
What Appears Suboptimal May Surprise You:
A Fixed-Rate Scheduling Policy for Geo-Distributed

CoFlows
Haoyu Liu

School of Information
Xiamen University

Xiamen, China
liuhaoyu@stu.xmu.edu.com

Feiyan Ding
School of Information

Xiamen University
Xiamen, China

feiyan.ding.xmu@gmail.com

Yao Wang
School of Information

Xiamen University
Xiamen, China

yaowong@stu.xmu.edu.com

Qiao Xiang*
School of Information

Xiamen University
Xiamen, China

xiangq27@gmail.com

Jiwu Shu
School of Information

Xiamen University
Xiamen, China

jwshu@xmu.edu.cn

Haizhou Du
School of CS and Technology

University of Electric Power of Shanghai
Shanghai, China

duhaizhou@gmail.com

Linghe Kong
Dept. of CS and Engineering
Shanghai Jiao Tong University

Shanghai, China
linghe.kong@sjtu.edu.cn

Xue Liu
School of Computer Science

McGill University
Montreal, Canada

xueliu@cs.mcgill.ca

Abstract—All existing coflow scheduling algorithms compute
dynamic-rate schedules that change the rates of flows during
transmission. In this paper, we make a crucial finding: although
dynamically adjusting the rates of flows could lead to a better
coflow completion time (CCT) in theory, it would introduce
additional pressures on the congestion control mechanism in the
underlying network, which result in poor CCT in practice. This
difference between theoretical CCT and practical CCT is further
exacerbated in wide-area networks, where the topology does not
provide any bisection guarantee as data center networks do. To
this end, we designed a fixed-rate coflow scheduling policy called
FSCO. Although in theory, the best fixed-rate schedule is usually
suboptimal, it keeps the in-flight traffic relatively steady, reducing
the risk of triggering congestion control. The core of FSCO is
an efficient scheduling algorithm based on the classic network
utilization maximization (NUM) framework. We implement a
prototype of FSCO and evaluate its performance extensively
using real-world topologies and coflow traces. Experimental
results show that the total CCT reduces up to 30% compared
to baselines while yielding up to 12⇥ speedups compared to the
solver.

Index Terms—Coflow Scheduling, Network Utility Maximiza-
tion, Dual decomposition

I. INTRODUCTION

With the rapid improvement of computer and information
infrastructures, many geo-distributed applications and frame-
works are developed to provide data analytics and large model
training services, such as MapReduce [1], Spark [2], Bulk
Synchronous Parallel (BSP) [3]. These jobs contain many
individual flows between consecutive stages, indicating that
their performance is determined by the collective behavior of
all these flows. We usually regard these flows as a coflow
[4]. Since the results of jobs are significant to subsequent

* Corresponding author

processing, it is critical to schedule geo-distributed coflows
to achieve high throughput and short job completion time in a
low bandwidth scene or bandwidth-scarce scene such as Wide-
Area Network (WAN).

In recent years, to improve the performance of data-parallel
jobs in various scenes, many schemes [5]–[16] have focused
on managing coflows to avoid the bottleneck of networks.
One effort of them puts attention on coflow scheduling in
data centers. Varys [5] and Sincornia [6] focus on data center
coflow scheduling with prior knowledge, while some other
schemes focus on scheduling in data centers without prior
knowledge, such as [7], [8], [11]. All these above works
abstract the network as a single big switch connected to all
the machines, regardless of the link bandwidth. Unlike the
non-blocking scene in data centers, the bandwidth on the
WAN is scarce, leading to performance degradation when
applying these scheduling schemes to the transmission of geo-
distributed coflows. Thus, many works [9], [10], [12], [13]
propose solutions for coflow transmission over the WAN which
takes bandwidth into account. To achieve better performance,
these scheduling schemes change the flow rate during trans-
mission, which dynamically sends data to the network stack.

Emerging trends [9], [10], [17]–[19] in how jobs are
scheduled only consider the optimal solution of application
layer scheduling in mathematics.Unfortunately, based on our
findings in many simulations, there are gaps between the
practical results and theoretical results due to in-network
conditions. Many previous scheduling schemes assume the
low network layer as a stable system, which is impractical
in modern network scenes, especially in WAN. We believe
that this performance gap is caused by the changes in network
states, which constantly trigger congestion control, reducing

the transmission rate. Thus, it is crucial to design a scheduling
framework whose performance is little affected by the under-
lying network, and improve the practical CCT in real-world
transmission.

To tackle these issues, we present a fixed-rate geo-
distributed coflows scheduling framework. It can significantly
improve performance and alleviate the gap between theoretical
and practical results. We argue that rapid changes in flow
rate would result in queuing, buffer overflow, and other issues
that could influence the in-network conditions. Thus, conges-
tion control and retransmission would be triggered when in-
network conditions change largely. Dynamic rate scheduling
may achieve optimal solutions in theory, while frequent rate
change has the risk of performance degradation. Thus, we pro-
pose a fixed rate scheduling framework, which is suboptimal in
theory but performs better in practice because this scheduling
framework can put data into the network stack at a stable rate.
We formulate the model as a convex problem and develop a
fast and efficient algorithm based on dual decomposition using
modern CPU and GPU to process the large-scale data. An
analytical solution is also introduced to accelerate the problem-
solving.

The main contributions of this paper are as follows:
• We find that the common dynamic rate scheduling

schemes perform badly when applied to real network
systems. Thus, we propose a fixed-rate scheduling frame-
work to address geo-distributed coflow scheduling in
WANs. It can avoid additional pressures on the congestion
control mechanism. To the best of our knowledge, it is
the first time that scheduling all coflows at a fixed rate
simultaneously.

• We introduce dual decomposition to solve the subprob-
lems in parallel, which can use CPU and GPU resources
to speed up the coflow scheduling. An analytic solution
to the subproblem is also proposed to greatly reduce the
time of subproblem solving.

• Experimental results show that FSCO reduces the CCT
up to 30% compared to baselines and yields up to 12x
speedups compared to the Gurobi [20] solver.

II. BACKGROUND

In modern computer communication schemes, many appli-
cations are sensitive to network congestion, where the bad
allocation of jobs would hurt the performance of the network.
Thus, many network service providers introduce flow schedul-
ing, with the hope of alleviating the bottleneck of networks to
achieve high performance and satisfy the needs of users.

Many existing programming frameworks [1]–[3] have job-
specific communication requirements, generating a lot of data-
parallel jobs. In these frameworks, one job cannot begin
until all the preceding communication flows have finished. As
defined by Chowdhury [5], we regard the set of flows sharing
a common performance goal as a coflow.

For details, we assume that a coflow has many independent
flows: the input of each flow is independent of the output of

Fig. 1. The ratio of the practical CCT and the theoretical CCT of different
algorithms in simulations.

another flow in this coflow. The scheduling of coflow, just
like the scheduling of network flow, is a crucial block to
the network and has attracted attention in the network area.
Many works [6], [10], [18] try to schedule the coflow to
acquire better performance. Chowdhury proposes Varys [5]
to schedule coflows in the data center. Varys models the
scheduling problem as a concurrent open shop problem and
solves it using a heuristics method. To make the abstraction
more useful in the network area, Chowdhury proposes a
novel formulation [10], which could adapt to various scenes,
especially in WAN, whose bandwidth is a scarce resource.

All these works allocate the bandwidth to flows with
dynamic rates. However, we find the performance of these
decisions is different from the theoretical results through
simulations on NS3 [21]. We tested three different algorithms
Stretch [10], Varys [5] and Sincronia [6]. Fig. 1 shows the
ratio of the practical CCT and the theoretical CCT of different
algorithms in simulations. We can see that the practical CCT
of most traffic is much larger than the theoretical CCT.

Moreover, existing works model the coflow problem as an
optimization problem and solve it using a solver like Gurobi
[20]. Linear Programming (LP) and Mixed Integer Linear
Programming (MILP) are the most common algorithms to
solve these problems. Due to the large computing time of
MILP, SmartCoflow [12] formulates the coflow scheduling
problem as a MILP and solves it by an approximate algorithm.
Unfortunately, even though the approximation and the paral-
lelizing LP solvers [22] are efficient, it has poor performance
with multiple CPUs and GPUs.

To tackle these problems, we first propose the fixed-rate
scheduling framework to alleviate the impact of in-network
conditions on scheduling. Parallel computing and GPU assis-
tance are also introduced to accelerate the optimization.

III. DESIGN OF FSCO

In this section, we introduce the fixed-rate scheduling
framework of geo-distributed coflows. In Subsection III-A,
we first describe the overview of FSCO design. We develop
a model of FSCO in Subsection III-C to minimize the total
CCT of coflows across geo-distributed networks. After that, we

Aggregator User
1. Request

Hosts Hosts……
2. Collect Information

3. distribute policy

Fig. 2. The architecture of FSCO

propose a method based on dual decomposition to accelerate
the solution of the problem in Subsection III-D.

A. Overview
The design of FSCO is motivated by the performance

degrading shown in Section II, whose goal is to optimize
the total CCT in the geo-distributed network. FSCO could
determine the rate of flows in this scheduling period, bringing
a good performance on CCT with prior knowledge like the
setting in [5], [10].

Considering the actual environment, we use a master agent
to manage coflow information and give the scheduling policy.
This scheduling policy is a relatively stable scheduling deci-
sion due to the fixed rate flow setting and will be transmitted
to the networks to decide the rate of flows. Besides, we
transform the problem into a dual problem and solve the part
of it with a proper analytic solution. We also decompose the
dual problem into many independent subproblems to accelerate
the speed from the perspective of parallel execution. We put
the simple computational logic process into GPUs, and the
other remains in CPUs to utilize multi-threads of modern CPU
and GPU. The architecture of the FSCO is shown in Fig. 2,
where the scheduling policy is computed by the aggregator
and distributed to the hosts.

We design the fixed rate coflow scheduling policy with Al-
gorithm 1. The FSCO assumes all the information of coflows
are known before and can be accessed from the input ⌦ as
many other works [10], [12]. Moreover, the link capacity is
also needed to calculate optimal scheduling.

Algorithm 1 The FSCO Workflow
Input: ⌦ = Coflow information set for current coflows which

could be scheduled. c = Capacity vector of links.
Output: x = the rate vector of all the flows in all coflows.

1: Procedure NetworkBandwidthAllocation(⌦, c)
2: Parse the coflow and network information (⌦, c)
3: x = MiniTCCT(⌦, c)
4: Allocate the bandwidth x to the flows
5: Transmit the flows at the rate of x
6: end procedure

B. Network Representation
Coflow is an abstract for many flows that have the same

goals. Just like mentioned above, the tasks of parallel-data
applications can be abstracted into coflows, where the C is a
set of coflows, defined as C = {C1, C2, ..., CN}, and the |C|
represents the number of coflows. For each coflow j, there are

many flows i within this coflow j. We denote this set of flows
as Cj = {f1

j , ..., f
i
j , ...f

k
j }. Each flow f i

j has associate rate xi
j

and demand �i
j , which means the flow f i

j transmits �i
j of data

at a rate of xi
j .

The networks have many properties, such as links and paths.
We denote the set of links as E = {e1, ..., el, ...eL} and the
capacity of link l as cl. Moreover, one flow f i

j will transverse
one path consisting of many links to the target node, where
the path of this flow can be defined as P(i, j) = {eu, ..., ev}.
We also denote the set of flows that traverse link l as Sl =
{f i

j , ..., f
I
J}. The notation P = {P(i, j)1, ...,P(i, j)N} means

the path set and S = {S1, ...,Sl, ...,SN} means the set of flow
set.

To represent the state of the link, we denote µl as the shadow
price of link l, and we define pij =

P
l2P(i,j) µl as the flow

price for flow i in coflow j. The main notations are shown in
Table I.

C. Minimize Total Coflow Completion Time
We begin this part by thinking about the importance of

coflow scheduling. To exploit the bandwidth of this network
and finish all the tasks in the shortest time, we should adjust
the flow rate for better performance. Thus, the formulation of
coflow scheduling can be formulated as follows:

Input: The FSCO should get all the information before
making scheduling decisions like previous works [6], [10]. The
set of coflows C is the information abstract of network flow,
and the set of links E is the information abstract of network
topology. Moreover, we could get the flow volume �i

j set, the
path of one flow P(i, j), and the network resource information
such as the link capacity cl set.

Output: We hope to get the flow scheduling policy to make
the data-parallel applications better. Thus, for each network
flow information and network topology information, the FSCO
will return a vector of rate for all flows, and the xi

j denotes
the rate of flow f i

j .
Now, we know what we have and want, so we can easily

formulate the problem of fixed rate coflow scheduling to
minimize the total CCT across geo-distributed data centers.
We can formulate the total completion time of all the coflows
at the current time as follows:

Minimize
X

j

max
fi
j2Cj

�i
j

xi
j

, (1)

Subject to:
X

fi
j2Sl

xi
j <= cl, 8Cj 2 C, 8f i

j 2 Cj , 8l 2 E, (1a)

xi
j >= 0, 8Cj 2 C, 8f i

j 2 Cj . (1b)

Note that in our formulation, the objective is to minimize
the total completion time of coflows in coflow set C. We
denote the completion time of a flow f i

j as tij =
�i
j

xi
j
. And the

completion time of a single coflow j is denoted as a maximize
function maxfi

j2Cj

�i
j

xi
j

because the completion time of one

coflow Cj is defined by the slowest one f i
j 2 Cj . Moreover,

the �i
j denotes the traffic demand of the flow f i

j and the xi
j

denotes the rate of flow f i
j .

The capacity of links in the network is an inherent attribute,
which cannot be violated in real scenes. Constraint (1a) is
used to ensure that the summation of bandwidth allocated to
all flows on a link l should not exceed the link bandwidth
capacity, denoted by cl. Constraints (1b) states that the rate of
all flows should not be negative because the negative rate is
impossible for flow transmission.

Unfortunately, although the formulation is simple, it is time-
consuming to achieve the optimal solutions using solver [20]
when the scale of problems becomes large.

TABLE I
SUMMARY OF MAIN NOTATIONS

Notation Description
i flow index
j coflow index
l link index
f i
j the ith flow in jth coflow

xi
j rate of flow i in coflow j

el the lth links in the network
�i
j volume of flow i in coflow j

C the coflow set
Cj the flow set of coflow j
E the link set
P(i, j) the path of flow i in coflow j
Sl the flow set which traverses link l
P the path set of flows contains P(i,j)
S the aggregate set which contains S(l)
cl the capacity of link l
µl the shadow price of link l
pij the price of flow f i

j

D. Dual Decomposition and Parallel Solution
A parallel solution is a common way to speed up the

solution. To solve the problem with better performance, we
introduce the dual decomposition to enhance parallelism. It
can transform the primal problem into a dual problem, which
eliminates the coupling of many tasks. Thus, a dual problem
can be divided into many independent subproblems and these
subproblems can be solved in parallel.

It is crucial to analyze the optimal value of the primal
problem and the dual problem. Actually, from formulation
(1), it is obvious that the primal problem is a convex problem,
which means the duality gap is zero and we can get the optimal
solution to the primal problem if we solve the dual problem.

As mentioned above, one of the features of the dual problem
is that it can be decoupled into multiple independent subprob-
lems, which could be solved in parallel, meeting the need for
fast transmission.

Usually, we can get the Lagrangian function based on
Lagrangian multipliers, which is the most basic step to get
the dual problem, just like what NUM [23] does. In order to
observe the relationship between different variables, we have
made some transformations, so as to solve the Lagrangian
function more simply. Thus, the Lagrangian function can be
formatted as Equation (2).

L(x,µ) =
X

j

max
i

�i
j

xi
j

+
X

j

X

i

xi
j

X

l2P (i,j)

µl �
X

l

µlcl

=
X

j

(max
i

�i
j

xi
j

+
X

i

xi
j

X

l2P (i,j)

µl)�
X

l

µlcl.

(2)
In Equation (2), µl is a dual variable, which we use to solve

the coupling issues due to the link capacity guarantee.
After we get the Lagrangian function, the dual function

can be obtained by minimizing the Lagrangian function. The
decision variables of this function are x and the dual function
is thus:

D(µ) = min
x

L(x,µ)

=
X

j

min
x

(max
i

�i
j

xi
j

+
X

i

xi
j

X

l2P (i,j)

µl)�
X

l

µlcl.

(3)
The first right term of the dual function (3) can be separated
into j subproblems minx(maxi

�i
j

xi
j
+

P
i x

i
j

P
l2P (i,j) µl),

which could be solved independently.
To get the optimal solution of the primal problem in another

method, we formulate the dual problem (4). The formulation
(4) is also a convex optimization problem with the decision
variables (dual variables or shadow prices) µ.

max
µ

(
X

j

min
x

(max
i

�i
j

xi
j

+
X

i

xi
j

X

l2P (i,j)

µl)�
X

l

µlcl), (4)

Subject to:

x,µ � 0. (4a)

All we need is to solve the dual problem to obtain the
proper rate allocation decision. Generally, the solution to
the dual problem requires multiple iterations, including the
optimization of the Lagrangian function and dual problem. For
example, we initialize the µ and solve the function (3). After
that, we freeze x and solve the problem (4). The final result
will be obtained after multiple iterations to reach convergence.
However, the multiple iterations require much time to achieve
the optimal solutions, which is another challenge for us.

We take some methods to accelerate the speed of the com-
putation. Considering the problem (3), it is time-consuming
to solve the independent subproblem minx(maxi

�i
j

xi
j

+
P

i x
i
j

P
l2P (i,j) µl) again and again. To alleviate the stress

which this part brings, we could get the analytic solution for

this subproblem, and the solution is xi⇤
j =

�i
jpP

i(p
i
j�

i
j)

where

pij =
P

l2P (i,j)(µl).
Theorem 1: The optimal solution of the subproblem is

xi⇤
j = �i

j/
qP

i(p
i
j�

i
j).

Proof of Theorem 1: Consider a coflow Cj , we could
reformulate the subproblem as:

min
x

0
(max

i

�i
j

xi
j

+
X

i

xi
j

X

l2P (i,j)

µl), (5)

where x
0
= (x1

j , x
2
j , · · ·) is the vector of the rate of flows f i

j

in coflow Cj .
We denote tij =

�i
j

xi
j

as the flow completion time of flow f i
j

and tmax
j = maxfi

j
(tij) as the completion time for coflow Cj .

Also, we get pij =
P

l2P (i,j)(µl). Thus, the Equation (5) can
be transformed as:

min
t

(tmax
j +

X

i

�i
j

tij
pij). (6)

Consider the second term of the Equation (6), we could get
pi
j�

i
j

tij
� pi

j�
i
j

tmax
j

because of tij  tmax
j for any i in Cj .

Thus, the second term of the Equation (6) can be relaxed
as

P
i
pi
j�

i
j

tij
�

P
i
pi
j�

i
j

tmax
j

, and the equality obtains iff t1j = t2j =

· · · = tmax
j .

Further, the relaxed problem (tmax
j +

P
i
pi
j�

i
j

tmax
j

) �

2
qP

i p
i
j�

i
j iff tmax

j =
qP

i p
i
j�

i
j .

Therefore, the subproblem can be written as tmax
j +

P
i
pi
j�

i
j

tij
� tmax

j +
P

i
pi
j�

i
j

tmax
j

� 2
qP

i p
i
j�

i
j . And the optimal

solution 2
qP

i p
i
j�

i
j can be obtained iff tmax

j =
qP

i p
i
j�

i
j

and t1j = t2j = · · · = tmax
j .

In a nutshell, we can get the optimal solution xi
j =

�i
jpP

i(p
i
j�

i
j)

of this subproblem. And the optimal value is

2
qP

i(p
i
j�

i
j).

We should calculate the optimal solutions of the problem
(4) to acquire the new dual variables µ for the next step of
problem (3). And the object function of problem (4) can be
written as:

max
µ

(
X

Cj

(2
sX

fi
j

(pij�
i
j))�

X

l

µlcl). (7)

For fast iteration, we just update the value using gradient
descent rather than the optimal value. The workflow of this
algorithm is introduced briefly in the Algorithm 2 in a serial-
ized form.

To fully utilize the parallel capability of modern CPUs and
GPUs, FSCO introduces unified memory and arranges the
execution flow as Fig. 3. The CPU will calculate the xi

j for f i
j .

Lines 18 - 25 in Algorithm 2 introduce the details of the Rate

Algorithm 2 The Minimize Algorithm
1: procedure MiniTCCT(CoflowInfo ⌦, Linkstate L)
2: Get �,C from ⌦, c,S,P from L
3: Initialize µ
4: while True do
5: for j = 1 to |C| do
6: pj = {pij =

P
l2P (i,j) µl}i

7: xj , vj = MinimizeL(�j ,pj)
8: end for
9: TCCT = (

P
j vj �

P
l µlcl);

10: if converged then break
11: for r = 1 to |c| do
12: xr =

P
fi
j2S(r) x

i
j

13: µr = MaxmizeDual(µr, cr, xr)
14: end for
15: end while
16: return x
17: end procedure

18: procedure MinimizeL(Demand �j , Shadowprice pj)
19: tmax

j =
qP

i p
i
j�

i
j

20: vj = 2
qP

i p
i
j�

i
j

21: for i = 1 to |Cj | do
22: xi

j = �i
j/t

max
j

23: end for
24: return xj , vj
25: end procedure

26: procedure MaxmizeDual(Linkprice µl, Linkcapacity cl,
Linkrate xl)

27: Receives the sum of the rate of the flows traveling through
link l and the corresponding link price and capacity

28: Computes a new price using gradient descent:
29: µl = [µl + �(xl � cl)]+

30: return µl

31: end procedure

Calculator in Fig. 3. The Step 1A calculates the dual gap to
determine whether the algorithm converges. At the same time,
the CPU will calculate the gradients for new dual variables.
Due to the synchronism of Step 2, Step 3A and Step 3 in Fig.
3, we design a staleness method, where the Step 3 in iteration
k uses the results of Step 3A in iteration k � 1. This design
masks the data replication overhead under the collaborative
computing of CPU and GPU. The multi-threads of CPU and
GPU can accelerate all the processes above. The rest details
of these processes are presented in Algorithm 3. And we will
show the results in Section IV.

IV. EVALUATION

In this section, we present the results of FSCO through
simulations on NS3 [21] with different network and data scales
to demonstrate the effectiveness of our fixed-rate setting and

Rate Calculator

CalculateLag

CalculatePri
Convergence
Module

Price
Update

StalePri
Gradient

CalculatorCPU

GPU

Step 1

Step 2Step 3A

Step 3Step 1A

Step 1B

Fig. 3. The Execution Flow of FSCO

Algorithm 3 The Solution Process
1: procedure CalculateGrad (Link el, F lowrate x)
2: gl = �cl
3: for f i

j 2 Sl do
4: gl = gl + xi

j

5: end for
6: return gl

7: procedure UpdatePrice (Gradient gl, Shadowprice µl)
8: µl = [µl + �(gl)]+

9: return µl

10: procedure CalculaltePri (Coflow C, Demand �)
11: ttij = �i

j/x
i
j

12: CCTj =
P

i tt
i
j

13: value =
P

j CCTj

14: return value

15: procedure CalculalteLag (Link E, LinkPrice µ, V v)
16: vl = el ⇤ µ
17: vsum =

P
l vl

18: value = v � vsum
19: return value

parallel speedup. In Subsection IV-A, we will introduce our
experiment settings, including the experiment environment and
methodology. We evaluate and analyze the results of solving
time and coflow completion time in Subsection IV-B.

A. Experiment Setting
To mimic the transmission in the network with different

network stack conditions and scarce bandwidth resources, we
implement the experiments on different network and data
settings, reflecting the performance of networks with various
settings.
The Network Topology. We simulate the geo-distributed
networks by Topology Zoo [24] which is widely used to

generate the networks in related works [25]–[27]. We select
some network topologies with different scales, whose nodes
are connected with 100Mbps links. We also set the propagation
delay to 2µs or 2ms. The switch nodes in these topologies are
modeled as standard output-queued switches, with a shallow
buffer of size 8KB per port. We constructed some networks
based on the above information, and the topology setting is
shown in Table II.

TABLE II
THE SIZE OF TOPOLOGY WE SELECTED IN THE EXPERIMENTS

Name Ai3 Airtel Attmpls Ernet Globenet
Nodes 10 16 25 30 67
Links 9 37 57 32 113

Congestion Control Algorithms. This is a crucial factor
influencing the performance of transmission in a network.
We choose three common congestion control algorithms to
simulate the real network.

• DCTCP [28]: DCTCP is a typical congestion control
algorithm that uses ECN as a congestion signal.

• TCPLinuxReno [29]: TCPLinuxReno is the most mature
congestion control algorithm that is applied widely.

• TCPCubic [30]: TCPCubic is a default congestion control
algorithm on Linux with high performance.

Coflow Benchmark. To analyze the data-parallel jobs in
WAN, we get the coflow benchmark from Facebook [5] which
is widely used in coflow scheduling research. To facilitate
use and adapt to different topology sizes, we select part of
the coflows from these data as our experimental data with
different coflow widths, coflow numbers, and coflow volumes.
We generate new coflows for the
Baseline. We compare the following schemes with FSCO.

• Stretch [10]: A Dynamic rate scheduling algorithm that
used a time-indexed LP formulation on WAN.

• Varys [5]: An algorithm that used the smallest-effective-
bottleneck-first heuristic to address coflow scheduling.

• Sincronia [6]: An algorithm that achieves average coflow
completion time within 4⇥ of the optimal by giving a
“right“ ordering of coflows.

Performance Metrics. In this evaluation, we define the per-
formance improvement as ratioimp = CCT1�CCT2

CCT1
, where

the CCT1 is the total CCT of one algorithm while CCT2

is the CCT of another algorithm. The large ratioimp implies
the performance of the second algorithm is better than the
first algorithm, while 0  ratioimp < 1. We also use the
ratio of solution time ratiotime = SolveT ime1

SolveT ime2
as the time

metric, where the SolveT ime1 is the solving time of the first
algorithm while the SolveT ime2 represents the solving time
of the second algorithm.
Hardware. In our experiment, we use Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz and NVIDIA GeForce RTX 3090 for
problem-solving and simulation.

(a) AirtelTcpCubic (b) AirtelTcpDctcp (c) AirtelTcpLinuxReno (d) AttMplsTcpCubic

(e) AttMplsTcpDctcp (f) AttMplsTcpLinuxReno (g) AttMplsCubic with 2ms delay (h) AttMplsDctcp with 2ms delay

Fig. 4. The Total Completion Time of Coflows in Different Topology and Congestion Control Algorithms with Different Number of Coflows.

Simulation Methodology. We embed the scheduling algo-
rithms computed by our scheme into NS3 simulator to get the
evaluation results. In the simulations, we use several variables
as test metrics. Besides the topology and the traffic men-
tioned above, we also introduce different congestion control
algorithms to ensure the universality of the results. On the
other hand, we compare the solution time of the dual problem
with the solver [20] to analyze the time consumption of our
algorithms.

B. Experiment Performance
We simulate our experiments on the most widely used

packet-level simulator NS3, to further clarify the advantages
of our design on different scale networks with various settings
of coflow and congestion control algorithms mentioned above.
The Scheduling Results. We do many experiments on NS3
with different traffic, topology, and congestion control algo-
rithms. We first put our attention on the performance in some
typical network settings and traffic settings. Fig. 4 presents
the CCT in Airtel and AttMpls with various coflow numbers
and delays, in which Fig. 4(g) and 4(h) are results with longer
latency, and we can find the performance of FSCO is better
in many scenes, especially with fewer coflows and the results
are correction to congestion control algorithms. And the FSCO
overperforms the Sincronia up to 20% running time and the
Stretch up to 30% running time from Fig. 4(a).

Compared to the different algorithms in Fig. 4, we find the
results of FSCO are relatively more stable. From Fig. 4(c),
Fig. 4(d) and Fig. 4(f), we find FSCO performs worse than
Stercth when the number of coflow is too large or too small,
and the result is very relevant to the topology.

We think our framework can improve the performance by
alleviating the pressure of networks so that the performance
is improved in many cases as shown in Fig. 5, where close to
half of our results are better than others.
The Computing Time. The decision computing time is vital
in the scheduling system because we should make the correct

Fig. 5. The CCT Results with Different Number of Coflows, Coflow Volumes,
Congestion Control Algorithms and Topology.

decisions in time to achieve better performance. We simulate
the computing time motivated by the article [31]. As afore-
mentioned, we analyze the computation time in many different
scenes compared to the common solver Gurobi [20]. In each
run of experiments, we adjust the parameters mentioned above
and analyze the computation time to evaluate the performance.

We present partial results about the solving time of FSCO
compared to the solver in Fig. 6. From the two figures, we
could find FSCO performs better in many scenes. Moreover,
the solving time and coflow number are not positively corre-
lated.

We conduct the experiments and present the results as Fig.
7. From the above, we could observe that the computing time
of the solver is larger than our algorithm in most scenes and
the speed can be accelerated up to 12x while almost 50% of
the cases achieve more than 2 times faster.

V. CONCLUSION

In this work, we proposed a novel framework in that
we should schedule coflows at a fixed rate and formulate
the problem. Then, we use dual decomposition and parallel
solutions with analytic solutions to accelerate the speed of
decision calculation. At the end of this paper, we show
performance improvement and illustrate the advantages of

(a) AttMpls (b) Globenet

Fig. 6. The solving time of solver and FSCO in different Topology.

Fig. 7. The Improvement Ratio (SolverTime/FSCOTime) of Parallel Solution.

fixed-rate scheduling. The experiments show the importance
of in-network conditions in scheduling. In future work, we
will further qualitatively analyze the reasons for this situation.

ACKNOWLEDGMENT

We are extremely grateful for the anonymous reviewers for their
wonderful feedback. Haoyu Liu, Feiyan Ding, Yao Wang, Qiao Xiang
are supported in part by the National Key R&D Program of China
2022YFB2901502, NSFC Award 62172345, Open Research Projects
of Zhejiang Lab 2022QA0AB05, MOE China 2021FNA02008, and
NSF-Fujian-China 2022J01004.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Presented
as part of the 9th Symposium on Networked Systems Design and
Implementation, 2012, pp. 15–28.

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 135–146.

[4] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, 2012, pp. 31–36.

[5] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in Proceedings of the 2014 ACM conference on SIGCOMM,
2014, pp. 443–454.

[6] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and
A. Vahdat, “Sincronia: Near-optimal network design for coflows,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, 2018, pp. 16–29.

[7] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without
prior knowledge,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 4, pp. 393–406, 2015.

[8] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng, “Coda:
Toward automatically identifying and scheduling coflows in the dark,” in
Proceedings of the 2016 ACM SIGCOMM Conference, 2016, pp. 160–
173.

[9] H. Jahanjou, E. Kantor, and R. Rajaraman, “Asymptotically optimal
approximation algorithms for coflow scheduling,” in Proceedings of the
29th ACM SPAA, 2017.

[10] M. Chowdhury, S. Khuller, M. Purohit, S. Yang, and J. You, “Near
optimal coflow scheduling in networks,” in The 31st ACM Symposium
on Parallelism in Algorithms and Architectures, 2019, pp. 123–134.

[11] Z. Wang, H. Zhang, X. Shi, X. Yin, Y. Li, H. Geng, Q. Wu, and
J. Liu, “Efficient scheduling of weighted coflows in data centers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 9, pp.
2003–2017, 2019.

[12] W. Li, X. Yuan, K. Li, H. Qi, X. Zhou, and R. Xu, “Endpoint-
flexible coflow scheduling across geo-distributed datacenters,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 10, pp.
2466–2481, 2020.

[13] S. Liu, L. Chen, and B. Li, “Siphon: Expediting {Inter-Datacenter}
coflows in {Wide-Area} data analytics,” in 2018 USENIX Annual
Technical Conference (USENIX ATC 18), 2018, pp. 507–518.

[14] B. Guo, Z. Zhang, Y. Yan, and H. Li, “Optimal job scheduling and
bandwidth augmentation in hybrid data center networks,” in 2022 IEEE
GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022),
2022, pp. 5686–5691.

[15] K. Lei, K. Li, J. Xing, B. Jin, and Y. Wang, “Distributed information-
agnostic flow scheduling in data centers based on wait-time,” in 2018
IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM),
2018.

[16] S. Zhang, S. Zhang, X. Zhang, Z. Qian, M. Xiao, J. Wu, J. Ge, and
X. Wang, “Far-sighted multi-stage awasre coflow scheduling,” in 2018
IEEE Global Communications Conference (GLOBECOM), 2019.

[17] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li,
and S. Wang, “Rapier: Integrating routing and scheduling for coflow-
aware data center networks,” in 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2015, pp. 424–432.

[18] L. Shi, Y. Liu, J. Zhang, and T. Robertazzi, “Coflow scheduling in
data centers: routing and bandwidth allocation,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 11, pp. 2661–2675, 2021.

[19] Y. Li, S. H.-C. Jiang, H. Tan, C. Zhang, G. Chen, J. Zhou, and F. C.
Lau, “Efficient online coflow routing and scheduling,” in Proceedings of
the 17th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, 2016, pp. 161–170.

[20] L. Gurobi Optimization, “Gurobi optimizer reference manual,” http:
//www.gurobi.com.

[21] “Network simulator 3 (ns-3),” https://www.nsnam.org/.
[22] Z. Xu, F. Y. Yan, R. Singh, J. T. Chiu, A. M. Rush, and M. Yu, “Teal:

Learning-accelerated optimization of wan traffic engineering,” 2023.
[23] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for com-

munication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–252,
1998.

[24] S. Knight, H. X. Nguyen, and Falkner, “The internet topology zoo,”
IEEE Journal on Selected Areas in Communications, 2011.

[25] S. Chiu and C. A. Papachristou, “A design for testability scheme
with applications to data path synthesis,” in Proceedings of the 28th
ACM/IEEE Design Automation Conference, 1991, pp. 271–277.

[26] L. Zhao, J. Wang, J. Liu, and N. Kato, “Optimal edge resource allocation
in IoT-based smart cities,” IEEE Network, 2019.

[27] F. Naeem, M. Tariq, and H. V. Poor, “SDN-enabled energy-efficient
routing optimization framework for industrial internet of things,” IEEE
Transactions on Industrial Informatics, 2021.

[28] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in
Proceedings of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM
’10. New York, NY, USA: Association for Computing Machinery.

[29] V. Jacobson, “Modified TCP congestion avoidance algorithm,” Email to
the end2end-interest mailing list, 1990.

[30] S. Ha, I. Rhee, and L. Xu, “Cubic: A new TCP-friendly high-speed TCP
Variant,” SIGOPS Oper. Syst. Rev., 2008.

[31] A. Agrawal, S. Boyd, and Narayanan, “Allocation of fungible resources
via a fast, scalable price discovery method,” Mathematical Programming
Computation, 2022.

