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ABSTRACT
The synchronized Local-SGD(Stochastic gradient descent) strategy
becomes a more popular in distributed deep learning (DML) since it
can effectively reduce the frequency of model communication and
ensure global model convergence. However, it works not well and
leads to excessive training time in heterogeneous environments
due to the difference in workers’ performance. Especially, in some
data unbalanced scenarios, these differences between workers may
aggravate low utilization of resources and eventually lead to strag-
glers, which seriously hurt the whole training procedure. Existing
solutions either suffer from a heterogeneity of computing resources
or do not fully address the environment dynamics.

In this paper, we eliminate the negative impacts of dynamic
resource constraints issues in heterogeneous DML environments
with a novel, adaptive load-balancing framework called Orchestra.
The main idea of Orchestra is to improve resource utilization by
load balance between worker performance and the unbalance of
data volume. Additionally, one of Orchestra’s strongest features is
the number of local updates adaptation at each epoch per worker.
To achieve this improvement, we propose a distributed deep rein-
forcement learning-driven algorithm for per-worker to dynamically
determine the number of local updates adaptation and training data
volume, subject to mini-batch cost time and resource constraints
at each epoch. Our design significantly improves the convergence
speed of the model in DML compared with other state-of-the-art.
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1 INTRODUCTION
Distributed deep learning has attained profound advances in recent
years. Researchers and engineers have applied distributed deep
learning technologies to solve their problems in various models
including ImageNet, Bert, etc. Distributed deep learning becomes
very common to reduce the overall training time by exploiting mul-
tiple computing heterogeneous workers (e.g., CPUs/GPUs/TPUs)
with the large size of the training datasets in data centers or non-
dedicated cloud clusters. However, most clusters in the real world
include GPUs and CPUs of different eras and types with differ-
ent computing capabilities. Unfortunately, slow workers can easily
become stragglers, lead to low utilization of computing resources
and reduce the model efficiency in heterogeneous environments.
Extremely, it will cause the failure of the whole training process.

To cope with the above difficulties, some works have been ex-
tensively studied in the literature in recent years. For example,
[2, 8] proposed to drop redundant nodes to reduce unexpected wait-
ing time at the end of per iteration. However, these methods lead
to more waste of resources and require more iterations to satisfy
model convergence. Some works [5, 11] try to eliminate stragglers
from the perspective of gradient coding.

However, these methods require many redundancy factors to
recover the correct gradient from potential stragglers. Therefore,
they lead to much additional overhead in real data centers with
resource constraints.

In this paper, we propose a novel distributed deep learning frame-
work based on the idea of load balance. Our goal is to mitigate the
impact of stragglers by relaxing the strong synchronization require-
ments of the traditional Bulk Synchronous Parallel(BSP) scheme
and balancing the workload of heterogeneous workers. The basic
idea is to make slower workers do fewer local updates before gobble
synchronization, and faster workers do more local updates. Using
the deep reinforcement learning technique, we reduce the waiting
time to minimal per iteration.

This paper makes the following main contributions:
(1) We propose a novel load-balancing-based framework named

Orchestra, that improves the resource utilization and reduces
the whole training time of distributed deep learning by adap-
tively determining the number of local updates and data
partition according to the different performance of works.
To the best of our knowledge, we are the first to propose
such a learning-driven distributed deep learning framework.

(2) We explore the problem of low utilization of computing
resources in heterogeneous clusters and propose a new syn-
chronization mechanism named Load-aware adaptive syn-
chronous parallel. In distributed training, balancing the load
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of heterogeneous nodes can improve resource utilization and
speed up distributed training.

(3) We implemented this framework through three components,
which are the Load Balance Controller, Data Partition Con-
troller, and Barrier Controller. Furthermore, we use the Asyn-
chronous Advantage Actor-Critic (A3C) learning algorithm
to adaptively optimize the synchronization barrier to reduce
communication. Our experiments show that Orchestra can
reduce the end-to-end training time by 63.63% compared to
the state-of-the-art.

2 RELATEDWORKS
Recent schemes for scaling training to a large number of workers
rely on standard mini-batch SGD with very large overall batch
sizes [7, 18] , i.e. increasing the global batch size linearly with the
number of workers K. [19] has shown that remarkably, with the
exponentially growingmini-batch size it is possible to achieve linear
speed up (i.e., error of O(1/𝐾𝑇 )) with only log𝑇 iterations of the
algorithm, and thereby, when implemented in a distributed setting,
this corresponds to log𝑇 rounds of communication. The result of
[19] implies that SGD with exponentially increasing batch sizes has
a similar convergence behavior as the full-fledged (non-stochastic)
gradient descent. While the algorithm of [19] provides a way of
reducing communication in a distributed setting, for a large number
of iterations, their algorithm will require large minibatches, and
washes away the computational benefits of the stochastic gradient
descent algorithm over its deterministic counterpart. Furthermore,
it has been found that increasing the mini-batch size often leads to
increasing generalization errors, which limits their distributivity
[14].

Motivated to better balance the available system resources (com-
putation vs. communication), local SGD (a.k.a. local-update SGD,
parallel SGD, or federated averaging) has recently attracted in-
creased research interest [15, 16, 20, 21]. In local SGD, each worker
evolves a local model by performing H sequential SGD updates
with mini-batch size B, before communication (synchronization by
averaging) among the workers.

Although existing works provide convergence guarantees on
local-update SGD, there is still no effort to focus on optimally tuning
local-update SGD to heterogeneous settings. Different from these
works, we try to mitigate stragglers and improve the resource
utilization of the cluster.

3 THE DESIGN OF ORCHESTRA FRAMEWORK
3.1 Orchestra Design
Wehave developed a novel load-balancing-based synchronous train-
ing strategy, aiming to improve resource utilization and balance
communication costs. As Figure 1 shows, the architecture of Or-
chestra consists of control nodes and training nodes. There are
three core components on the Control Server, namely the Load
Balancing Controller, the Data Partition Controller, and the Barrier
Controller.

3.1.1 Load Balance Controller. To reasonably allocate batch-load
in the distributed training procedure, the batch number of each
worker should be adjusted dynamically according to its current

Control server

Data Partition 
Controller

Barriers 
Controller

...

Worker 2Worker 1 Worker N

Data Data Data

Load Balance Controller

Figure 1: The Architecture Overview of Orchestra

performance. The adjusted batch number was then applied to the
training of the next epoch to ensure that workers with different
performances completed their tasks as closely as possible. Let each
worker keep the computation state as much as possible instead of
the idle state. To minimize the waiting time and improve cluster
utilization, we propose an efficient algorithm based on the principle
of least common multiple. The algorithm describes as follows.

(1) Find the max value in 𝑡𝑛
𝑏
and assign it to 𝑇 .

(2) Get the max idle time 𝑡𝑊 in𝑚𝑜𝑑 (𝑇, 𝑡𝑏𝑖 ).
(3) let 𝑇 increase and repeat the above two steps until the dis-

tance of the local step does not satisfy the constraint𝑀 .
where 𝑡𝑛,𝑖

𝑏
denotes the time cost by worker 𝑛 finish a batch-size

and 𝑇 denotes the barrier time. Finally, among 𝑡𝑊 , the 𝑇 used
by the minimum value is the suboptimal 𝑇 ∗. Next, it needs to be
input into Barrier Controller for final tuning. The complexity of the
algorithm is 𝑂 (𝑀𝑁 ) which would not bring additional overhead
to the original training system.

Worker 2

Worker 1

Case 1

Barrier

Training Time

The end of current 
epoch Waiting for other nodes to 

complete the current epoch

Worker 1

Worker 2

Barrier

Training Time

Idle

Compute
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Figure 2: Two cases of dataset partition.

3.1.2 Data Partition Controller. As shown in case 1 in Figure 2,
in the first iteration, each worker can complete batches almost
simultaneously. Nevertheless, at the last local iteration, the fastest
worker completed the training very early, while the slowest worker
needed to iterate a few batches. Therefore, we need to balance the
overall training dataset. It improves the local and global resource
utilization and shortens the training time of each epoch. Moreover,
it also can reduce the training time.

The dynamic partition of the datasets is approximate to the
ratio of each worker’s batch number which represents the number
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of local updates per iteration. Firstly, we collect the computing
speed of each worker by performance monitor, that the speed is
represented by 𝑏𝑎𝑡𝑐ℎ𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 . And then we normalize it to get
the percentage of speed that is the final data partition.

3.1.3 Barrier Controller. Although the waiting time can be min-
imized by the load balancing controller, if the number of local
updates of each worker is too small, then each epoch would take a
lot of time to communicate. Therefore, the performance of Orches-
tra will degrade to Synchronous Distributed SGD. To address this
problem, we use a learning-driven technique to further optimize
the barrier and reduce the communication frequency.

From the above analysis, it is obvious that the barrier control
problem is a mixed-integer programming problem, which is in gen-
eral NP-hard and it is difficult to find the optimal value manually
or heuristic algorithms. As such, we utilize the recent advances
in machine learning to design a barrier controller consisting of a
DRL-based algorithm to adaptively determines the synchroniza-
tion barrier. Consider that Distributed A3C [6] has the properties
of multiple agents, which can better interact with heterogeneous
nodes and agents can explore the different environments of dif-
ferent workers. Therefore we choose Distributed A3C as the key
technology to solve the barrier control problem.

Here are three key features to implement the Distributed A3C
model.

(1) State Space. The state 𝑆 is a triple composed of three vari-
ables in Orchestra. (1) current training progress, including
the global synchronous index and the local iteration index
of each worker, (2) current training accuracy or training loss,
(3) cost time of waiting for other workers.

(2) Action Space. This action determines the synchronization
barrier for each local iteration, To be specific, we adjust the
value of 𝑇 . The agent will try to adjust this value at the
beginning of each epoch. There are three kinds of actions
we can take: increase, decrease, and no change. The action
in each step is to adjust the value of 𝑇 by +1 or -1 or 0.

(3) Reward. The reward can be obtained after the completion
of an epoch. We use the ratio of incremental accuracy as the
metric. The incremental gradients ∇𝑎𝑐𝑐 can be obtained by,
and the increment rate 𝑝 can be expressed as 𝑝 = ∇𝑎𝑐𝑐

𝑡𝑖𝑚𝑒 ∗√︁
𝑡𝑟𝑎𝑖𝑛𝑠𝑡𝑒𝑝 , Note

√︁
𝑡𝑟𝑎𝑖𝑛𝑠𝑡𝑒𝑝 , the function of this factor is to

balance the non-linear change of accuracy. Finally, the 𝑟𝑎𝑡𝑖𝑜
can be obtained by comparing it to the best value 𝑝∗ in the
historical record, 𝑟𝑎𝑡𝑖𝑜 = 𝑝

𝑝∗ . Therefore the reward can be
expressed as:

𝑅𝑒𝑤𝑎𝑟𝑑 =




−1, (𝑟𝑎𝑡𝑖𝑜 < 1) .
1, (𝑟𝑎𝑡𝑖𝑜 > 1) .
0, (𝑟𝑎𝑡𝑖𝑜 = 1) .

(1)

We obtain the preliminary synchronization barrier through the
Load Balancing Controller, and finally, input it to the Barrier Con-
troller for tuning. The final output synchronization barrier is the
optimal synchronization barrier. After obtain the optimal 𝑇 ∗, we
can calculate the number of local iterations of each worker before
the synchronization parameters by 𝜏𝑛 = 𝑇 ∗/𝑡𝑛

𝑏
. The number of local

update of each worker is expressed as: 𝜏1, 𝜏2 ...𝜏𝑁 . So Finally, the
global model update rule is:

𝑥𝑖𝑡+1 =
{ 1

𝑁

∑𝑁
𝑘=1 (𝑥𝑘𝑡 − 𝜂𝑔(𝑥𝑘𝑡 )), 𝑡 𝑚𝑜𝑑 𝜏𝑖 = 0.

𝑥𝑖𝑡 − 𝜂𝑔(𝑥𝑖𝑡 ), otherwise, (2)

where 𝑥𝑖𝑡 denotes the model parameters in the 𝑖-th worker.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Environment
We conduct our experiments on a heterogeneous cluster as Table
1. Each server owns the 3.9 GHz Intel Xeon Gold 6250 CPU with
multiple cores, 256GB RAM, and the Intel gigabit network interface
controller. As shown in Table 1, each cluster is configured with a
different number and performance of GPUs. We use the PyTorch
framework to build Orchestra.

Table 1: Clusters With Different Worker Configurations

GPU Clusters Cluster A Cluster B Cluster C
Server 1 1*2080Ti 1*2080Ti 4*2080Ti
Server 2 1*T4 3*T4 2*T4
Server 3 1*T4 2*T4 8*T4
Server 4 1*T4 2*T4 2*T4

4.2 Datasets and DML Models
We used CIFAR10 [12] dataset for image classification tasks and
CRMC2018 [3] dataset for Natural Language Process task. CIFAR10
datatset has 50,000 training images and 10,000 test images. CMRC2018
is a dataset for Chinese Machine Reading Comprehension. We
choose ResNet101 [9] and DenseNet121 [10] as image classification
task and ALBERT [13] as NLP task to evaluate Orchestra frame-
work.

4.3 Baselines
To illustrate the effectiveness of Orchestra, we compare it with the
following baselines.

(1) Synchronous Distributed SGD (DSGD) [4]: The naive dis-
tributed SGD.

(2) Local SGD [17]: Allow each worker to be synchronized after
local updates several times.

(3) Multi-Level Local SGD (MLLSGD) [1]: A distributed gradient
method for the heterogeneous multi-level network.

4.4 Results Analysis
4.4.1 Convergence Speed. As shown in Figure 3, we use cluster C
to compare the convergence speed of these three methods using
the Cifar10 dataset to train ResNet101 and use cluster B to train
DenseNet121. We fix the training time to 1 hour, batch size to 512.
It is obvious that Orchestra can perform well in the heterogeneous
cluster. In contrast, DSGD cannot performwell in the heterogeneous
cluster. The reason is most of the training time is wasted due to
idle. Although DSGD has the highest convergence accuracy, its
convergence speed is very plodding. For the NLP task, we set epoch
to 3, batch size to 128, and learning rate to 2e-5. As shown in Table 2,
it is observed that the Local SGD-based approach is significantly
faster than the traditional SGD. Orchestra is 31% faster than DSGD,
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Figure 3: Temporal evolution of the accuracy and loss on CIFAR10 dataset with ResNet101 and DenseNet121 model.

Table 2: The comparison of training time on ALBERT model

Approach Cluster Accuracy Loss Training time(sec)
SGD 1*2080Ti 80.7% 0.93 81123 (22.5H)
DSGD Cluster A 80.2% 0.97 34514 (9.5H)
Local SGD Cluster A 78.2% 1.12 32760 (9H)
MLLSGD Cluster A 78.9% 1.07 27471 (7.6Hour)
Proposed Cluster A 79.2% 1.02 23441 (6.6H)

while the accuracy is slightly reduced due to the inherent loss of
information in Local SGD mode. But it can be ignored. Orchestra
can effectively improve the utilization rate of computing resources
so that more batches can be iterated in unit time. Therefore, higher
accuracy can be achieved in the same wall-clock training time.

5 CONCLUSION
To eliminate the negative impacts of computing resource hetero-
geneity and data unbalance issues in DML, we propose a novel,
adaptive load-balancing framework called Orchestra. We propose a
distributed learning-driven algorithm for per-worker to dynami-
cally determine the number of local updates adaptation and training
data volume, subject to mini-batch cost time and resource con-
straints at each epoch. The evaluation of various benchmarks and
multiple indicators confirms that Orchestra can effectively acceler-
ate by balancing the training load of each heterogeneous worker.
Specifically, Orchestra reduces the end-to-end training time by
63.63% compared to the DSGD.
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