
288 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

Taming Uncertainties in Real-Time Routing for
Wireless Networked Sensing and Control

Xiaohui Liu, Hongwei Zhang, Member, IEEE, Qiao Xiang, Xin Che, Student Member, IEEE, and Xi Ju

Abstract—Real-time routing is a basic element of closed-loop,
real-time sensing and control, but it is challenging due to dynamic,
uncertain link/path delays. The probabilistic nature of link/path
delays makes the basic problem of computing the probabilistic
distribution of path delays NP-hard, yet quantifying probabilistic
path delays is a basic element of real-time routing and may
well have to be executed by resource-constrained devices in a
distributed manner; the highly varying nature of link/path delays
makes it necessary to adapt to in-situ delay conditions in real-time
routing, but it has been observed that delay-based routing can
lead to instability, estimation error, and low data delivery per-
formance in general. To address these challenges, we propose
the Multi-Timescale Estimation (MTE) method; by accurately
estimating the mean and variance of per-packet transmission time
and by adapting to fast-varying queueing in an accurate, agile
manner, MTE enables accurate, agile, and efficient estimation of
probabilistic path delay bounds in a distributed manner. Based
on MTE, we propose the Multi-Timescale Adaptation (MTA)
routing protocol; MTA integrates the stability of an ETX-based
directed-acyclic-graph (DAG) with the agility of spatiotemporal
data flow control within the DAG to ensure real-time data de-
livery in the presence of dynamics and uncertainties. We also
address the challenges of implementing MTE and MTA in re-
source-constrained devices such as TelosB motes. We evaluate
the performance of MTA using the NetEye and Indriya sensor
network testbeds. We find that MTA significantly outperforms
existing protocols, e.g., improving deadline success ratio by 89%
and reducing transmission cost by a factor of 9.7 in the NetEye
testbed.

Index Terms—Delay quantile estimation, multi-timescale adap-
tation, multi-timescale estimation, real-time routing, wireless
sensing and control networks.

I. INTRODUCTION

B ESIDES deployments for open-loop sensing such as
environmental monitoring, embedded wireless networks

are increasingly being explored for real-time, closed-loop
sensing and control. For instance, the wireless networking stan-
dard IEEE 802.15.4g has been defined for large scale process
control applications such as smart grid sensing and control
[1], and wireless networks are expected to serve as major
communication infrastructures in neighborhood area networks
and home area networks of the smart grid [2]–[5]. In addition,

Manuscript received March 29, 2012; accepted July 09, 2012. Date of publi-
cation August 24, 2012; date of current version February 27, 2013. This work
was supported in part by NSF awards CNS-1136007, CNS-1054634, GENI-
1890, and GENI-1633, as well as grants from Ford Research and GM Research.
An extended abstract containing some preliminary results of this paper has ap-
peared in ACM MobiHoc 2012. Paper no. TSG-00143-2012.
The authors are with the Department of Computer Science, Wayne

State University, Detroit, MI 48202 USA (e-mail: xiaohui@wayne.
edu; hongwei@wayne.edu; xiangq27@wayne.edu; chexin@wayne.edu;
xiju@wayne.edu; com). Corresponding author: H. Zhang.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSG.2012.2209209

wireless networking standards such as the IEEE 802.15.4e,
WirelessHART, and ISA SP100.11a have been defined for
industrial monitoring and control [6]–[8], wireless sensor
networks have been deployed for industrial automation [9],
[10], and the automotive industry has also been exploring the
application of wireless networks to vehicle sensing and control
[11], [12]. In wireless networked sensing and control, message
passing (or messaging for short) across wireless networks is
a basic enabler for coordination among distributed sensors,
controllers, and actuators. In supporting mission-critical tasks
such as smart grid control and industrial process control,
wireless messaging is required to be reliable (i.e., having high
delivery ratio) and in real-time [13]. This is because packet
loss and large delay usually reduce the system stability (e.g., in
proportional-integral control), lengthen the settling time, and
increase the maximum overshoot in control [14].
In multi-hop wireless networks, a basis for reliable, real-time

messaging is real-time routing which routes data packets
from their sources to destinations within specified deadlines.
Nonetheless, link/path delays (i.e., the time taken to success-
fully deliver a packet across a link or a path) are dynamic,
uncertain in wireless sensing and control (WSC) networks due
to factors such as the spatiotemporal wireless link dynamics
and the queueing dynamics along links/paths. The dynamics
and uncertainties in link/path delays introduce fundamental
challenges to real-time routing:
• Firstly, the dynamics and uncertainties make link/path
delays probabilistic in nature. Given the delay distribu-
tions of individual links along a path, the basic problem
of computing the probabilistically guaranteed path delays
is NP-hard [15]; in real-time routing where nodes need to
identify paths that ensure certain delay bounds, however,
quantifying probabilistic path delays is a basic task, and
it may well have to be executed by resource-constrained
nodes in a distributed manner.

• Secondly, given that link/path delay is a dynamic metric
and that it can change at a short timescale of each packet
transmission, it is important to adapt to in situ delay condi-
tions in routing. Yet the highly varying nature of link/path
delays makes it difficult to accurately estimate path delays
in a distributed and agile manner, and it has been observed
that delay-adaptive routing can lead to routing instability
and low data delivery performance in general [16], [17].

Despite much work in throughput- or energy-efficiency-ori-
ented wireless routing [18]–[21], real-time routing is much
less studied. Moreover, the existing work that do consider data
delivery delay in wireless routing either only try to minimize
average path delay without ensuring probabilistic delay bounds
[22]–[26], or they do not address the challenges that delay
uncertainties pose to the task of quantifying probabilistic path
delays and the task of addressing instability of delay-adaptive
routing [27], [28]. Therefore, how to enable real-time routing

1949-3053/$31.00 © 2012 IEEE

LIU et al.: TAMING UNCERTAINTIES IN REAL-TIME ROUTING FOR WIRELESS NETWORKED SENSING AND CONTROL 289

in the presence of dynamic, uncertain link/path delays remains
an important open problem for real-time wireless networked
sensing and control.
Towards enabling routing with probabilistic delay bounds in

WSC networks, we propose the Multi-Timescale Adaptation
(MTA) routing protocol that addresses the aforementioned
challenges of dynamic, uncertain link/path delays in real-time
routing. In MTA, nodes leverage the different timescales of
dynamics to accurately estimate probabilistic path delay bounds
in an agile manner and to adapt spatiotemporal data flow con-
trol at the same timescales of the dynamics themselves. More
specifically, we make the following contributions:
• For accurate, agile estimation of probabilistic path delay
bounds, we decompose contributors to path delay uncer-
tainties into two factors: dynamic per-packet transmission
time (which we refer to as packet-time hereafter) and
dynamic queueing along paths. Through detailed experi-
mental analysis, we find that, given a network condition,
the distribution of packet-time is quite stable despite the
quick variation of instantaneous packet-time. This enables
each node to accurately estimate the mean and variance
of packet-time from itself to the next-hop along a path.
We also observe that the packet-time for different packet
transmissions, whether from the same node or from dif-
ferent nodes, are uncorrelated; this enables each node to
compute, for a given time instant, the variance of the path
delay from itself to the destination node as the sum of the
variances of the packet-times for all the packets queued
along the path at that instant. Based on these observa-
tions, we develop a multi-timescale approach, denoted by
multi-timescale estimation (MTE), to accurately estimate
the highly varying mean and variance of path delay by ac-
curately estimating the mean and variance of packet-time
and by adapting to fast-varying queueing in an accurate,
agile manner. Using the mean and variance of path delay,
we evaluate different methods of upper-bounding quan-
tiles, and we identify Chebyshev inequality as an effective
basis for computing probabilistic delay bounds in constant
time.

• For enabling adaptivity while addressing instability and
low-performance in real-time routing, we propose the
Multi-Timescale Adaptation (MTA) routing protocol: to
facilitate the aforementioned multi-timescale estima-
tion (MTE) and to avoid detrimental instability while
ensuring data delivery performance during adaptation,
a directed-acyclic-graph (DAG) is maintained at lower
frequencies based on the relatively slow-varying link
property ETX (i.e., expected number of transmissions
taken to successfully deliver a packet), which reflects net-
work throughput, data delivery reliability, and the overall
trend of data delivery delay [19], [29]; at higher frequen-
cies and based on the MTE method, the data flow within
the DAG is controlled on a per-packet basis to minimize
ETX and to ensure packet delivery within the required
probabilistic delay bound. By ensuring overall stability
and performance while addressing short-term dynamics at
the same time, MTA enables efficient, real-time routing in
the presence of complex dynamics and uncertainties.

• We implement MTE and MTA in TinyOS, and we address
the challenges of limited memory, limited CPU capability,
and the lack of real-time operation support in TinyOS.

Besides the running MTA protocol, these implementation
strategies may well be of interest to real-time routing in
general.

• We evaluate the performance of MTA and other related
work in the high-fidelity sensor network testbeds NetEye
[30] and Indriya [31]. We find that MTA significantly out-
performs existing protocols, e.g., improving deadline suc-
cess ratio by 89% and reducing transmission cost by a
factor of 9.7.

The rest of the paper is organized as follows. We briefly
introduce the NetEye and the Indriya testbeds in Section II. We
present the MTE method and the MTA protocol in Sections III
and IV, respectively, and then we present the measurement
study in Section V. We discuss related work in Section VI, and
we make concluding remarks in Section VII.

II. PRELIMINARIES

Our study leverages two publicly available wireless sensor
network testbeds NetEye [30] and Indriya [31]. In what follows,
we briefly introduce the two testbeds and the traffic patterns we
study.
NetEye Testbed: NetEye [30] is deployed in a large lab space

at Wayne State University. We use a subset of a 15 7 grid of
TelosB motes in NetEye, where every two closest neighboring
motes are separated by 2 feet. The subset of the grid forms a
random network, and it is generated by removing each mote of
the 15 7 grid with probability 0.2.
Each of these TelosB motes is equipped with a 3 dB signal at-

tenuator and a 2.45 GHzmonopole antenna. In ourmeasurement
study, we set the radio transmission power to be 25 dBm (i.e.,
power level 3 in TinyOS) such that multihop networks can be
created and the link reliability is over 90% for links up to 6 feet
long. Given the high availability and high fidelity of NetEye,
we mainly use NetEye in our measurement study, but we verify
key observations using the Indriya testbed too.
Indriya Testbed: Indriya [31] is deployed at three floors of the

School of Computing at the National University of Singapore.
Our measurement study uses all of its 127 TelosBmotes, and we
use a transmission power of 10 dBm (i.e., power level 11 in
TinyOS) to generate a well-connected multi-hop network where
the link reliability is over 90% for links up to 20 feet long.
Traffic Pattern: Using the two testbeds, we study both peri-

odic and event traffic patterns.
For periodic traffic, we study three types of them based on

the amount of queueing they introduce when the default TinyOS
routing protocol CTP [20] is used: 1) light traffic: no queueing in
network; 2) medium traffic: moderate queueing in network but
with very rare queue overflow; 3) heavy traffic: severe queueing
in network andwith frequent queue overflow. To this end, we se-
lect one node as the sink and another 10 nodes as traffic sources;
the sink and the sources are nearly at opposite positions in both
testbeds to create as many routing hops as possible. In NetEye,
more specifically, mote 15 is the sink, and motes 61, 62, 63, 64,
76, 77, 79, 91, 92, and 93 are the sources, with each source gen-
erating a packet every 1000 ms, 400 ms, and 75 ms for light,
medium, and heavy traffic, respectively. To verify observations
from NetEye and given that the medium traffic is the common
case in WSC networks, we also study medium traffic scenario
in Indriya as follows: mote 105 at the third floor is the sink, and
motes at the first floor are the sources, with each source
generating a packet every 600 ms.

290 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

For event traffic, we use a publicly available event traffic trace
for a field sensor network deployment [32], [33] to evaluate the
performance of different protocols. The traffic trace corresponds
to the packets generated in the 7 7 grid of a field mote net-
work when a vehicle passes across the middle of the network.
In NetEye, the 7 7 subgrid in the trace data corresponds to the
49 motes that are the farthest from the sink mote 15. In Indriya,
the 7 7 subgrid is mapped to motes .

III. MULTI-TIMESCALE ESTIMATION OF PATH DELAYS

In what follows, we first discuss the need for considering
probabilistic path delays in real-time routing, then we present
our approach to accurate, agile estimation of probabilistic path
delay bounds.

A. Why Probabilistic Path Delay?

Due to inherent spatiotemporal dynamics and uncertainties
in wireless communication [21], [34], the success of a packet
transmission is probabilistic instead of deterministic. Thus, data
delivery delays across links/paths are probabilistic in nature in
wireless sensing and control (WSC) networks, and this is the
case even if TDMA—instead of CSMA-based scheduling is
used. Accordingly, application requirements on data delivery
timeliness tend to be probabilistic in WSC networks. Based
on its requirements on stability region and settling time, for
instance, a control application can specify a maximum toler-
able delay; by treating a deadline miss as the loss of the cor-
responding signal sample and by analyzing the corresponding
impact on system estimation and control, the application can
also specify a maximum tolerable probability of deadline miss
[14], [35]. Therefore, we consider application requirements on
the maximum tolerable delay and the least probability of dead-
line success in this study.
Most existing delay-aware wireless routing protocols

[22]–[26] consider mean delay instead of delay quantiles. Yet
smaller mean delay does not ensure smaller delay quantiles. For
the medium traffic setting in NetEye as discussed in Section II,
for instance, Fig. 4 shows the nonnegligible probability that,
when the mean delay across a link is less than that of another
link , the -quantile of ’s delay is greater than that of .
Therefore, routing based on mean delay does not ensure the
use of paths with small probabilistic delays, thus leading to
deadline miss and the reduction of network real-time capacity
(i.e., amount of data that can be delivered within a certain
deadline).
Traditional real-time system design usually considers worst

cases, and, in real-time wireless networking, worst-case path
delay has also been considered [28]. Yet the distribution of link/
path delays tend to be heavy-tailed such that themaximum delay
is significantly larger than the common-case delays. For the
medium traffic setting in NetEye, for instance, Fig. 5 shows
the empirical cumulative distribution function (CDF) of the per-
packet transmission time (which we refer to as packet-time) for
successfully delivering a packet across a typical link in NetEye.1
Themedian, 90-percentile, andmaximum of the packet-time are
23, 86, and 728 ms, respectively. Therefore, focusing on max-
imum link/path delays will not be able to utilize many paths
that could have been used to support WSC applications where
probabilistic delay guarantees suffice, thus reducing the appli-
cation-usable real-time capacity of the network.

1The packet-time includes time spent for channel access contention and pos-
sible packet retransmissions.

Fig. 1. An example path .

Therefore, considering probabilistic path delays instead of
mean or maximum delays reduces deadline misses and enables
effective utilization of application-usable real-time capacity of
WSC networks.

B. Agile, Accurate Estimation of Probabilistic Path Delay
Bound

To enable routing with probabilistic delay guarantees, a basic
task is to quantify probabilistic delays along paths. Given a
path from to as shown in
Fig. 1 and assuming that the number of packets queued at node

is at time and that the packet transmis-
sion scheduling algorithm at each node is first-come-first-serve
(FCFS), the instantaneous delay along path at time , denoted
by , is the delay that a packet arriving at at time expe-
riences in reaching the destination node assuming that the
number of queued packets at each node does not change while
the packet is being delivered to . Therefore,

(1)

where is the time taken for to deliver its -th queued
packet to at time .
Challenges of Highly Varying Delay Distribution: Given the

distributions of , it is
NP-hard to compute the distribution of [15]. Since nodes
of WSC networks tend to be resource-constrained (e.g., in CPU
and memory), it is infeasible to directly compute the distribu-
tion of in general. One alternative is to first sample
and then use nonparametric approaches (e.g., the algorithm)
to estimate delay quantiles based on these delay samples [36],
[37]. Nonetheless, nonparametric quantile estimation usually
converges slowly, for instance, taking more than 200 samples
[38]. Yet the distribution of path delays varies at a much shorter
timescale than the sample size required for nonparametric quan-
tile estimation to converge. As can be seen from (1), in par-
ticular, the distribution of path delays vary with the queueing
levels (i.e.,) along paths, and network queueing can vary
quickly over time.2 For the NetEye medium traffic scenario, for
instance, Fig. 2 shows the histogram of the coherence window
size for node queueing, where each coherence window of a time
series is amaximal consecutive segment of the time series where
all the sample values are the same. We see that the coherence
window size is two orders of magnitude less than the sample
size required for nonparametric quantile estimation to converge.
Therefore, the highly varying nature of path delay distribution
makes nonparametric quantile estimation unable to accurately
estimate instantaneous path delay quantiles in an agile manner;
that is, the distribution of the path delay changes before the es-
timation converges to an accurate value.
To circumvent the computational complexity and the inability

of accurate, agile estimation of exact path delay quantiles, we

2As we will discuss shortly, the distribution of packet-time (i.e.,) is
quite stable over time, and we leverage the stability of packet-time distribution
in designing our multi-timescale estimation (MTE) method.

LIU et al.: TAMING UNCERTAINTIES IN REAL-TIME ROUTING FOR WIRELESS NETWORKED SENSING AND CONTROL 291

Fig. 2. Histogram of the coherence window size for node queueing level.

Fig. 3. Autocorrelation of node queueing levels.

propose to identify upper bounds on probabilistic path delays
and to use the delay bounds in identifying paths for real-time
data delivery. As we will discuss later in this section, upper
bounds on path delays can be derived using probability inequal-
ities such as Chebyshev inequality [39], and the properly iden-
tified delay bounds are still orders of magnitude less than the
maximum delays, thus enabling effective utilization of network
real-time capacity. Most probability inequalities use the mean
and/or the standard deviation of the corresponding random vari-
able, thus we need an accurate, agile mechanism of estimating
the mean and standard deviation of path delays. Nonetheless,
the sample size required for accurate estimation of path delay
statistics tend to be quite large, for instance, being greater than
100 in most cases and can be up to 594 [38], which are sig-
nificantly greater than the coherence window size of node/path
queueing levels. In addition, node queueing levels tend to have
low autocorrelation, not to mention staying unchanged, for time
lags greater than 100 samples, as shown in Figs. 3. Thus, the
large sample size requirement and the highly varying nature of
path delay distribution makes it impossible to accurately esti-
mate instantaneous mean path delay in an agile manner; that is,
the mean path delay changes before the estimation converges to
an accurate value.
Multi-Timescale Estimation (MTE): Towards addressing

the challenges of highly varying distribution and statistics of
path delay, we decompose contributors to path delay variations
into two factors: dynamic packet-time and dynamic queueing.
By leveraging the different timescales at which packet-time
and queueing vary, we propose the multi-timescale-estimation
(MTE) method that accurately estimates the highly varying
mean and variance of path delay by 1) accurately estimating the
mean and variance of packet-time at a longer timescale and 2)
by adapting to fast-varying queueing at a shorter timescale. In
what follows, we elaborate on the design of the MTE method.

Fig. 4. Goodness inversion probability and its 99% confidence interval.

Fig. 5. CDF of the packet-time across a typical link.

Observation 1: Packet-time distribution is stable.
Through detailed experimental analysis, we find that, given

a network condition, the distribution of packet-time is quite
stable despite the quick variation of instantaneous packet-time.
Using the Generalized KPSS test [40], we analyze the station-
arity window size of packet-time, where each stationarywindow
of a time series is a maximal consecutive segment of the time
series that is weak-sense stationary (i.e., with a constant mean
and variance over time). Fig. 6 shows the histogram of the sta-
tionarity window size for packet-time in the NetEye medium
traffic scenario. The minimum and the maximum window size
are 1901 and 21 937, respectively, both of which are signifi-
cantly greater than the sample size required to precisely esti-
mate the mean and variance of packet-time. For instance, Fig. 7
shows the empirical CDF of the sample size required for esti-
mating the mean packet-time at 90% accuracy and 90% confi-
dence level. The sample size requirement is less than 360 with
over 99% probability, and the maximum sample size require-
ment is 600.
The stability of the packet-time distribution has two impor-

tant implications:
• Given the real-time requirement on data delivery and the
constrained memory size in embedded WSC networks, the
stationarity window size tends to be greater than the max-
imum node queue size in general. This implies that, in (1),
the mean and variance for ’s are
the same for a given , and we denote them as

and . Therefore, the mean path delay can
be computed as follows:

(2)

292 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

Fig. 6. Histogram of stationarity window size for packet-time.

Fig. 7. Empirical CDF of the sample size required for estimating the mean
packet-time at 90% accuracy and 90% confidence level.

Fig. 8. Autocorrelation coefficient of packet-time along the same link.

• The stability of packet-time distribution enables each node
to accurately estimate the mean and variance of packet-
time from itself to the next-hop along a path, and, with (2),
the mean path delay can be accurately estimated.

Observation 2: Packet-time is uncorrelated.
We also observe that the packet-time for different transmis-

sions, whether from the same node or from different nodes,
tend to be uncorrelated. For instance, Fig. 8 shows the small
autocorrelation coefficient of packet-time along the same link,
with the boxplot showing, for each lag, the distribution of au-
tocorrelation coefficients across different links; Fig. 9 shows
the small correlation coefficient of packet-time along different
links, where the lag is defined as the number of packets queued
between two packets at different node queues as shown in Fig. 1,
assuming that the packets queued at time flow through the
nodes queues in a FIFO manner. We also observe that the me-
dian autocorrelation coefficient and the median cross-link cor-
relation coefficient of packet-time is zero at 99% confidence
level. An intuition for the uncorrelatedness between packet-time
is that, given a network condition, the behavior of one packet

Fig. 9. Correlation coefficient between the packet-time across different links
along a path.

Fig. 10. Histogram of relative errors in estimating the standard deviation of
path delay.

transmission does not have much impact on the behavior of an-
other packet transmission as far as the MAC protocol is con-
cerned.
The Bienaymé formula [41] shows that the variance of the

sum of pair-wise uncorrelated random variables is the sum of
the variances of the individual random variables. Thus our ob-
servations on the uncorrelatedness of packet-time along a path
enables each node to compute, for a given time instant, the
standard deviation of the path delay from itself to the destina-
tion node as the square root of the sum of the variances of the
packet-times for all the packets queued along the path at that in-
stant. For path of Fig. 1, for instance, the standard deviation
of can be computed as follows:

(3)

For a typical 5-hop path in NetEye, Fig. 10 shows the histogram
of the relative errors in estimating the standard deviation of path
delay in the presence of different queueing levels along the path.
We see that the estimation is quite accurate, with most rela-
tive errors within the range of (0.075, 0.075). Note that, if
we directly estimate the variance of the sojourn time

at node without decomposing into its

individual components ’s , we cannot
compute as . This is because, for

, and are correlated due to the correlation
between queueing levels at different nodes of a path.
In the simplified scenario of Fig. 1, the next-hops of all the

packets in a node queue are the same. In reality, a node may
well use different next-hops for different packets, for instance,
depending on packet deadlines as we will discuss in Section IV.

LIU et al.: TAMING UNCERTAINTIES IN REAL-TIME ROUTING FOR WIRELESS NETWORKED SENSING AND CONTROL 293

Fig. 11. Histogram of the correlation coefficient between the packet-time
across different outgoing links from the same node.

Assume that, at time , each node has
number of next-hops, the number of packets (including the one
arriving at at time) to be forwarded to its -th next hop
is , and the packet-time from to its -th next-hop is

. We observe that, given and , ’s tend to be un-
correlated for different s. For instance, Fig. 11 shows the his-
togram of the correlation coefficient between the packet-time
across different outgoing links from the same node. The corre-
lation coefficient is very small and is less than 3% most of the
time. We also observe that the median correlation coefficient is
zero at 99% confidence level. Then, based on (2) and (3), the
mean and standard deviation of the delay along a path can be
computed as follows:

(4)

Observation 3: Network queueing is relatively stable at short
timescales.
To leverage (4) in estimating the mean and variance of the

delay along path in a distributed manner, each node can
compute the mean and variance of the delay from itself to the
destination node based on those of its next-hop along .
Denoting the mean and standard deviation of the delay from
to by and , respectively ,
then we have

(5)

(6)

Equations (7) and (8) can be implemented using a dis-
tance-vector-type routing algorithm. Due to information
diffusion delay from to in routing, the implemented
version of (7) and (8) are

Fig. 12. CDF of link queueing level changes.

(7)

(8)

For accurate estimation of and , we need to
make as small as possible. This can be achieved by having

piggyback and onto its data trans-
missions as well as control signaling (e.g., broadcast of routing
beacons) so that can overhear the values quickly. In WSC
networks, sample data about physical behavior are usually gen-
erated periodically in a continuous manner, thus is at the same
timescale of inter-packet arrival interval, which enables quick
diffusion of path delay statistics.
We also observe that, even though network queueing varies

significantly at a long timescale of hundreds of inter-packet in-
tervals, it is much more stable at a short timescale of a few inter-
packet intervals. In the NetEye medium traffic scenario and for
the time lags of 1, 5, and 10 packet transmissions, for instance,
Fig. 12 shows the empirical cumulative distribution function
(CDF) of link queueing level changes (i.e., changes in).
We see that, at the timescale of a few inter-packet intervals, net-
work queueing remains relatively stable, and, with more than
90% probability, the absolute changes in link queueing levels
are nomore than 1. To ensure enough real-time capacity for each
source node, routing hops tend to be limited (e.g., less than 10)
in WSC networks [42]. This fact, together with the quick in-
formation diffusion and the relative stable network queueing at
short timescales, enables the MTE method to accurately esti-
mate the mean and variance of path delays in an agile manner.
Probabilistic Path Delay Bound: With themean and variance

of path delay estimated via the MTE method, a node can derive
the probabilistic path delay bounds using probability inequali-
ties. To this end, we have
Proposition 1: For a random variable , if

(9)

then is an upper bound on the -quantile
of , where is the inverse function of .

Proof: Let , then

Thus,

294 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

Fig. 13. Bounds on 90-percentile of path delay.

Since , we have

Thus, is an upper bound on the -quantile of .
For and a nonnegative random variable with mean

and variance , two widely applicable probability inequalities
[43] are the Markov inequality

(10)

and the one-tailed Chebyshev inequality

(11)

Thus, we have
Corollary 1: Using Markov inequality, .
Corollary 2: Using one-tailed Chebyshev inequality,

.
For a typical five-hop path in NetEye, Fig. 13 shows the

ground truth and the estimated 90-percentile of the path delay
when it is the sum of 5 and 40 packet-time random vari-
ables, respectively. For comparison purpose, we present the
probabilistic delay bounds estimated via the optimal-parti-
tion-minimum-delay (OPMD) method [37] or by assuming
path delay is normally distributed [44]; we also present the
maximum path delay. Given that Markov inequality usually
gives a looser bound than one-tailed Chebyshev inequality,
the probabilistic delay bound by Markov inequality is greater
than that by Chebyshev inequality. Compared with the method
of assuming path delay is normally distributed, the bound
by Chebyshev inequality is always greater than the actual
90-percentile path delay, whereas the former method under-
estimates the 90-percentile for the case of 40 packet-time
random variables. Given that the OPMD method is rather
conservative in estimating path delay bound, the bound by
Chebyshev inequality is also much less than the bound by the
OPMD method, especially when path queueing increases. We
also see that the maximum path delay is orders of magnitude
greater than the bound by Chebyshev inequality, thus using
probabilistic delay bound instead of maximum path delay helps
improve application-usable real-time capacity. Since the bound
by Chebyshev inequality upper-bounds and is close to the
probabilistic path delay, we use the probabilistic delay bound
by Chebyshev inequality in our protocol design.
From FCFS to EDF: In real-time scheduling, the earliest-

deadline-first (EDF) algorithm is a commonly used algorithm,

and it can ensure a smaller deadline than what is feasible with
the first-come-first-serve (FCFS) algorithm. Our MTE method
of computing probabilistic path delay bounds is derived by as-
suming that nodes use FCFS algorithm in intra-node transmis-
sion scheduling, but we observe that the delay bounds derived
via our FCFS-based MTE method can also serve as the basis of
selecting real-time packet forwarding paths even if the EDF al-
gorithm is used. Formally,
Proposition 2: If routed along a path whose probabilistic

delay bound computed via the FCFS-based MTE method is less
than the relative deadline of a packet, the packet will reach its
destination before its deadline even if the EDF algorithm is used
for intra-node transmission scheduling.

Proof: We prove the proposition by contradiction. When
a packet is forwarded where, each time a next-hop has
to be chosen, the next-hop is chosen such that ’s relative
deadline is no less than the probabilistic path delay bound com-
puted via the FCFS-based MTE method, the only way in which

can miss its deadline is as follows: when is queued at
some node , another packet arrives at at time and is
transmitted to a next-hop earlier than is transmitted. In this
case, since arrives at later than , the relative dead-
line of at time is no less than the probabilistic path delay
bound from to the destination assuming is trans-
mitted after . If the EDF algorithm schedules to be
transmitted earlier than , this implies that the relative dead-
line of at time is greater than that of at , thus being
greater than the delay bound . Note also that has
included the time taken to transmit and . Therefore,
even if is transmitted earlier than (which is similar to
switching their queue positions in a FIFO queue), can still
be delivered to the destination before its deadline. Q.E.D.

IV. MULTI-TIMESCALE ADAPTATION FOR REAL-TIME ROUTING

Overview: Real-time routing is subject to dynamics and un-
certainties at multiple timescales. At a longer timescale, link
properties such as ETX (i.e., expected-number-transmissions to
successfully deliver a packet) vary as a result of changing envi-
ronmental conditions (e.g., temperature); at a shorter timescale,
data transmission delay varies on a per-packet basis, and bursty
traffic may introduce sudden changes to network conditions.
Robust system design usually requires adaptation to dynamics
at the same or shorter timescales of the dynamics themselves.
Yet we have found that, due to the highly varying nature of
path delays, routing using delay-based metrics can introduce
large estimation errors and lead to routing instability as well as
low performance [17]. To ensure long-term stability and opti-
mality while addressing short-term dynamics at the same time,
we propose a multi-timescale adaptation (MTA) framework for
real-time routing as follows.
At lower frequencies, a directed-acyclic-graph (DAG) is

maintained for data forwarding, and any path within the DAG
is a candidate path for packet delivery. Given that link/path
ETX reflects network throughput, data delivery reliability, and
the overall trend of data delivery delay [19], [29], and that
ETX-based routing structures tend to be stable even if ETX
is dynamic [45], we propose to maintain the data forwarding
DAG based on link and path ETX such that the DAG reflects
long-term system optimality and changes relatively slowly
compared with delay variation. More specifically, there is a
directed edge from node to in the DAG if and only if the
minimum path ETX from to the destination is less than
that from to . The DAG defines, for each node , a set of

LIU et al.: TAMING UNCERTAINTIES IN REAL-TIME ROUTING FOR WIRELESS NETWORKED SENSING AND CONTROL 295

Fig. 14. Architecture of MTA-based real-time routing.

forwarder candidates where if and only if
link belongs to the DAG.
At higher frequencies, the spatiotemporal flow of packets

within the data forwarding DAG is adaptively controlled
to ensure reliable, real-time data delivery in the presence
of short-timescale dynamics such as transient packet losses
and per-packet variations of link delay. More specifically,
each packet contains information about the remaining time to
deadline, denoted by , and the required real-time guarantee
probability . When the packet reaches a node , first
finds the set of forwarder candidates within the DAG, denoted
by , that can ensure the real-time requirements
and ; then sets the next-hop node of the packet as the

node of the smallest path ETX to among all the nodes in
, and puts the packet in the transmission queue.

Queued packets are then scheduled for transmission using the
earliest-deadline-first (EDF) algorithm.
Using the above approach, packets are always routed along

the minimum-ETX path that satisfies the real-time data delivery
requirement. In the presence of heavy traffic load that induces
queueing, this real-time forwarding mechanism creates the
water-filling effect as follows: packets are delivered to the
minimum-ETX path until the path cannot ensure the required
timeliness of data delivery (e.g., due to queueing), at which
point the forthcoming packets are delivered to the path with the
second-minimum-ETX, and so on; once the delay along paths
of less ETX decreases (e.g., due to reduced queueing), more
packets will be delivered to those paths to fill them up. This
process repeats at the same timescale of packet arrival process,
and it enables real-time data delivery while ensuring as small
ETX in data delivery as possible. Unlike traditional delay-based
routing that may lead to instability and low performance, this
quick adaptation of spatial packet flow is enabled by 1) the
MTE method of accurate, agile estimation of probabilistic path
delay bound at the same timescale of the changes in path delay
distribution and by 2) the overall stability of spatial packet flow
along the data forwarding DAG.
System Architecture: To implement the above MTA frame-

work, we adopt a system architecture as shown in Fig. 14.
Using MAC feedback for the status (e.g., number of retries

and time duration) of transmitting data packets, each node uses
data-driven approaches [20], [21] to estimate the ETX as well as
the mean and variance of packet-time for its local links. Based
on nodes’ local link ETX, the data-forwarding DAG can be
established and maintained using distance-vector-routing-type
diffusion computation.

Each node also maintains a neighbor table that stores infor-
mation about its neighbors. In the case of limited memory, a
node may only maintain information about a selected set of
neighbors, e.g., those of small path ETX to the destination. For
each neighbor in the neighbor table, the ETX as well as themean
and variance of the delay along different paths from the neighbor
to the destination is maintained. Ideally, each node shall share
information about all the paths from itself to the destination, but
this is infeasible in practice due to limited memory size at nodes,
overhead of exchanging path information with neighbors, and
the exponentially increasing number of paths from a node to
the destination as the hop distance to the destination increases.
Therefore, each node only shares with its neighbors a sum-
mary of its knowledge about the paths from itself to the desti-
nation, using the following path aggregation method:
1) For each path from a neighbor to the destination , as
implicitly identified by an entry in the neighbor table,
computes the mean and variance of the delay from itself to
through using (7) and (8), and, based on Corollary 2

and application-required real-time guarantee probability ,
compute the probabilistic delay bound for the path
from to through ;

2) Compute the set of all visible paths from to , where
a path is visible if there is no other path
that has both smaller ETX and smaller path delay bound
(as computed above);

3) Order the paths in in a nondecreasing order of the delay
bounds they ensure, and select a subset of them as the path
summary to share with neighbors; in our implementation, a
node selects the path summary such that the delay bounds
ensured by the selected paths cover the complete range of
delay bounds ensured by the original set .

The computed path summary is piggybacked onto data packet
transmissions by , where each entry of the summary records
the ETX as well as the mean and variance of the delay along the
corresponding path.
When a node receives a packet from a local application or a

child, the packet dispatcher first uses a local time synchroniza-
tion service [46] to compute the time elapsed since the packet
was transmitted by its sender, which enables the dispatcher to
derive the remaining time to deadline (a.k.a. relative deadline)
for the packet. Based on the packet’s relative deadline, the
dispatcher puts the packet in a corresponding position in the
local queue. Whenever the queue is not empty and the wireless
channel becomes available, the dispatcher selects a packet
to transmit using the EDF algorithm (a.k.a. least laxity first
algorithm).
Detailed discussions on the challenges and our solutions in

implementing the MTA architecture in TinyOS can be found in
[38].

V. MEASUREMENT EVALUATION

We evaluate the behavior of MTA through measurement
study in the NetEye and Indriya testbeds. In what follows,
we first present the methodology, then we study the design
decisions of MTA and compare MTA with existing routing
protocols.

A. Methodology

Protocols: We have implemented the MTA framework (in-
cluding the MTE method) in TinyOS. To understand the design
decisions of MTA, we comparatively study MTA with its fol-
lowing variants:

296 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

• M-DS: same asMTA but directly estimate path delay quan-
tiles using nonparametric method [36] and path delay
samples that are collected in a distributed manner;

• M-DB: same as MTA but estimates the mean and variance
of path delay directly through path delay samples;

• M-ST: same as MTA but estimates the mean and variance
of path delay as the sum of the mean and variance of the
sojourn time at each node of the path, without decomposing
the sojourn time into the individual packet-times;

• M-MD: Same as MTA but maintains the data forwarding
DAG based on mean link/path delay instead of link/path
ETX;

• M-mDQ: same as MTA but forwards packets to the
next-hop candidate with the minimum path delay quantile
instead of the one with minimum path ETX;

• mDQ: same as M-mDQ but does not use the data for-
warding DAG of MTA for stability control;

• M-FCFS: same as MTA but uses FCFS instead of EDF for
intra-node transmission scheduling.

Towards understanding the benefits of MTA, we also compara-
tively study MTA with the following existing protocols:
• MCMP: a multi-path QoS routing protocol where
end-to-end QoS requirements on reliability and time-
liness are uniformly divided into per-hop reliability and
timeliness requirements, upon which a node chooses the
minimum number of next-hops to satisfy the per-hop
requirements in data delivery [27];

• MM: the geographic routing protocol MMSPEED [23] that
routes and schedules packet transmissions based on nodes’
distances to destinations, packet delivery deadlines, and
mean link delays; MMSPEED also tries to improve packet
delivery reliability by transmitting packets along multiple
paths; (Note: we denote MMSPEED as MM for the read-
ability of figures to be presented in the next subsection.)

• MM-CD: same as MMSPEED but, instead of using the
mean link delay, uses a conservative estimate of link delay
that equals the sum of the mean delay and three times the
standard deviation of the delay;

• SDRCS: similar to MMSPEED but, instead of using ge-
ographic distance, uses data-forwarding hop-count as the
measure of distance, where the hop-count is computed
based on received-signal-strength (RSS) between nodes
[22]; data forwarding is through receiver contention sim-
ilar to that in opportunistic routing;

• CTP: an ETX-based non-real-time routing protocol in
TinyOS [20].

(Note: for MM and MM-CD which use node locations, we con-
figured each node with its correct location in our TinyOS pro-
grams.)
Traffic & Real-Time Requirements: For studying the design

decisions of MTA, we use the common case of the medium
traffic scenario in NetEye; for comparing MTA with existing
real-time routing protocols, we use all the periodic and event
traffic scenarios discussed in Section II. In our experiments, we
use 90% as the required real-time guarantee probability by de-
fault, but we have also experimented with the real-time guar-
antee probability of 99% and observed similar phenomena [38].
For differentiating the performance of different protocols, the
deadline for each traffic scenario is chosen so that it is neither
too stringent (that no protocol can support) nor too loose (that
all protocols can support). In NetEye, the deadlines for light,
medium, and heavy traffic are 250 ms, 2 s, and 7.5 s, respec-
tively, and the deadline for event traffic is 10 s. In Indriya, the

Fig. 15. Deadline success ratio: MTA and variants.

deadlines for periodic and event traffic are 2 s and 2.5 s, respec-
tively.
Due to the limitation of space, here we only present results

for medium periodic traffic in NetEye and Indriya. Similar phe-
nomena have been observed for other traffic scenarios; inter-
ested readers can find them in [38]. We have also experimented
with networks of lower connectivity and have observed similar
phenomena [38].
Metrics: For each combination of protocol, testbed, and

traffic scenario, we run it for 10 times and evaluate protocol
performance in terms of the following metrics:
• Deadline success ratio (DSR): ratio of packets delivered to
the sink before their deadlines;

• Packet delivery ratio (PDR): ratio of packets delivered to
the sink;

• Number of transmissions per packet delivered (NTX):
total number of transmissions, including retransmissions,
divided by the number of unique packets delivered to the
sink.

To understand protocol behavior in more detail, we also analyze
the different causes for a packet to miss its deadline:
• Overflow: packet discarded due to node queue overflow;
• Transmission failure: a packet not delivered to the next hop
even after the maximum number of retransmissions at a
node;

• Rejection: no candidate path can ensure the required real-
time delivery guarantee (i.e., deadline and probability) of
a packet;

• Expiration: deadline expired before the packet reaches the
sink, whether or not the packet is delivered to the sink.

B. Design Decisions of MTA

For periodic medium traffic in NetEye and for protocol MTA
and its variants, Figs. 15, 16, 17, and 18 show the deadline suc-
cess ratio, packet delivery ratio, number of transmissions per
packet delivered, and packet delivery status, respectively. We
see that MTA consistently enables the highest deadline success
ratio and packet delivery ratio as well as the lowest transmission
cost.
Compared with MTE as used in MTA, M-DS, M-DB, and

M-ST all underestimate path delay quantiles such that packets
are routed along paths that cannot ensure the required data de-
livery deadline, which makes packets rejected in the network or
their deadlines expire before reaching the sink node (as shown
in Fig. 18). For a typical four-hop path in NetEye, for instance,
Fig. 19 shows the empirical cumulative distribution function
(CDF) of the relative error in estimating the 90 percentile of
path delay using MTA, M-DS, M-DB, and M-ST, respectively,

LIU et al.: TAMING UNCERTAINTIES IN REAL-TIME ROUTING FOR WIRELESS NETWORKED SENSING AND CONTROL 297

Fig. 16. Packet delivery ratio: MTA and variants.

Fig. 17. Number of transmissions per packet delivered: MTA and variants.

Fig. 18. Packet delivery status: MTA and variants.

where the relative error is defined as the estimated percentile
minus the actual percentile and then divided by the actual per-
centile. We see that M-DS, M-DB, and M-ST underestimate the
90 percentile for 100%, 60%, and 20% of the time, respectively.
M-DS and M-DB tend to underestimate because, when sam-
pling path delay in a distributed manner, a sample of the delay
along a link can be used multiple times due to diffusion delay;
this tends to reduce the variability of the collected path delay
samples, thus causing the underestimation of path delay vari-
ance which in turn leads to the underestimation of delay quan-
tiles. M-ST tends to underestimate because the sojourn time at
different nodes are positively correlated due to positive correla-
tion in packet queueing at nodes; since the variance of the sum
of the sojourn time at different nodes of a path equals to the
sum of their individual variance plus their pair-wise covariance,
path delay variance tends to be underestimated in M-ST, which
in turn leads to the underestimation of path delay quantiles. In
contrast, MTA only underestimates for 2% of time thanks to
the MTE method. The reason why MTA does not completely

Fig. 19. CDF of the relative error in estimating the 90 percentile of path delay.

avoid underestimation is that, just as in any possible estimation
method, there are inherent errors (e.g., due to the EWMA es-
timator) in the MTE method that leads to small errors in esti-
mating the mean and standard deviation of path delay which in
turn can offset the conservativeness of Chebyshev inequality.
It is known that ETX-based routing enables higher delivery

ratio and lower transmission cost than delay-based routing [17],
thus MTA enables higher delivery ratio and lower transmission
cost than M-MD, M-mDQ and mDQ. M-mDQ and mDQ use
paths with minimum path delay quantiles; this introduces more
route changes than inMTA, leading to larger errors in estimating
path delay quantiles and thus reduces deadline success ratio.
Even though M-MD, M-mDQ, and mDQ do not try to mini-
mize path ETX as M-DS, M-DB, and M-ST do, they outper-
form M-DS, M-DB, and M-ST which do not use MTE as the
path delay estimation method; this shows the importance of ac-
curate, agile estimation of path delay quantiles via MTE.
The median deadline success ratio in M-FCFS is higher than

the required real-time guarantee probability of 90%, but there
are a few cases when the deadline success ratio is slightly below
90%. This is because, just as any estimation method, the MTE
method is not perfect; it has to use estimators such as exponen-
tially weighted-moving-average which has inherent estimation
errors, and the delay in diffusing network state (e.g., mean and
variance of path delay from a node to the sink) introduces slight
estimation errors in MTE. The fact that MTA always ensures a
deadline success ratio of at least 90% shows that the temporal
packet flow control enabled by EDF helps ameliorate the impact
of the minor imperfections in MTE. Thus an interesting direc-
tion to explore is the joint optimization of spatial and temporal
packet flow in real-time networking, and we will study this in
more detail in our future work.

C. Different Routing Protocols

NetEye: For periodic medium traffic in NetEye, Figs. 20, 21,
22, and 23 show the deadline success ratio, packet delivery ratio,
transmission cost, and packet delivery status, respectively.
We see that MTA always ensures the required real-time de-

livery performance, and the median deadline success ratio in
MTA is 76%, 89%, 86%, 11%, and 38% higher than that in
MCMP,MM,MM-CD, SDRCS, CTP, respectively. The median
number of transmissions per packet delivered in MTA is less
than that in MCMP, MM, MM-CD, SDRCS, CTP by a factor of
3.7, 9.7, 6.5, 1.2, and 1.2, respectively.
One reason why the deadline success ratio in MCMP, MM,

and MM-CD is very low is because a large fraction of packets
are lost due to queue overflow as can be seen in Fig. 23. They
all try to use multiple paths to ensure data delivery reliability:

298 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

Fig. 20. Deadline success ratio: MTA and existing protocols in the NetEye
medium traffic scenario.

Fig. 21. Packet delivery ratio: MTA and existing protocols in the NetEye
medium traffic scenario.

Fig. 22. Number of transmissions per packet delivered: MTA and existing pro-
tocols in the NetEye medium traffic scenario.

at the sources, multiple copies of a packet can be sent; at the
next hop, each of these copies can be multiplied again, and so
on. This multipath routing mechanism can lead to exponentially
increasing number of copies of a packet, thus causing severe
queue overflow and large transmission cost as shown in Figs. 23
and 22, respectively. SDRCS does not have this problem be-
cause it does not use multipath routing, instead it uses a data
forwarding mechanism similar to opportunistic routing.
Another reason why MCMP, MM, MM-CD, and SDRCS do

not perform well is because, by evenly dividing end-to-end QoS
requirements into per-hop requirements, they implicitly assume
that network conditions are uniform across the network which
is usually not the case. Among these protocols, the negative
impact of this assumption is relatively less severe in SDRCS

Fig. 23. Packet delivery status: MTA and existing protocols in the NetEye
medium traffic scenario.

Fig. 24. Histogram of the ETX of the paths taken by all the packets.

because it uses signal strength as the basis of measuring for-
warding distances and signal strength is a better metric for mea-
suring wireless link quality than geographic distance.MTA does
not have this problem becauseMTE enables accurate, agile esti-
mation of end-to-end delay quantiles without assuming uniform
network conditions. A third reason for the low performance of
MM, MM-CD, and SDRCS is because they only consider mean
delays instead of the probabilistic distributions of delays.
Compared with MTA, CTP has higher packet delivery ratio,

but CTP only enables a median deadline success ratio of 56%
which is lower than the real-time gurantee probability of 90%
and much lower than the 93% probability guarantee by MTA.
This is because CTP only considers path ETX in routing, and
it is delay-unaware. Even if a low-ETX path is experiencing
large delay due to queueing, CTP still uses the path, thus leading
to large data delivery delay and deadline miss. Through accu-
rate, agile estimation of path delay via MTE, in contrast, MTA
can switch to a less congested path whenever it detects the in-
ability of the current low-ETX path to deliver packets before
their deadlines, creating the water-filling effect as we have dis-
cussed in Section IV. For instance, Fig. 24 shows the histogram
of the ETX of the paths taken by all the packets. We see that
MTA tends to use paths of lower-ETX with higher probability,
even though the minimum-ETX path will not always be used
with the highest probability (e.g., when the capacity of the min-
imum-ETX path is reduced due to the shared path segments with
other paths).
Indriya: Figs. 25, 26, 27, and 28 show the deadline success

ratio, packet delivery ratio, transmission cost, and packet de-
livery status for periodic traffic in Indriya, respectively.
The overall relative behavior between protocols is similar

to that in NetEye, but the performance of MM, MM-CD, and
SDRCS become much worse compared with MTA. MTA still
ensures real-time data delivery, butMM andMM-CD can hardly

LIU et al.: TAMING UNCERTAINTIES IN REAL-TIME ROUTING FOR WIRELESS NETWORKED SENSING AND CONTROL 299

Fig. 25. Deadline success ratio: MTA and existing protocols in Indriya.

Fig. 26. Packet delivery ratio: MTA and existing protocols in Indriya.

Fig. 27. Number of transmissions per packet delivered: MTA and existing pro-
tocols in Indriya.

Fig. 28. Packet delivery status: MTA and existing protocols in Indriya.

deliver any packet to the sink, let alone delivering packets in
time; the deadline success ratio in SDRCS is also more than

72% less than that inMTA. One major cause for this is that MM,
MM-CD, and SDRCS implicitly assume uniform network con-
ditions while the degree of heterogeneity in Indriya is significant
and higher than that in NetEye. As a result of the uniformity as-
sumption, for instance, about 60% and 50% of packets are re-
jected in MM and MM-CD respectively as shown in Fig. 28.
Given a packet, more specifically, its deadline and the distance
from its source to the sink determines the required forwarding
speed for this packet. For the packet to reach the sink, every
single hop it traverses has to provide a speed no less than the
required speed. That is, if any intermediate hop cannot meet the
required speed, a packet is rejected. For MM and MM-CD, it
only takes about 3 or 4 hops to reach the sink from the sources
in NetEye, while it takes about 7 or 8 hops in Indriya, making
packets in Indriya more likely to be rejected. Note that there is
significant queue overflow in SDRCS because SDRCS happen
to use low reliability links in Indriya which reduce the network
throughput and thus increase the queueing and queue overflow.

VI. RELATED WORK

QoS routing has been well studied for the Internet [47], [48]
and wireless networks [49]–[51]. But most did not consider un-
certainties in link/path properties (e.g., delay). Link property un-
certainties were considered in [15] and [44], and it was shown
that the problem of checking probabilistically guaranteed path
delays is NP-hard [15]. Focusing on Internet QoS routing, these
work assumed link-state routing, and their solutions were not
amenable to light-weight, distance-vector-type implementation.
Since link-state routing is usually not suitable for dynamic, re-
source constrainedWSC networks where reliable network-wide
link-state update itself is a challenging issue and where nodes
may only have very limited memory space (e.g., up to 4 KB
of RAM), the approaches of [15] and [44] are not applicable to
WSC networks.
Data delivery delay was also considered in wireless and

sensor network routing [23]–[27]; but they only tried to mini-
mize average path delay without ensuring probabilistic delay
bounds [22]–[26], they did not consider the probabilistic na-
ture of link/path delays [28], they were based on geographic
forwarding without addressing network nonuniformity and
wireless communication irregularity [23], [24], or they uni-
formly partitioned multi-hop QoS requirements (e.g., reliability
and timeliness) along the links of a path without considering
network nonuniformity [22], [27]. Huang et al. [27] used
Chebyshev inequality in single-hop real-time satisfiability
testing, but they did not address the challenges of accurate,
agile estimation of multi-hop probabilistic delay bounds, and
they did not comparatively study Chebyshev inequality with
other well-known probability inequalities. Liu et al. [37]
proposed the pseudo-polynomial time algorithm optimal-parti-
tion-minimum-delay (OPMD) for upper-bounding probabilistic
path delays, but, as we have shown in Section III, the bound of
the OPMD algorithm is quite loose for multi-hop paths.
Multi-timescale adaptation has been considered in Internet

traffic engineering [52], [53]. Focusing on load balancing,
these work did not consider QoS assurance. Liu et al. [37]
also studied multi-timescale adaptation in routing, but they
used the OPMD method to estimate probabilistic delay bounds
which are significantly looser than the bound identified through
our MTE method, thus leading to real-time capacity loss. The
IETF ROLL working group [54] considered building routing
trees based on directed-acyclic-graphs (DAG) for low-power
wireless networks. Serving as a general reference framework,

300 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

the ROLL routing proposal did not consider specific optimiza-
tion methods (e.g., for real-time guarantees). For stable data
delivery reliability, Lin et al. [55] proposed to route data based
on long-term link properties and to address transient perturba-
tions using power and retransmission control; they focused on
data delivery reliability instead of real-time, thus they did not
consider the challenges of dynamic, uncertain link/path delays
in real-time routing.
The WirelessHART [7] and the ISA SP100.11a [8] stan-

dards have been recently proposed for wireless networking
in industrial process measurement and control. They mostly
focus on high-level system frameworks instead of specific
algorithms in real-time routing. In the literature of real-time
wireless networking, techniques such as power control [56] as
well as joint routing and scheduling [28] have been studied; en-
ergy-efficiency [57] has also been considered too. Orthogonal
to these studies, our study here has focused on addressing the
challenges that dynamic, uncertain link/path delays pose to two
basic elements of real-time routing, i.e., determining proba-
bilistic path delays and addressing instability in delay-adaptive
routing. Integrating our results with those work will be an
interesting research avenue to pursue, but detailed study of it is
beyond the scope of this paper.

VII. CONCLUDING REMARKS

For addressing the challenges of highly varying path de-
lays to distributed estimation of path delay quantiles, we
have proposed the MTE method that leverages the stability
of packet-time distribution and the quick diffusion of path
delay statistics (i.e., mean and variance) to accurately estimate
probabilistic path delay bounds in an agile manner. Based on
accurate, agile characterization of path delays using MTE, our
MTA routing framework enables the stability and optimality
of data forwarding while adapting to fast-changing network
queueing and delay. Through extensive measurement study
in both the NetEye and the Indriya wireless sensor network
testbeds, we have shown that MTE/MTA-based routing en-
sures efficient, real-time data delivery, and it significantly
outperforms existing real-time routing protocols. We have
mainly focused on real-time spatial flow control in this study,
even though we have experimentally analyzed the benefits of
using EDF instead of FCFS in intra-node scheduling; how to
control temporal packet flow between neighbors and across the
network and how to jointly optimize the spatial and temporal
packet flow will be an important area to explore, where the
MTE method and the MTA framework are expected to serve
as basic systems building-blocks. The technique of leveraging
different timescales of dynamics in protocol design may well be
of generic interest to wireless networking in dynamic, uncertain
environments too.

ACKNOWLEDGMENT

The authors thank George Yin for discussions on probability
inequalities. The authors also thank the anonymous referees for
helpful comments on the paper.

REFERENCES

[1] IEEE 802.15 Smart Utility Networks Task Group 4g [Online]. Avail-
able: http://www.ieee802.org/15/pub/TG4g.html

[2] H. Gharavi and B. Hu, “Multigate communication network for smart
grid,” Proc. IEEE, vol. 99, no. 6, pp. 1028–1045, 2011.

[3] M. Erol-Kantarci and H. T. Mouftah, “Wireless sensor networks for
cost-efficient residential energy management in the smart grid,” IEEE
Trans. Smart Grid, vol. 2, no. 2, pp. 314–325, 2011.

[4] F. R. Yu, P. Zhang, W. Xiao, and P. Choudhury, “Communication sys-
tems for grid integration of renewable energy resources,” IEEE Net-
work, vol. 25, no. 5, pp. 22–29, Sep./Oct. 2011.

[5] W. Wang, Y. Xu, and M. Khanna, “A survey on the communication
architectures in smart grid,” Comput. Netw., vol. 55, pp. 3604–3629,
2011.

[6] IEEE 802.15.4e Working Group [Online]. Available: http://www.
ieee802.org/15/pub/TG4e.html

[7] WirelessHART [Online]. Available: http://www.hartcomm2.org/
hart_protocol/wireless_hart/wireless_hart_main.html

[8] ISA SP100.11a [Online]. Available: http://www.isa.org//MSTemplate.
cfm?MicrositeID=1134&CommitteeID=6891

[9] A. LaJoie, “Wireless sensors enjoy timely role in factory au-
tomation,” Ind. Ethernet Book, Apr. 2010 [Online]. Available:
http://www.iebmedia.com/index.php?id=6693&parentid=74&the-
meid=255&hft=57&showdetail=true&bb=1

[10] A. Willig, “Recent and emerging topics in wireless industrial commu-
nications: A selection,” IEEE Trans. Ind. Informat., vol. 4, no. 2, pp.
102–104, May 2008.

[11] Y. P. Fallah, C. Huang, R. Sengupta, and H. Krishnan, “Design of coop-
erative vehicle safety systems based on tight coupling of communica-
tion, computing and physical vehicle dynamics,” in Proc. ACM/IEEE
ICCPS, 2010.

[12] H.-M. Tsai, C. Saraydar, T. Talty, M. Ames, A. Macdonald, and O.
K. Tonguz, “Zigbee-based intra-car wireless sensor network,” in Proc.
IEEE ICC, 2007.

[13] J. R. Moyne and D. M. Tilbury, “Control and communication chal-
lenges in networked real-time systems,” Proc. IEEE, vol. 95, no. 1, pp.
9–28, 2007.

[14] J. Hellerstein, Y. Diao, S. Parekh, and D.M. Tilbury, Feedback Control
of Computing Systems. New York: Wiley-IEEE Press, 2004.

[15] R. A. Guerin and A. Orda, “QoS routing in networks with inaccurate
information: Theory and algorithms,” IEEE/ACM Trans. Netw., vol. 7,
no. 3, pp. 350–364, 1999.

[16] R. Draves, J. Padhye, and B. Zill, “Comparison of routing metrics for
static multi-hop wireless networks,” in Proc. ACM SIGCOMM, 2004.

[17] H. Zhang, L. Sang, and A. Arora, “Comparison of data-drive link esti-
mation methods in low-power wireless networks,” IEEE Trans. Mobile
Comput., vol. 9, no. 11, pp. 1634–1648, Nov. 2010.

[18] S. Biswas and R. Morris, “ExOR: Opportunistic multi-hop routing for
wireless networks,” in Proc. ACM SIGCOMM, 2005.

[19] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” in Proc. ACM
MobiCom, 2003.

[20] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collec-
tion tree protocol,” in Proc. ACM SenSys, 2009.

[21] H. Zhang, A. Arora, and P. Sinha, “Link estimation and routing in
sensor network backbones: Beacon-based or data-driven?,” IEEE
Trans. Mobile Comput., vol. 8, no. 5, pp. 653–667, May 2009.

[22] Y. Xue, B. Ramamurthy, and M. C. Vuran, “SDRCS: A service-differ-
entiated real-time communication scheme for event sensing in wireless
sensor networks,” Comput. Netw., vol. 55, pp. 3287–3302, 2011.

[23] E. Felemban, C.-G. Lee, E. Ekici, R. Boder, and S. Vural, “Probabilistic
QoS guarantee in reliability and timeliness domains in wireless sensor
networks,” in Proc. IEEE INFOCOM, 2005.

[24] T. He, J. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A stateless
protocol for real-time communication in sensor networks,” in Proc.
IEEE ICDCS, 2003.

[25] H. Li, Y. Cheng, and C. Zhou, “Minimizing end-to-end delay: A novel
routing metric for multi-radio wireless mesh networks,” in Proc. IEEE
INFOCOM, 2009.

[26] S. Yin, Y. Xiong, Q. Zhang, and X. Lin, “Traffic-aware routing for
real-time communications in wireless multi-hop networks,” Wireless
Commun. Mobile Comput., vol. 6, pp. 825–843, 2006.

[27] X. Huang and Y. Fang, “Multiconstrained QoS multipath routing in
wireless sensor networks,”Wireless Netw., vol. 14, pp. 465–478, 2008.

[28] S. Munir, S. Lin, E. Hoque, S. M. S. Nirjon, J. A. Stankovic, and
K. Whitehouse, “Addressing burstiness for reliable communication
and latency bound generation in wireless sensor networks,” in Proc.
IEEE/ACM IPSN, 2010.

[29] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop
wireless mesh networks,” in Proc. ACM MobiCom, 2004.

LIU et al.: TAMING UNCERTAINTIES IN REAL-TIME ROUTING FOR WIRELESS NETWORKED SENSING AND CONTROL 301

[30] NetEye Testbed [Online]. Available: http://neteye.cs.wayne.edu/
neteye/home.php 2008

[31] Indriya Testbed [Online]. Available: http://indriya.comp.nus.edu.sg/
[32] H. Zhang, A. Arora, Y. ri Choi, and M. Gouda, “Reliable bursty con-

vergecast in wireless sensor networks,” Comput. Commun., Special
Issue on Sensor-Actuator Networks, vol. 30, no. 13, 2007.

[33] An Event Traffic Trace for Sensor Networks [Online]. Available: http://
www.cs.wayne.edu/~hzhang/group/publications/Lites-trace.txt

[34] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in Proc. ACM SenSys, 2003.

[35] L. Wang and G. Yin, “Quantized identification under dependent noise
and fisher information ratio for communication channels,” IEEE Trans.
Automat. Control, vol. 55, pp. 674–690, 2010.

[36] R. Jain and I. Chlamtac, “The algorithm for dynamic calculation
of quantiles and histograms without storing observations,” Commun.
ACM, vol. 28, no. 10, pp. 1076–1085, 1985.

[37] X. Liu, H. Zhang, andQ. Xiang, “Towards predictable real-time routing
for wireless networked sensing and control,” in Proc. CPS Week Re-
alWin Workshop, 2011.

[38] X. Liu, H. Zhang, Q. Xiang, X. Che, andX. Ju, “Taming uncertainties in
real-time routing for wireless networked sensing and control,” Wayne
State Univ., Detroit, MI, Tech. Rep. DNC-TR-11-04, 2011 [Online].
Available: https://sites.google.com/site/dnctrs/DNC-TR-11-04.pdf

[39] S. M. Ross, Introduction to Probability Models. New York: Aca-
demic, 2006.

[40] B. Hobijn, P. H. Franses, and M. Ooms, “Generalizations of the
KPSS-test for stationarity,” Statistica Neerlandica, vol. 58, no. 4, pp.
483–502, 2004.

[41] M. Loeve, Probability Theory. New York: Springer-Verlag, 1977.
[42] S. Bapat, V. Kulathumani, and A. Arora, “Analyzing the yield of

exscal, a large-scale wireless sensor network experiment,” in Proc.
IEEE ICNP, 2005, pp. 53–62.

[43] J. V. Uspensky, Introduction to Mathematical Probability. New
York: McGraw-Hill, 1937.

[44] T. Korkmaz and M. Krunz, “Bandwidth-delay constrained path selec-
tion under inaccurate state information,” IEEE/ACM Trans. Netw., vol.
11, no. 3, pp. 384–398, 2003.

[45] H. Zhang, L. Sang, and A. Arora, “On biased link sampling in data-
driven link estimation and routing in low-power wireless networks,”
ACM Trans. Auton. Adapt. Syst., vol. 4, no. 3, pp. 1–29, Jul. 2009.

[46] TinyOS TEP 133: Packet-Level Time Synchronization [Online]. Avail-
able: http://www.tinyos.net/tinyos-2.x/doc/html/tep133.html

[47] A. Chakrabarti and G. Manimaran, “Reliability constrained routing in
QoS networks,” IEEE/ACM Trans. Netw., vol. 13, no. 3, pp. 662–675,
2005.

[48] S. Chen, M. Song, and S. Sahni, “Two techniques for fast computation
of constrained shortest paths,” IEEE/ACM Trans. Netw., vol. 16, no. 1,
pp. 105–115, Feb. 2008.

[49] X. Fang, D. Yang, P. Gundecha, and G. Xue, “Multi-constrained any
path routing in wireless mesh networks,” in Proc. IEEE SECON, 2010.

[50] S. Chakrabarti and A. Mishra, “QoS issues in ad hoc wireless net-
works,” IEEE Commun. Mag., vol. 39, no. 2, pp. 142–148, Feb. 2001.

[51] L. Chen and W. B. Heinzelman, “QoS-aware routing based on band-
width estimation for mobile ad hoc networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 3, pp. 561–571, 2005.

[52] M. Caesar, M. Casado, T. Koponen, J. Rexford, and S. Shenker,
“Dynamic route computation considered harmful,” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, no. 2, pp. 66–71, 2010.

[53] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the
tightrope: Responsive yet stable traffic engineering,” in Proc. ACM
SIGCOMM, 2005.

[54] IETF, Routing Over Low Power and Lossy Networks (ROLL)
Working Group [Online]. Available: http://www.ietf.org/html.char-
ters/roll-charter.html

[55] S. Lin, G. Zhou, K. Whitehouse, Y. Wu, J. A. Stankovic, and T. He,
“Towards stable network performance in wireless sensor networks,” in
Proc. IEEE RTSS, 2009.

[56] O. Chipara, Z. He, G. Xing, Q. Chen, X.Wang, C. Lu, J. Stankovic, and
T. Abdelzaher, “Real-time power-aware routing in sensor networks,”
in Proc. IWQoS, 2006.

[57] S. C. Ergen and P. Varaiya, “Energy efficient routing with delay guar-
antee for sensor networks,”Wireless Netw., vol. 13, no. 5, pp. 679–690,
2007.

Xiaohui Liu received the B.S. degree in computer
science from Wuhan University, China. He is cur-
rently working toward the Ph.D. degree in the De-
partment of Computer Science at Wayne State Uni-
versity, Detroit, MI.
His primary research interests lie in real-time, QoS

routing in wireless and sensor networks.
Mr. Liu is a Student Member of ACM.

Hongwei Zhang (S’01–M’07) received the B.S.
and M.S. degrees in computer engineering from
Chongqing University, China, and the Ph.D. degree
from Ohio State University, Columbus.
He is currently an Associate Professor of Com-

puter Science at Wayne State University, Detroit,
MI. His primary research interests lie in the mod-
eling, algorithmic, and systems issues in wireless,
vehicular, embedded, and sensor networks. His
research has been an integral part of several NSF
and DARPA projects such as the KanseiGenie and

the ExScal projects.
Dr. Zhang is a Member of ACM. He is a recipient of the National Science

Foundation CAREER Award. (URL: http://www.cs.wayne.edu/hzhang).

Qiao Xiang received the B.S. degrees in engineering
and economics from Nankai University, China. He is
currently working toward the Ph.D. degree in the De-
partment of Computer Science, Wayne State Univer-
sity, Detroit, MI. His research interests lie in wireless
cyber-physical systems.

Xin Che (S’10) received the B.S. and M.S. degrees
in electrical engineering and the B.S. degree in
computer science from Huazhong University of
Science and Technology, Wuhan, China. He is cur-
rently working toward the Ph.D. degree in computer
science at Wayne State University, Detroit, MI.
His primary research interests lie in modeling, al-

gorithmic, and systems issues in wireless, embedded,
and sensor networks.

Xi Ju received the M.S. and Ph.D. degrees in com-
puter science from Southeast University, China.
He is currently a Visiting Scholar of Computer Sci-

ence at Wayne State University, Detroit, MI. His re-
search focuses on wireless, vehicular, and embedded
networked sensing. He has been involved in the de-
velopment of the Chinese Next Generation Internet
and the U.S. NSF GENI project.

