
OpenSDC: A Novel, Generic Datapath for
Software Defined Coalitions

Qiao Xiang‡, Franck Le⇧, Yeon-sup Lim⇧,
Vinod K. Mishra◦, Christopher Williams⇤, Y. Richard Yang‡, Hongwei Zhang[,

‡Yale University, ⇧IBM T.J. Watson Research Center,
◦U.S. Army Research Labs, ⇤U.K. Defence Science and Technology Laboratory, [Iowa State University,

{qiao.xiang, yry}@cs.yale.edu, fle@us.ibm.com, y.lim@ibm.com,
cwilliams@mail.dstl.gov.uk, vinod.k.mishra.civ@mail.mil, hongwei@iastate.edu

Abstract—With more and more success of Software Defined
Networking (SDN) in academia and industry, people have started
to explore how to integrate SDN into military coalitions, to realize
a software-defined coalition (SDC) infrastructure. However, the
integration of SDN into SDC is non-trivial due to the insuf-
ficiencies of the SDN datapath for expressing the data plane
behavior in SDC systems. In particular, SDC systems operate in
highly dynamic tactical networks (e.g., wireless networks) and
requires the data plane to support a wider range of events other
than the traditional incoming packet event in wired SDN. In
addition, SDC systems widely adopt in-network processing (INP)
such as network coding, and supporting these functionalities
in the data plane requires flexible storage for packets and
complex operations on both packet headers and payload, which
are not supported in the existing SDN datapath. In this paper,
we tackle these issues by designing OpenSDC, a novel, generic
SDC datapath which extends the current match-action primitive,
with three new primitives: event, packet buffer, and packet INP
block. The implementation of the proposed primitives can be
optimized using a range of techniques to accelerate the event
processing efficiency of OpenSDC. We implement a prototype of
the proposed datapath, and demonstrate its ability to support
network-coding-based 1+1 data delivery protection in dynamic
tactical networks. Evaluation results show that compared with
a state-of-the-art proactive protection system implemented using
only match-action tables, our prototype significantly improves
the efficiency and resiliency of tactical networks.

I. INTRODUCTION

Software Defined Networking (SDN) have been deployed
in many academic and industrial systems [12], [13], [22]. The
success of such deployment is leading to efforts to explore the
feasibility and benefits of integrating SDN into military coali-
tions to realize an efficient, agile, and optimal software-defined
coalition (SDC) infrastructure [18], in which autonomous
coalition members operate under harsh tactical network en-
vironments with resource constraints, such as limited power
and processing capability, and dynamic connectivity.

One may think such an integration from SDN to SDC should
be straightforward, in that SDN provides coalition members
with greater control over networks’ datapath, including the
freedom to define different packet header fields and match-
action rules that examine these fields and perform simple
computations on them [5], [6], [24]. Though these features
are all promising, they are insufficient for supporting SDC for
several reasons.

First, in SDN, the main role of a device’s data plane (e.g.,
physical and virtual SDN switches) is to efficiently process
packets. Therefore, its behavior is expressed as a packet
processing pipeline. In such a datapath, which we refer to
the SDN datapath in the remaining of the paper, the data
plane only responses to packet-in events and process incoming
packets through a user-defined pipeline of match-action tables.

Other events (e.g., link down and medium access contention)
are handled either by the control plane, or by the underlying
protocols (e.g., data-link layer or physical layer protocols).
In contrast, SDC requires devices to maintain communication
capability even under disrupted, intermittent and lossy network
environments (e.g., wireless networks). Therefore, in SDC, a
device’s data plane needs to handle a wider range of events
(e.g., link up/down and timer expiration). The SDN datapath
does not allow users to define these events or specify how these
events are handled. For example, data transmission systems
in SDC widely use TDMA-based mechanisms to avoid high
interferences of transmissions. These mechanisms require the
data plane to start a packet transmission only on pre-fixed
time slots, which requires defining timers and corresponding
handlers on the data plane but is not supported in the SDN
datapath.

Second, to ensure the packet forwarding efficiency, the SDN
datapath only allows simple operations on packet headers.
In contrast, the SDC datapath requires complex operations
for in-network processing (INP) techniques (e.g., data ag-
gregation, packet packing and network coding), which are
widely used in SDC systems to perform data analytics in
coalition networks [20], [30], or as means to improve the
data delivery performance of SDC under the highly dynamic
tactical network environments [29]. Realizing these INP tech-
niques on the data plane require temporary, flexible storage for
packets and complex operations on both packet headers and
payload (e.g., multiplication and division). However, none of
these are supported in the SDN datapath.

To address these problems, we present OpenSDC, a novel
and generic SDC datapath. In contrast to the packet processing
pipeline model of the current SDN datapath, OpenSDC models
the behavior of its data plane as an event processing pipeline,
with three new primitives: event, packet buffer, and packet INP
block, in addition to the existing match-action table primitive.
To accelerate the event processing efficiency in OpenSDC,
we adopt a series of algorithmic techniques, such as bit-wise
operations and look-up tables.

Using the OpenSDC datapath, we design and implement
a network-coding (NC)-based, proactive protection system
which provides 1+1 data delivery protection to SDC networks.
Evaluation results show that our implementation outperforms a
state-of-the-art proactive protection system implemented using
match-action tables in tactical networks, in terms of efficiency,
reliability and resiliency.

The rest of the paper is organized as follows. In Section II
we give an overview of the SDN datapath and show its insuf-
ficiency by surveying representative SDC systems. We present

Milcom 2018 Track 2 - Networking Protocols and Performance

978-1-5386-7185-6/18/$31.00 ©2018 IEEE 995

the design of OpenSDC and our approach for accelerating its
efficiency in Section III. In Section IV, we present the design
and implementation of our NC-based protection system using
the OpenSDC datapath. We evaluate the performance of our
prototype in Section V. We discuss related work in Section VI
before concluding this paper in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we give an overview of the current SDN
datapath [5], and then describe its insufficiencies for satisfying
the requirements of SDC.

A. Overview of the SDN Datapath
In general settings, the SDN datapath is a packet processing

pipeline composed of match-action tables [5], [6], [9]. Users
can program SDN datapaths using high-level languages such
as P4 [5]. Figure 1 presents an abstract model for the SDN
datapath. When a packet arrives at the data plane, the device
first parses and extracts packet headers using a user-defined
parser. The extracted header fields pass through a user-defined
ingress pipeline of match-action tables. Each table matches
on a subset of the extracted headers and applies simple
computation primitives to these fields and packet metadata.
By the end of this pipeline, the packet is pushed into a queue
chosen by the ingress pipeline. Then a user-defined egress
pipeline of match-action tables takes it for further processing
before output.

Fig. 1: The abstract model for the SDN datapath [5].
The SDN datapath provides the following primitives for

packet processing:
Programmable Match-action table: This primitive is the core
of the SDN datapath. Each table can match on any user-
defined packet headers and take corresponding actions, such as
forwarding, drop and modification of header fields and packet
metadata.
Packet metadata: The SDN data plane devices provide a
limited amount of memories that maintain states within a
packet or across packets, such as counters, registers and
meters.
Simple computation primitives on packet headers and
metadata: On the SDN datapath, the device can perform
simple computation on packet headers and metadata, such as
addition and hashing.
Non-programmable packet storage: The SDN data plane
devices provide a pre-defined data structure (i.e., queue)
to temporally store the packets between ingress and egress
pipelines. These queues are used for scheduling algorithms
that the device supports (e.g., FIFO and round-robin).

B. Insufficiencies of the SDN Datapath for SDC
Though powerful, the existing SDN datapath is insufficient

for expressing the desired behavior of devices’ data plane
in SDC systems. To this end, we survey three representative
classes of SDC systems as follows.

TDMA-based data transmission systems: In coalition net-
works, many data transmission systems adopt TDMA-based
mechanism to schedule the packet transmission between de-
vices in a fair and efficient manner [23], which requires
the SDC data plane to create and update different events
(e.g., timers) to decide when and where to forward a packet.
However, the SDN datapath does not provide any primitive to
allow user-defined events.
Data aggregation and packing systems: Data aggregation
and packing [20], [30] are widely used for military data
collection, such as intrusion detection. These systems process
packets’ payload at data plane devices instead of sending all
packets back to a processing base station. In this way, they
improve energy efficiency and data delivery performance of
coalition networks by reducing network traffic load and thus
channel contention. In such systems, the SDC data plane need
to perform arithmetic operations, such as average, max and
min, on the payload of packets. However, the SDN datapath
does not allow such operations.
Network coding data delivery systems: Network coding data
delivery systems [10] are important tools for improving the
throughput, reliability, fairness, and management of coalition
networks. The basic operations of these systems are encoding
and decoding of a set of packets, which require temporary
packet storage with random access and arithmetic operations
(i.e., add, subtract, multiplication and division) of packet
payload on finite field. In addition, many network coding
systems use complex scheduling mechanisms instead of simple
FIFO or round-robin. To support such systems, the SDC data
plane needs to provide a more complex packet storage model
other than queue, perform arithmetic operations on packet
payload, and create and update different events. None of these
are allowed in the SDN datapath.

III. OPENSDC OVERVIEW

Having analyzed the insufficiency of the SDN datapath
for expressing the behavior of SDC data plane, we present
OpenSDC in this section, a novel, generic datapath for SDC.

A. OpenSDC High-Level Design
The key design decision of OpenSDC is to expand the

data plane’s capability from the processing of only packet-
in events, to the processing of both hardware and user-defined
events. In this way, the data plane behavior of an SDC system
is expressed as an event processing pipeline in OpenSDC.
Figure 2 shows an abstract model for OpenSDC. Specifically,
OpenSDC keeps the match-action table primitives in the SDN
datapath, but introduces three new primitives: event, packet
buffer and packet INP block. Given an event processing
pipeline, each stage consists of a match-action table, packet
buffer or packet INP block, and events are passed from one
stage to another.

User-defined
events

Match-action table
/Packet buffer

/Packet INP block

Event processing pipeline
Packets In Packets Out

Drop

To Controller

Control Program
/ Configuration

Data Plane

Control Plane

I
N
P
U
T

Packet-in
event

Hardware
events

Fig. 2: The abstract model for the OpenSDC datapath.

2

Milcom 2018 Track 2 - Networking Protocols and Performance

996

Event: In OpenSDC, an event is a message passed between
stages. The hardware defines a fixed set of events it can trigger
by specifying their message format and semantics. And users
also have the flexibility to define different events that can be
triggered by stages in the pipeline. An event triggered by
hardware will be sent to the head of the event processing
pipeline, while an event triggered by a stage can be sent to any
stage in the pipeline. For the completeness of presentation, we
leave an illustration of the usage of event in Section IV-B.
Packet buffer: The packet buffer in OpenSDC is a key-
value store providing temporary storage for packets. Given
a buffer entry, its key is the hashing function of user-defined
packet headers and its value is the entire packet, including
both the headers and the payload. Different events are defined
to provide usual interfaces of key-value store, such as insert,
update, delete, and retrieve. It provides the random access of
buffered packets based on user-defined packet headers, which
enables a wide range of event processing functionalities of
SDC systems (e.g., scheduling).
Packet INP block: As suggested by the name, OpenSDC
provides packet INP block to support in-network processing
in SDC systems. Compared with the SDN datapath, OpenSDC
allows arithmetic operations on not only user-defined packet
headers, but packet payloads. Invoked by an event, a packet
INP block retrieves packets from a packet buffer, performs
arithmetic operations on these packets to create new packets,
inserts them into a packet buffer or sends to the underlying
protocols for transmission. As discussed in Section II, this
primitive is crucial for efficient and resilient in-network ana-
lytics and data delivery in SDC.
Concurrency model: To ensure the correctness of event pro-
cessing, a device whose data plane supports OpenSDC must
obey certain concurrency model. Motivated by the packet pro-
cessing concurrency model of the SDN datapath [5], [6], [25],
we define the following concurrency model for OpenSDC.

Definition 1 (Concurrency model of OpenSDC): Given an
event processing pipeline in OpenSDC and an event ei, any
processing stage that modifies states visible to the next event
ei+1 must finish execution before ei+1 reads the modified
states.

B. OpenSDC Processing Optimization
The concurrency model defines the correctness of the

OpenSDC datapath, but does not specify any constraints on
its performance (e.g., line-rate processing). One approach to
fill this gap is to resort to the high-performance specialized
hardware to support OpenSDC. This approach is not gen-
erally applicable to SDC, where devices are equipped with
heterogeneous hardwares. Hence we leave it as future work.
Alternatively, we adopt a series of algorithmic techniques,
which are applicable to even low-end hardwares, to accelerate
the event processing efficiency of OpenSDC. For simplicity,
we present these techniques within the context of the packet
INP block, but they can easily be extended to the match-action
table as well.
Bit-wise arithmetic operation: A packet INP block that
performs data aggregation on OpenSDC usually requires
arithmetic operations on packet payload. The cost of such
operations varies. For instance, multiplication and division has
larger overhead than addition and subtraction. To accelerate
the expensive operations, OpenSDC re-writes them as bit-
wise expressions. For example, a+b

2 can be expressed as
(a + b) >> 1, and a ⇤ 4 can be expressed as a << 1. And
multiplication and division by a number not a power of 2
can be expressed as the sum of multiple bit-wise expressions.

These operations are particularly useful for data aggregation
systems performing in-network analytics on packet payload.
Look-up table: A packet INP block performing network
coding related operations performs arithmetic operations on
packet headers and payloads in Galois Field. In addition to bit-
wise arithmetic operations, we exploit pre-computed look-up
tables to further accelerate such blocks. Sine these operations
are defined in a finite field, such look-up tables only needs a
small space in memory. For example, for a finite field GF (28),
which is commonly used in current network coding based
data delivery systems, the look-up table for multiplication only
needs 64 KB of memory, and the look-up table for inversion
only needs 256 bytes of memory.

We note that the techniques we adopt for OpenSDC is not
platform-dependent, but rather common techniques for acceler-
ating computations on heterogeneous hardware platforms (e.g.,
general CPU, FPGA, Smart NIC and sensors), which suits the
need for SDC. There are also other algorithmic techniques that
can accelerate the event processing of the OpenSDC datapath,
and we leave them as future work.

IV. OPENSDC CASE STUDY: A
NETWORK-CODING-BASED PROACTIVE PROTECTION

SYSTEM

To demonstrate the expressiveness and generality of the
OpenSDC datapath, we design and develop an NC-based,
proactive protection SDC system, which we refer to ProNCP
in the remaining of the paper. For the completeness of pre-
sentation, we first give an overview of ProNCP, including
how it computes routing configurations. Then we present
the implementation of ProNCP on the data plane using the
OpenSDC datapath.

A. Overview of ProNCP
ProNCP integrates the capability of network coding [3] for

improving network throughput and the broadcast nature of
wireless communication [7], to ensure efficient, reliable, real-
time data delivery for military coalitions under the presence of
disrupted, intermittent and lossy network environments (e.g.,
wireless networks).

Figure 3 describes the architecture of ProNCP. Specifi-
cally, ProNCP provides 1+1 proactive protection to the SDC
network by sending coded traffic from the source to the
destination along two node-disjoint NC-based routing braids.
On the control plane, a control program takes the topology
information collected by data plane devices (i.e., the link
reliability of forwarding candidates of each device) as an input.
Then it computes two node-disjoint NC-based routing braids
for specific source-destination pairs, and sends the routing
configuration (i.e., the selected forwarders, the effective load,
and the rate control parameters) to each corresponding device.
On the data plane, each device stores received packets into
a temporary buffer, generates coded packets by randomly
mixing the received packets, broadcasts the coded packets to
the neighbors, and stops the broadcast when receiving certain
signals from the neighbors.
Routing configuration computation in ProNCP: The key
challenge for implementing the control plane of ProNCP is
to efficiently compute two node-disjoint NC-based routing
braids that perform 1+1 delivery of coded packets for a given
source-destination pair with a minimal cost. Though efficient
algorithms have been developed for finding two node-disjoint
routing paths with a minimal cost [26], they are not applicable
to the context of node-disjoint NC-based routing braids. Using

3

Milcom 2018 Track 2 - Networking Protocols and Performance

997

Control plane

Data plane

Configuration:
forwarder set,
effective load,
and rate control
parameters

View: link
reliability
vector of
neighbors

Fig. 3: The architecture and workflow of ProNCP.

the analytic framework for estimating the cost of NC-based
routing [29], we propose the following proposition.

Proposition 1: Assume a directed acyclic graph G = (V,E)
with a source node S and a destination T , where each edge
(i, j) 2 E is associated with a cost ETXij computed as the
reciprocal of the link reliability of (i, j). It is NP-hard to find
two node-disjoint NC-based routing braids B1 and B2 such
that the total cost of delivering K linear independent packets
from S to T along each braid is minimized.

We prove this proposition via a reduction from the classic
two-partition problem [11]. During the proof, we also find
and fix a mistake in the NP-hardness proof of the classic two
commodity integral flow problem [8]. We omit the details due
to the space limit and refer interested readers to [28].

Given this NP-hardness result, we develop an efficient
heuristic algorithm in ProNCP. The algorithm first computes
two node-disjoint paths with a minimal cost using the Su-
urballe algorithm [26]. Using the computed paths as refer-
ences, it then alternatively assigns remaining nodes not chosen
for forwarding to each path using the optimal single NC-
based routing braid construction algorithm [29], and eventually
constructs two node-disjoint NC-based routing braids. During
this process, the forwarder set, the effective load and the
rate control parameters of each node in the network are also
computed.

B. Implementation of ProNCP on data plane using OpenSDC
Figure 4 presents the implementation of ProNCP on the data

plane using OpenSDC. Specifically, ProNCP uses a key-value
packet buffer for temporary packet storage. ProNCP registers a
series of user-defined events, such as send-data and send-ACK
events. ProNCP uses two match-action tables: packet and event
classifiers, and four packet INP blocks: linear independence
test, collective receiving test, coded packet generator and
coded ACK generator blocks.

Linear
Independence

Test

Event
ClassifierEvent

send-ACK event

Coded Packet
Generator

send-data event
Packet Out

Coded ACK
Generator Packet Out

packet-in event

Packet
Classifier

data packet-in
event

ACK packet-in
event

Pass

Fail Drop

buffer insertion
event

send-ACK event
Coded Packet

Buffer
Collective
Receiving

Test

Pass

Fail

buffer clear
event

send-data event

buffer
read
event

buffer packet-in event

buffer packet-in event
match-action table
packet INP block

packet buffer

eventsend-data event

Hardware

Fig. 4: Implementation of ProNCP on the data plane using
OpenSDC.

The ProNCP system uses an event classifier to respond to
different events on the data plane. Specifically, a packet-in

event is triggered when a packet arrives at the device. The
packet is then passed from the event classifier to the packet
classifier. In case of a data packet, the packet classifier sends a
send-ACK event to the event classifier, and sends this packet
to the linear independence test block. If the data packet is
an innovative one, (i.e., if it is a packet linear independent
of the ones in the packet buffer), the packet is put to the
buffer. Otherwise, it is dropped. In case of an ACK packet,
the packet classifier sends it to the collective receiving test
block to perform a collective-spacing test [17], [29] on this
packet to test whether the device should transmit other coded
data packets. If so, a send-data event is triggered. Otherwise,
data packets related to the ACK will be cleared from the buffer.

A send-data event is forwarded to the coded packet genera-
tor block, which selects a flow that has a non-zero remaining
effective load, reads the packets associated with this flow from
the buffer, uses them to generate a coded packet, updates the
effective load and then sends the coded packet to underlying
devices (e.g., network adapter or radio frequency front end)
for actual transmission (i.e., packet out). A send-ACK event
is passed to the coded ACk generator block, which reads from
the packet buffer the packets that has the same batch number
as indicated in the ACK, generates a coded ACK packet, and
sends it to the underlying device for actual transmission.

We implement the ProNCP data plane shown in Figure 4
on the TelosB sensor [2], a low-power, low-cost wireless
device that is widely used for mission-critical data collection
networks. Different from the data plane devices in SDN (e.g.,
programmable switches) that are equipped with special, ex-
pensive hardware (e.g., SRAM and TCAM) to help accelerate
the match-action SDN datapath, the TelosB sensor is only
equipped with a MSP430 16-bit CPU and a small amount of
memory. Our implementation, which takes about 1,200 lines
of nesC code, shows that the OpenSDC datapath supports the
implementation of complex SDC systems on a wide range of
devices that are used in SDC.

V. PERFORMANCE EVALUATION

In this section, we experimentally evaluate the performance
of ProNCP. We first present the experimentation methodology
and then the measurement results.

A. Methodology
Testbed: We use the NetEye wireless sensing and control
testbed at Wayne State University [1]. In NetEye, 130 TelosB
sensors are deployed in an indoor environment, where every
two closest neighboring sensors are separated by 2 feet. Each
sensor is equipped with a 3dB signal attenuator and a 2.45GHz
monopole antenna. In our measurement study, we set the radio
transmission power to be -15dBm such that multihop networks
can be created. And we use the 802.15.4 MAC protocol in our
experiment.
Topology: We focus on data collection scenarios as it is one
of the most common scenarios in military coalitions. Out of
the 130 sensors in NetEye, we randomly select 60 motes with
uniform probability to form a random network. Among these
60 nodes, 10 are randomly selected as source nodes and one
as a data sink. Each source node periodically generates 40
data packets with an inter-packet interval uniformly distributed
between 500 milliseconds and 3 seconds.
Systems studied: With the aim to explore the impact of
in-network processing and the necessity and benefits of
OpenSDC, we investigate the performance of the following
proactive protection systems:

4

Milcom 2018 Track 2 - Networking Protocols and Performance

998

• ProNCP: the NC-based, proactive protection system we
propose and implement in Section IV;

• TNDP: a state-of-the-art proactive 1+1 protection system
that sends data traffic from a source along two shortest
node-disjoint paths to a destination [26].

Both systems use the same architecture described in Fig-
ure 3, except that the data plane of TNDP is implemented as a
pipeline of match-action tables as done in SDN. In the control
plane, NC-based node-disjoint routing braids and node-disjoint
routing paths are computed with a long-time sampling dataset
of the link reliability of the experiment network. Then the
forwarding configurations, such as the forwarder set and the
effective load, are installed to the data plane of each system.
In addition, we set the finite field GF (28) and batch size 8
for ProNCP.
Performance metrics: For each system, we evaluate their
behaviors based on the following metrics:

• Delivery reliability: the percentage of valid data packets
correctly received by the data sink;

• Delivery cost: the average number of transmissions re-
quired for delivering a valid data packet from its source
to the destination;

• Goodput: the number of valid data packets received by
the sink per second;

where a data packet is valid if and only if the batch it belongs
to can be successfully decoded by the data sink.
Network failure model: In our experiments, we deploy an
additional periodic timer for all intermediate nodes in the
network. Once the timer at node vi expires, with a probability
f , vi enters a transient failure period, during which it cannot
send or receive any packet. We comparatively study the
performance of ProNCP and TNDP under different settings
of f :

• F0: f = 0 for all intermediate nodes in the network; this
is to represent the scenario where no failure happens in
the network.

• F10 f = 0.1 for all intermediate nodes in the network;
this represents the scenario where intermediate nodes
have a 10% chance to stop working for a short period
of time.

• F20 f = 0.2 for all intermediate nodes in the network;
this represents the scenario where intermediate nodes
have a 20% chance to stop working for a short period
of time.

B. Measurement Results
We first present the measurement results for the no network

failure scenario F0, then we discuss the cases of network
failure patterns F10 and F20. For each setting of experiments,
we run 10 experiments for ProNCP and TNDP and present
means and 95% confidence intervals.
No network failure (F0): Figure 5 shows the delivery relia-
bility, delivery cost and goodput of both systems. In Figure 5a,
we observe that both ProNCP and TNDP achieve a delivery
reliability close to 100%. However, the average transmission
cost of ProNCP is only 50% of that of TNDP, as shown in
Figure 5b. This shows that in-network processing of packets
provides significant benefits for improving the efficiency of
military networks, hence proving the necessity and benefits of
OpenSDC its new primitives (i.e., event, packet buffer, and
packet INP blocks).

As shown in Figure 5c, the goodput of TNDP is slightly
higher than that of ProNCP. However, this is an acceptable
trade-off for providing proactive protection to networks, as

ProNCP sends twice the traffic load than normal routing. And
according to our experiment setting, the goodput of ProNCP
and TNDP are both close to the capacity of the whole network.
Transient network failures (F10 and F20): Figure 6 shows
the performance of ProNCP and TNDP under different failure
models. As shown in Figure 6a, ProNCP keeps the delivery
reliability close to 100% under both F10 and F20 failure
models. In contrast, the delivery reliability of TNDP degrades
to 91% under the F10 model and drops to 80% under the
F20 model. Figure 6b shows that even under the existence
of transient node failures, the average transmission cost of
ProNCP is consistent at a low level, while the cost of TNDP
slightly increases in the F10 case, and drastically increases by
30% in the F20 case. Furthermore, the goodput of ProNCP
maintains close to the capacity of the network under different
failure models, while that of TNDP drops by 15% in the F20
case, as shown in Figure 6c.

All these result shows that in-network processing of packets
significantly improves the resiliency and efficiency of coalition
networks, and again proves the necessity and benefits of
introducing new primitives for the OpenSDC datapath.

VI. RELATED WORK

With SDN gaining the momentum in both academia and in-
dustry, people have started to investigate the programmability
of the SDN datapath [14]–[16], [19], [21], [24], [25]. Some
studies [14]–[16], [21], [24] realize specific resource alloca-
tion protocols and networked applications on programmable
switches. Though these realizations show that the SDN datap-
ath is expressive, we show by a thorough survey that it is insuf-
ficient for expressing the data plane behaviors of SDC systems.
Domino [25] and Marple [19] investigate the design of high-
performance hardware to enhance the programmability of the
SDN datapath. However, in military coalition networks, data
plane devices have heterogenous hardware support. Therefore,
we adopt a series of algorithmic techniques to improve the
efficiency of the OpenSDC. And we show by a proof-of-
concept prototype of ProNCP system that even low-power
wireless devices can support OpenSDC.

Software-defined radio (SDR) systems such as Sora [27] and
Atomix [4] investigate the programming of radio systems and
signal processing applications. OpenSDC is orthogonal with
these systems, and the integration of SDR with OpenSDC is
our future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we analyze the insufficiency of the SDN
datapath for expressing the data plane behavior of SDC
systems, and design OpenSDC, a novel, generic SDC datapath.
In OpenSDC, the data plane behavior of an SDC system
is expressed as an event processing pipeline. In addition
to the match-action primitive, three new primitives: event,
packet buffer and packet INP block, are introduced. We adopt
a series of algorithmic techniques to accelerate the event
processing efficiency of OpenSDC. We develop a prototype of
ProNCP, an NC-based proactive protection SDC system, using
OpenSDC. Evaluation shows that it outperforms a state-of-the-
art protection system implemented using the SDN datapath, in
terms of resiliency, reliability and efficiency. As future work,
we are investigating the high-performance hardware design for
OpenSDC, and the integration of OpenSDC with SDR.

ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclusions

5

Milcom 2018 Track 2 - Networking Protocols and Performance

999

(a) Delivery reliability. (b) Delivery cost. (c) Goodput.

Fig. 5: Performance of ProNCP and TNDP when no network failure happens.

(a) Delivery reliability.

Av
er
ag
e
De

liv
er
y
Co

st

(b) Delivery cost.

Av
er
ag
e
Go

od
pu

t

(c) Goodput.

Fig. 6: Performance of ProNCP and TNDP in network with transient failures.

contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence or the
U.K. Government. The U.S. and U.K. Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon. This
research was also supported in part by Google Research
Award, NSF awards CC*IIE 1440745, CNS-1821736, CNS-
1821962 and CNS-1810878.

REFERENCES

[1] NetEye testbed. http://neteye.cs.wayne.edu/neteye/home.php.
[2] Telosb sensors. https://telosbsensors.wordpress.com/.
[3] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung. Network information flow.

Information Theory, IEEE Transactions on, 2000.
[4] M. Bansal, A. Schulman, and S. Katti. Atomix: A framework for

deploying signal processing applications on wireless infrastructure. In
NSDI, pages 173–188, 2015.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4: Program-
ming protocol-independent packet processors. SIGCOMM CCR’14.

[6] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn. In SIG-
COMM’14.

[7] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading structure
for randomness in wireless opportunistic routing. In SIGCOMM 2007.

[8] S. Even, A. Itai, and A. Shamir. On the complexity of time table and
multi-commodity flow problems. In FOCS 1975.

[9] O. N. Foundation. Openflow switch specification 1.4.0. Open Network-
ing Foundation (on-line), Oct. 2013.

[10] C. Fragouli, D. Katabi, A. Markopoulou, M. Medard, and H. Rahul.
Wireless network coding: Opportunities & challenges. In MILCOM’07.

[11] M. R. Garey and D. S. Johnson. Computers and intractability, vol-
ume 29. wh freeman New York, 2002.

[12] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
wan. In SIGCOMM’13.

[13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience with a
globally-deployed software defined wan. In SIGCOMM’13.

[14] T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé. Life in
the fast lane: A line-rate linear road. In SOSR’18, page 10. ACM, 2018.

[15] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica.
Netchain: Scale-free sub-rtt coordination. In NSDI’18.

[16] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica.
Netcache: Balancing key-value stores with fast in-network caching. In
SOSP’17.

[17] D. Koutsonikolas, C.-C. Wang, and Y. C. Hu. Ccack: Efficient network
coding based opportunistic routing through cumulative coded acknowl-
edgments. In INFOCOM 2010.

[18] V. Mishra, D. Verma, C. Williams, and K. Marcus. In ICMCIS’17.
[19] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,

V. Jeyakumar, and C. Kim. Language-directed hardware design for
network performance monitoring. In SIGCOMM’17.

[20] R. Rajagopalan and P. K. Varshney. Data-aggregation techniques in
sensor networks: A survey. IEEE Communications Surveys Tutorials,
8(4):48–63, Fourth 2006.

[21] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis. In-
network computation is a dumb idea whose time has come. In SOSR’17.

[22] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha,
I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng. Engineering
egress with edge fabric: steering oceans of content to the world. In
SIGCOMM’17.

[23] A. Sgora, D. J. Vergados, and D. D. Vergados. A survey of tdma
scheduling schemes in wireless multihop networks. ACM Comput. Surv.,
47(3):53:1–53:39, Apr. 2015.

[24] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishnamurthy,
J. Nelson, and S. Peter. Evaluating the power of flexible packet
processing for network resource allocation. In NSDI, pages 67–82, 2017.

[25] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking. Packet transactions:
High-level programming for line-rate switches. In SIGCOMM’16.

[26] J. Suurballe. Disjoint paths in a network. Networks, 4(2):125–145, 1974.
[27] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker.

Sora: high-performance software radio using general-purpose multi-core
processors. Communications of the ACM, 54(1):99–107, 2011.

[28] Q. Xiang. In-network processing for mission-critical wireless networked
sensing and control: A real-time, efficiency, and resiliency perspective.
Wayne State University, 2014.

[29] Q. Xiang, H. Zhang, J. Wang, G. Xing, S. Lin, and X. Liu. On optimal
diversity in network-coding-based routing in wireless networks. In
INFOCOM’2015.

[30] Q. Xiang, H. Zhang, J. Xu, X. Liu, and L. Rittle. When in-network
processing meets time: Complexity and effects of joint optimization in
wireless sensor networks. IEEE TMC, 10(10):1488–1502, Oct 2011.

6

Milcom 2018 Track 2 - Networking Protocols and Performance

1000

