

link/path delay, the dynamic network traffic pattern as a result

of dynamic control strategies also leads to dynamic link/path

delay [8]. The dynamics and uncertainties in link/path delay

introduce fundamental challenges to real-time routing. Firstly,

the dynamics and uncertainties make data transmission delay

probabilistic in nature, yet, given the delay distributions of

individual links along a path, the basic problem of checking

the probabilistically guaranteed path delays is NP-hard [9],

and this problem may well have to be solved by resource-

constrained devices in a distributed manner. Secondly, given

that data transmission delay is a highly varying metric and that

it can change at a short timescale of each packet transmission,

it is important to adapt to in-situ delay conditions in routing,

but it has been observed that delay-based routing can lead

to routing instability and low data delivery performance in

general [10], [11].

Despite much work in throughput- or energy-efficiency-

oriented wireless routing, real-time routing is much less

studied. Moreover, the existing work that do consider data

delivery delay in wireless routing either only try to minimize

average path delay without ensuring probabilistic delay bounds

[12]–[15], or they do not address the challenges that delay

uncertainties pose to the task of determining probabilistic path

delay bounds and the task of addressing instability of delay-

based routing [16], [17].

To enable routing with probabilistic delay bounds in wire-

less sensing and control networks, we address the challenges

of dynamic, uncertain delays in real-time routing. For the

NP-hard problem of determining probabilistic path delays,

we propose a pseudo-polynomial time algorithm MD. MD

is based on dynamic programming, and it adopts the non-

parametric quantile estimation algorithm P 2 [18] to estimate

delay distributions along links and paths. The MD algorithm

is amenable to lightweight, distributed implementation, and

it enables identifying the paths that satisfy the required data

delivery timeliness. For enabling adaptivity while addressing

instability in real-time routing, we propose a multi-timescale-

adaptation (MTA) framework: to ensure long-term optimality

and reliability, the directed-acyclic-graph (DAG) for data for-

warding is adapted at lower frequencies based on relatively

slowly varying link property ETX (i.e., expected number of

transmissions taken to successfully deliver a packet); at higher

frequencies and based on the MD algorithm, the data flow

within the DAG is controlled on a per-packet basis to minimize

transmission cost and to ensure packet delivery within the

required probabilistic delay bound. By enabling long-term
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optimality while addressing short-term dynamics at the same

time, the MTA framework enables efficient, real-time routing

in the presence of complex dynamics and uncertainties.

We implement the MD algorithm and the MTA framework

in TinyOS, and we evaluate their performance in the high-

fidelity sensor network testbed NetEye [19]. We find that real-

time routing based on MD and MTA outperforms existing

algorithms by a significant margin, for instance, improving the

packet delivery ratio and deadline catching ratio by a factor

up to 6.04 and 6.67 respectively.

II. UNCERTAINTY-ORIENTED REAL-TIME ROUTING

In what follows, we first present the minimum-delay (MD)

algorithm, then we discuss the multi-timescale-adaptation

(MTA) framework.

A. Distributed satisfiability testing for probabilistic real-time

guarantees

For real-time multi-hop routing, one basic issue is selecting

paths which can ensure the required timeliness of data delivery.

This is a challenging issue because the problem of checking

probabilistically guaranteed path delays is NP-hard. That is,

given the delay distributions of the individual links along

a path, it is NP-hard to decide whether the probability of

having a less-than-D path delay is no less than p [9]; this

result holds whether or not the delays along individual links

are independent. Existing work on probabilistically bounding

multi-hop path delay have considered the most-probable-path

(MP) problem where, given an multi-hop delay requirement

D, the task is to find a path whose delay is less than D with

the highest probability [20], [21]. Focusing on Internet QoS

routing and given the nature of the MP problem, the existing

solutions to routing with probabilistic delay bound are based

on link-state routing and are not amenable to light-weight,

distance-vector-type implementation [20], [21]. Nonetheless,

link-state routing is usually not suitable for dynamic, resource

constrained wireless sensing and control networks where re-

liable network-wide link-state update itself is a challenging

issue and nodes may only have very limited memory space

(e.g., up to 4KB of RAM).

To address the challenge of identifying paths with prob-

abilistic delay bounds in resource-constrained wireless net-

works, we propose to first solve the minimum-delay (MD)

problem where, given a node S, its destination G, and a

probability p, the task is to identify the minimum delay bound

D(S, G, p) that can be guaranteed by some path(s) from S

to G with a probability p. For the MD problem, D(S, G, p)
can be computed in pseudo-polynomial time via dynamic

programming as follows:

D(S, G, p) = min
R∈R(S),p≤p′≤1

(D′(S, R, p′) + D(R, G,
p

p′
)),

(1)

where R(S) is the set of next-hop candidates for node S,

D′(S, R, p′) is the p′-quantile of the link delay from S to R,1

1The link delay includes the queueing delay within node S and the
transmission as well as propagation delay from S to R.

and D(R, G, p
p′

) is the minimum delay from R to G that can

be guaranteed with a probability p
p′

. The intuition behind the

above formulation is that, given a next-hop candidate R, if

the probability of the transmission delay from S to R being

no more than D′ is p′ and the probability of the delivery

delay from R to G being no more than D is p

p′
, then the

probability of the delay from S to G via R being no more

than D′ + D is no less than p′ × p

p′
= p. The aforementioned

formulation based on this intuition naturally lends itself to

distributed, distance-vector-type diffusion computation which

is suitable for resource-constrained devices. Additionally, the

intuition does not assume independence between link delay

distributions, and the mathematical foundation can be found

from [22].

Of course, the simplicity of the aforementioned approach

to the minimum-delay (MD) problem is based on computing

an upper bound on the minimum-delay along a path instead

of the exact minimum delay itself. Next-hop selection based

on this upper bound on minimum-delay ensures real-time data

delivery, which is critical in wireless networked sensing and

control; our measurement study in Section III also shows that

the computed upper bound is close to the minimum delay

and the resulting real-time routing performs well in terms

of real-time data delivery. For convenience, we denote the

above method of computing probabilistic delay bounds as the

minimum-delay (MD) algorithm.

Based on the distributed MD solution, a node S can identify

the set of candidate next-hops (and thus paths), denoted

by N(S, G, p, L), via which the minimum delay from S to

destination G is no more than L with probability p:

N(S, G, p, L) = {R : R ∈ R(S) ∧
minp≤p′≤1(D

′(S, R, p′) + D(R, G, p

p′
)) ≤ L}.

(2)

Given that the probability requirement p tends to be high in

wireless sensing and control networks, neighbors only need to

exchange the tail instead of the complete distribution of their

MD values. Thus the memory and communication overhead

is low for implementing the distributed MD solution and

for computing N(S, G, p, L). Note that most existing delay-

aware wireless routing protocols [12]–[15] consider mean

delay instead of delay quantiles. This usually does not ensure

the use of paths with small probabilistic delay bounds, because

smaller mean delay does not ensure smaller delay quantiles.

For typical traffic settings in the NetEye testbed [19], for

instance, Figure 1 shows the non-negligible probability that,

when the mean delay across a link ℓ0 is less than that of

another link ℓ1, the q-quantile of ℓ0’s delay is greater than

that of ℓ1.

To realize the MD-based design, we need to estimate the

quantiles of link delays. We propose to use data-driven link

estimation [23] where samples of link delays are collected via

MAC feedback for data transmissions. Then we use the non-

parametric P 2 algorithm [18] to estimate quantiles. The P 2

algorithm is a memory- and computation-efficient algorithm

that was originally proposed for the single-pass analysis of
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Fig. 1. Goodness inversion probability and its
95% confidence interval
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Fig. 2. Packet delivery ratio and its 95% confi-
dence interval
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Fig. 3. Deadline catching ratio and its 95%
confidence interval

large volumes of simulation data. Our measurement study in

the NetEye [19] testbed has shown that the P 2 algorithm is

very accurate in estimating delay quantiles (e.g., ∼0.5% esti-

mation error) and is more accurate than parametric approaches

as used in existing uncertainty-oriented QoS routing [21].

B. Multi-timescale adaptation

Real-time routing is subject to dynamics and uncertainties

at multiple timescales. At a longer timescale, link properties

vary as a result of changing environmental conditions (e.g.,

temperature); at a shorter timescale, data transmission delay

varies on a per-packet basis, and bursty traffic may introduce

sudden changes to network conditions. Robust system design

usually requires adaptation to dynamics at the same timescale

of the dynamics themselves. Yet we have found that, due to

the highly-varying nature of link delays, routing using delay-

based metrics can introduce large estimation errors and lead to

routing instability as well as low performance [11]. To ensure

long-term stability and optimality while addressing short-term

dynamics at the same time, we propose a multi-timescale

adaptation (MTA) framework for real-time routing as follows.

At lower frequencies, a directed-acyclic-graph (DAG) is

maintained for data forwarding, and any path within the DAG

is a candidate path for packet delivery. In particular, the data

forwarding DAG is maintained based on link and path ETX

(i.e., expected-number-transmissions to successfully deliver a

packet) that reflect long-term system optimality and change

relatively slowly compared with delay variation. There is a

directed edge from node S to R in the DAG if and only if the

minimum path ETX from R to the destination G is less than

that from S to G. The DAG defines, for each node S, a set

of forwarder candidates R(S) where R ∈ R(S) if link (S, R)
belongs to the DAG.

At higher frequencies, the spatiotemporal flow of packets

within the data forwarding DAG is adaptively controlled to

ensure reliable, real-time data delivery in the presence of short-

timescale dynamics such as transient packet losses and per-

packet variations of link delay. More specifically, each packet

contains information about the remaining time to deadline,

denoted by L, and the required real-time guarantee probability

p. When the packet reaches a node S, S first finds the

set of forwarder candidates within the DAG, denoted by

N(S, G, p, L), that can ensure the real-time requirements p and

L; then S forwards the packet using opportunistic routing with

a subset of N(S, G, p, L) that minimize the expected ETX in

delivering the packet. Note that N(S, G, p, L) is computed

according to (2).

III. MEASUREMENT EVALUATION

We have implemented the MTA framework (including the

MD algorithm) in TinyOS. To understand the real-time data

delivery performance of MTA, we comparatively study MTA

and the following protocols that consider delay in routing:

• MMSPEED: a geographic routing protocol that routes

and schedules packet transmissions based on nodes’

distances to destinations, packet delivery deadlines, and

mean link delays [12]. MMSPEED also tries to improve

packet delivery reliability by transmitting packets along

multiple paths.

• SPEED: a geographic routing protocol where a packet is

forwarded to a next-hop node at a probability monotonic

to the enabled data delivery speed, where the speed is de-

fined based on the distance progress towards destination

and the mean delay from the sender to the next-hop node

[13].

• L-ML: a distance-vector routing protocol where a path

with the minimum average end-to-end delay is chosen

[11].

In our evaluation, we use the NetEye [19] wireless sensor

network testbed which consists of 130 TelosB motes. In this

preliminary study, we let the two nodes that are farthest apart

from each other serve as the source and sink node respectively;

the source node generates one packet every second, and the

real-time requirement is such that each packet be delivered to

the sink within 1 second for at least 90% of the time. Each

TelosB mote transmits at a power of -25dBm(a.k.a. power level

3 in TinyOS) such that the average number of hops between

the source and sink is about eight in MTA.

Figure 2 shows the end-to-end packet delivery ratios in

different protocols; for those packets that are received by

the sink, Figure 3 shows the percentage of them that are

received within the deadline. We see that MTA significantly

improves the real-time data delivery performance, for instance,

improving the delivery ratio and deadline catching ratio by

a factor up to 6.04 and 6.67 respectively. One major reason

why existing protocols have much lower deadline catching

ratio is because they only consider mean delays instead
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of the probabilistic distributions of delays. Another reason

for the low performance of the existing delay-based routing

protocols is due to their instability in the presence of varying

link/path delays; instability not only increases variability of

data delivery delay, it also makes it difficult to precisely

estimate link/path properties, and this is especially the case

for L-ML which is a distance-vector protocol requiring end-to-

end diffusion of routing control information such as link/path

delays. Compared with SPEED, MMSPEED has higher packet

delivery ratio because it uses multiple paths to forward pack-

ets; MMSPEED has higher deadline catching ratio because it

uses speed-requirement-based priority scheduling.

IV. CONCLUDING REMARKS

Through the MD algorithm and the MTA framework, we

have addressed the two basic challenges that link/path delay

uncertainties pose to real-time routing, that is, efficiently

computing probabilistic path delays and addressing instability

of delay-based routing. Besides demonstrating the effective-

ness of the MD algorithm and the MTA framework, our

testbed-based measurement study stresses the importance of

considering link/path delay uncertainties in real-time routing.

Based on the preliminary results discussed in this extended

abstract, we are currently performing detailed study of the MD

algorithm and the MTA framework to understand the impact

that factors such as traffic pattern and timeliness requirement

may have on real-time routing design. In our future work, we

will study the interaction between real-time routing and real-

time scheduling, and we will investigate related issues such as

real-time capacity modeling and admission control to build a

solid foundation for predictable real-time routing in wireless

sensing and control networks.
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