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Abstract
People have been leveraging the capabilities of programmable

switches, which are programmable in the data plane and process
packets at the line rate, to improve the performance of distributed
systems. However, few have explored whether programmable
switches can speed up problem-solving. In this paper, we take a first
step to explore the feasibility and benefits of this line of research.
Specifically, we select the SAT problem, one of the most fundamen-
tal problems in computer science, as a case study. Our intuition is
that by exploiting the parallel lookup capability of programmable
switches, we can substantially speed up the process of checking
whether an assignment is a solution to a SAT problem. In particu-
lar, we base on the classical DPLL algorithm and design P4-DPLL,
which consists of (1) match action tables using TCAM to quickly
check assignment satisfiability and find unit variables, and (2) a
stack data structure using register and SRAM to efficiently make
variable search decisions in the data plane. We implement a proto-
type of P4-DPLL and evaluate its performance extensively. Results
show that P4-DPLL improves the solving time by 101x speedup on
90% quantile of all test cases, compared with a CPU-based DPLL
implementation.

CCS Concepts
• Networks → Programmable networks; • Software and its
engineering → Formal methods; • Hardware → Hardware-
software codesign.
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1 Introduction
Programmable switches have flourished in recent years because

of their powerful capability, allowing network programmers to
customize the algorithms in the data plane and process packets
at the line rate. People have been leveraging the capabilities of
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programmable switches to improve the performance of distributed
systems [12, 13, 17, 21, 26, 27, 30, 31]. Great benefits from the flex-
ibility of programmable switches have been demonstrated, such
as load balancing [5, 16], consensus algorithms [28], congestion
control [19], and in-network caching [13, 18, 20].

However, few have explored whether programmable switches
can speed up problems with high computational complexity. For
example, the computational complexity of many np-complete prob-
lems increases substantially as the problem scale increases. In this
paper, we take a first step to explore the feasibility and benefits of
this line of research. We pick the SAT problem as an example. It is
the first problem that was proven to be NP-complete and of cen-
tral importance in many fields of computer science, circuit design,
complexity theory, cryptography, and artificial intelligence.

We note that the main overhead in the SAT problem is the time
it takes to check whether an assignment is a solution to a SAT
problem. Our intuition is that by leveraging the parallel lookup
capability of programmable switches, we can convert this checking
process into a table lookup process in the programmable switch.
Then, we can speed up the SAT solving by taking advantage of
the fact that programmable switches can perform table lookups in
linear time.

Specifically, we design P4-DPLL based on the DPLL
(Davis–Putnam–Logemann–Loveland) algorithm, the foun-
dation of many modern SAT solvers [7, 8]. P4-DPLL is composed
of two components: a judgment component that checks whether
a variable assignment will cause a conflict or generate a unit
variable, and a search component that is responsible for finding
assignable variables and assigning values to variables. To speed
up the judgment component, we design match action tables using
TCAM to quickly check assignment satisfiability and find unit
variables. To accelerate the search component, we choose not
to implement it in the control plane due to the long latency of
the control path. Instead, we design a stack data structure in the
data plane using register and SRAM to implement the process of
variable search and assignment. Through the design of these two
components, we completely implement the DPLL algorithm in the
data plane.

We implement a prototype of P4-DPLL on Barefoot Tofino
switches and commodity servers and evaluate its performance ex-
tensively. Results show that P4-DPLL improves the solving time
by 101x speedup on 90% quantile of all test cases compared with a
CPU-based DPLL implementation.

2 Background
SAT Problem. The boolean satisfiability problem (SAT) is to de-
termine whether a formula of boolean variables is satisfiable or
not. A boolean variable may have one of the two values, true or
false. A clause is a disjunction (OR) of variables. The formulas in
the SAT problem generally refer to the conjunctive normal form
formula, which is a conjunction (AND) of clauses. A formula is said
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to be satisfiable if it can be made true by assigning appropriate logic
values (i.e., true, false) to its variables.
DPLL Algorithm. The basic algorithm for solving the SAT prob-
lem is the DPLL algorithm [10]. It is the base of many SAT-solving al-
gorithms such as the CDCL algorithm [6, 10, 23]. It is a backtracking-
based search algorithm for deciding the satisfiability of formulas
in conjunctive normal form. The DPLL algorithm iteratively goes
through two phases: a judgment phase and a search phase. The
judgment phase checks whether a variable assignment will cause
a conflict or not and the search phase is responsible for finding
assignable variables and assigning values to variables [7, 8].

For example, for the formula (𝑥1 ∨ 𝑥2) ∧ (¬ 𝑥1) ∧ (¬ 𝑥2 ∨ 𝑥3),
we first choose the variable 𝑥1 and assign 𝑥1 to true. Because the
second clause (¬ 𝑥1) evaluates to false, we go back to the first layer
and reassign the variable x1 to false. Since there is no conflict and
we cannot determine the truth value of the first clause (𝑥1 ∨ 𝑥2),
we choose the second variable 𝑥2 and assign 𝑥2 to true. We find
that there is still no conflict but the truth value of the third clause
cannot be determined. Therefore, we choose the last variable 𝑥3 and
assign 𝑥3 to true. So far, we find that the truth value of all clauses
is true. So we can check that the formula (𝑥1 ∨ 𝑥2) ∧ (¬ 𝑥1) ∧ (¬ 𝑥2
∨ 𝑥3) is satisfiable. The solving process of the algorithm is shown
in Figure 1.

Figure 1: The solving process of DPLL algorithm.

Besides, the DPLL algorithm often uses some additional methods
to reduce the solving time. A commonly used method is unit clause
propagation. The basic idea is that when only one variable in a
clause is unassigned and the assignment of other variables cannot
make the truth value of the clause true, this clause can only be
satisfied by assigning the necessary value to make this variable true.
In this case, the variable to be assigned is called the unit variable,
and the clause that produces the unit variable is called the unit
clause. In the actual operation of the algorithm, the determination
of one unit clause often leads to the appearance of another unit
clause. Therefore, this method reduces a lot of search space for
the SAT solving process. For example, for the formula (𝑥1 ∨ 𝑥2
∨ 𝑥4 ∨ 𝑥5) ∧ (¬𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ ¬𝑥3), we first randomly assign
the variable 𝑥1 to false. Then we apply unit clause propagation.
In clause (𝑥1 ∨ ¬𝑥3), x3 must be assigned false making this clause
satisfiable. Furthermore, in clause (¬𝑥2 ∨ 𝑥3), 𝑥2 must be assigned
false to make this clause satisfiable.

3 P4-DPLL Design
In this section, we describe the design of P4-DPLL that exploits

programmable switches to solve SAT problems efficiently. We de-
scribe the overview of our entire design in §3.1, the design of the
judgment component in §3.2, and the design of the search compo-
nent in §3.3.

3.1 Overview
As illustrated in §2, the DPLL algorithm is divided into two parts:
search and judgment. The search component is mainly responsible
for finding suitable assignable variables in the formula and assign-
ing them, and the judgment component is mainly responsible for
judging whether the current assignment will lead to some situation.

Figure 2: P4-DPLL structure.

Following this division, we propose P4-DPLL, a SAT solver that
exploits the parallel lookup capability of switches for speedup, as
shown in Figure 2. To avoid the overhead caused by the control
path, we deploy both components in the data plane. To carry the
data required by the SAT solver, we design two dedicated headers,
as shown in Figure 3. The P4-DPLL fields are inside the Ethernet
payload and a special EtherType is reserved for P4-DPLL. The
switch uses this type to invoke the custom packet processing logic.

Figure 3: P4-DPLL packet format.

The Judgment Component. The judgment component has two
functions: the first is to judge whether the current assignment will
cause a conflict, and the second is to judge whether the assignment
will generate a unit variable. We implement these functions on P4
using two TCAM tables. The first one we call the conflict table,
which is used to determine whether there is a conflict. And the
second is called the unit table, which is used to determine whether
there is a unit variable. By leveraging the ability of TCAM table
parallel lookups, we achieve speedups for both functions.
The Search Component. The main function of the search compo-
nent is to search for assignable variables, assign values to variables,
and handle special cases. A key challenge in the search component
is that it needs to record the search history for backtracking. To ad-
dress this challenge, we implement a stack structure on the switch
using registers and SRAM tables, which is also our key design in
the search component. By using this stack, we are able to record
the search history on the switch and go back to the correct point
when appropriate.

3.2 Judgment Component
Conflict Table. In a SAT formula, if an assignment causes a con-
flict, it must be because there is a clause that evaluates to false
under the current assignment. For a clause of the SAT formula,
evaluating to false means that all variables in the clause evaluate
to false. So no matter how long a clause is, there is one and only
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Figure 4: SAT to conflict table. The false assignment of the
formula can be generated according to the SAT formula, and
then the conflict table of the SAT formula can be generated
according to the false assignment.

one assignment that makes the clause evaluated as false, which we
call false assignment.

For example, in the formula on the left side of Figure 4, for the
first clause, it is false only if assigned 𝑥1 to false, 𝑥2 to false, and 𝑥3
to true. For the second clause, only if assigned 𝑥2 to false and 𝑥3
to false, this clause is false. We use 0 to indicate that the variable
assignment is false and 1 to indicate that the assignment is true.
Because the second clause does not contain 𝑥1, the value of 𝑥1
is recorded as *, which is arbitrary. In this way, we can generate
false assignments for each clause. And so on, we can get false
assignments for this formula. For any SAT formula, we can get a
corresponding false assignment.

Because if a false assignment occurs in an assignment, it can
be concluded that the assignment will lead to a conflict, we can
construct a conflict assignment match table based on the false
assignment, called a conflict table.

As shown in Figure 4, the key of the conflict table is the value and
assignment of the variable, each bit represents a variable, the action
is the conflict handling function, and each entry of the conflict
table corresponds to the false assignment of a clause in the SAT
formula. In this way, as long as the conflict table hits, there must
be at least one row of entries appearing in the current assignment,
and there must be at least one false assignment appearing in the
current assignment. Therefore, as long as the conflict table hits, it
can be asserted that the current assignment will cause a conflict so
that it can be transferred to conflict processing.

Figure 5: JUDGMENT header.

In order to carry the variable information to match the conflict
table, we use the JUDGMENT header as shown in Figure 5. Lim-
ited by the computing power of the programmable switch, we set
the length of the VALUE and ASSIGNED fields to 32 bits, which
is exactly the upper limit of the length of the switch to perform
computing operations. There are a total of 8 packet headers, which
together can represent 256 variables, which is exactly the size of a
conflict table.
The Formula Partitioning Algorithm. In commodity pro-
grammable switches [4], a TCAM table is no longer than 512 bits
wide. Because the conflict table has two fields of equal length, value
and assigned, a conflict table can process conflict situations of up
to 256 variables at the same time. To handle larger SAT formulas,
we design a simple formula partitioning algorithm. By dividing a
large SAT formula into several small parts, and then putting the

(a) Put the first clause in table 1.

(b) Put the second clause in table 1.

(c) Put the third clause in table 2.
Figure 6: An illustration example to demonstrate the for-
mula partitioning algorithm.

small parts into the corresponding conflict table one by one, the
compatibility of P4-DPLL to larger formulas can be realized.

The algorithm divides the entire formula according to the width
of the table’s match-key. It traverses all clauses of the entire formula
and then decides whether to divide the clauses into the current
match table based on whether the table has enough capacity. If
the table’s match-key has enough free width, and the table is not
full, the algorithm divides the clause into the current table. If the
table’s match-key has enough free width, but the current table is
full, the algorithm will not divide the clause into the table; and vice
versa. Of course, if all the variables contained in a clause are already
contained in the table, and the table is not full, the clause will also
be included in the table.

For example, suppose the match-key width of the table is 5 bits,
and it can only contain at most 2 entries, as shown in Figure 6.
For the first clause, since table 1 is empty at this time, it can be
directly put into table 1. For the second clause, it has a variable
already included in table 1, so if it is to be put into table 1, it needs
to consume one-bit width on the match-key of table 1. At this time,
the match-key of table 1 still has enough free bits, and table 1 is
not full, so the second clause can be put into table 1. If we want to
put the third clause into table 1, the situation is the same as in the
second clause. But now there is not enough bit width in table 1, so
only the third clause can be put into table 2.

Although this algorithm is not optimal, it does expand the ca-
pacity of our table during our evaluation. Improving this algorithm
is our future work.
Unit Table. The main function of the unit table is to quickly deter-
mine whether a unit variable is generated. It is similar in principle
to the conflict table. For a clause, a unit variable is created if all
but one of the variables are assigned and evaluated as false. In this
case, the condition for no conflict is that the remaining variable
evaluates to true. That is, for a clause with k variables, there are k
ways to generate unit variables.

As shown in Figure 7, for a clause with 3 variables, it generates
3 different unit assignments. As with conflict assignments, when
a unit assignment appears in the current assignment, the current
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Figure 7: SAT to unit table.

assignment must generate the unit variable throughout the SAT
formula. Therefore, the unit table converted from the unit assign-
ment can achieve similar functions to the conflict table. When the
unit table hits, it means that the current assignment must generate
the unit variable in the entire SAT formula.

The conflict table directly returns the result and calls the conflict
handling function, but the unit table returns an additional parame-
ter, which represents which unit variable is generated by this entry.
The unit table does not need to consider the priority of entry. For
the unit table, all unit variables generated by the current assignment
have the same priority. After processing the first unit variable, the
remaining unit variables will be recognized and processed again
when entering the unit table later.

3.3 Search Component
The core of the search component in P4-DPLL is a stack to track
search history during SAT solving. Since the search space required
to solve the SAT formula is huge, we deploy the stack on the reg-
ister instead of the packet header. Based on this stack, the search
component is divided into three parts: search part, go-back part,
and unit part. The search and go-back parts operate the stack to
complete the advance and reverse of the algorithm. The unit part
does not operate the stack, it mainly implements the processing of
unit variables.

Because the search component of the P4-DPLL is complex, we
implement it by recirculating packets multiple times on the switch.
We use the OP field to identify what the P4-DPLL should do while
processing the packet, and IF_OP_DONE to indicate whether the
current action is over. The control information such as the OP field
of the search component is mainly placed in the SEARCH header,
as shown in the Figure 8.

Figure 8: SEARCH header.

Figure 9 shows a schematic of the stack. We put the get and push
operations of the stack on the same stage (in fact, due to atomic
constraints, they can only be placed on the same stage), but the con-
ditions required to perform these two actions are different. When
OP is OP_PUSH, the match table hits and the push operation will
be performed. The get operation cannot be performed at this time.
When the OP is OP_GET, the match table hits and the get operation
will be performed. The push operation cannot be performed at this
time. If the solver needs to get the data immediately after the push
operation, it needs to modify the op field and recirculate the packet
back to the parser.Note that this stack only supports single-thread

(a) Push data onto the stack.

(b) Get data from the stack.
Figure 9: Pipelines in programmable switches. When op is
equal to OP_PUSH, data is pushed; when op is equal to
OP_GET, data is taken out.

search. Extending it to support parallel search is one of our future
works.

The functions of each part in the search component are relatively
independent, dealing with the input and output of the conflict table
and the unit table respectively.
The Search Part. In this part, P4-DPLL will linearly look through
all current variables to find an assignable variable. To avoid start-
ing a search from scratch every time, P4-DPLL maintains a search
pointer and ensures that all variables preceding the pointer have
been assigned. After finding an assignable variable, P4-DPLL as-
signs it and generates the input of the conflict table. When finished
with these operations, the search part pushes the data onto the
stack and passes the data to the conflict table.
The Go-back Part. After sending to the conflict table, the packet
will enter the go-back part. In this part, the solver decides whether
to start go-back processing or to start looking for the unit variable
based on the conflict table matches. If the go-back process starts, the
solver will keep backtracking on the stack and reassigning variables
until there are no more conflicts. If the switch keeps going back
until there are no variables to choose from, the solver will report
UN-SAT. The solver will start matching the unit table If there are
no conflicts.
The Unit Part. In this part, the solver will judge whether the
current variable will generate a unit variable according to the results
of the unit table. If so, the unit part will report this to the search part
and start assigning values to the unit variable. If no unit variable is
generated, P4-DPLL modifies the OP field, returns to the first part,
and looks for the next variable that can be assigned a value.

Take Figure 10 as an example. In the first step, the search part
searches for unassigned variables, and it finds 𝑥1. It assigns 𝑥1 false,
pushes the result in the stack and enters it into the conflict table.
In the second step, since there are no conflicts, the go-back part
enters the current assignment into the unit table. After entering
the unit part, since a unit variable is generated, it starts to process
the unit variable, as shown in the third step.
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(a) The first cycle.

(b) The second cycle.
Figure 10: An example of the search component.

In the fourth step, the search part receives the data of the unit part
and pushes it onto the stack. However, since the current assignment
would cause a conflict in the formula, the go-back part gets historical
data from the stack in the fifth step and returns to the search part
to start reassignment. A more detailed example can be found on
our website [3] with a technical report [14].

4 Performance Evaluation

4.1 Setup
Prototype Implementation.We implement a P4-DPLL prototype
on Barefoot Tofino switches.We also implement a simplified version
of P4-DPLL called PServer which means we use both P4 and server
to solve SAT problems. PServer solves the SAT problem through
the interaction between the programmable switch and the server
by deploying the search component of P4-DPLL on the server and
deploying only the judgment component on the programmable
switch. The server will first search for variables. When it needs to
make a judgment, PServer will send a packet carrying the current
assignment information to the programmable switch for judgment
through DPDK. In this way, the programmable switch and the
server are constantly interacting. Finally, the server will get the
solution to the SAT problem. To better evaluate the performance
of P4-DPLL, we also design a DPLL algorithm that is completely
implemented on the server-side, called ServDPLL.

Note that the search components of ServDPLL and PServer are
implemented slightly differently. This is because if we apply the
search component in PServer to ServDPLL, it will substantially
increase the judgment time of ServDPLL, and many test cases will
time out. Therefore, we introduce an optimization in ServDPLL to
digest the formula while assigning the value to the formula on the
search component. Note that in this preliminary evaluation, we
do not compare P4-DPLL with other hardware-based acceleration
methods such as FPGA-based SAT solver [24, 29]. This is an ongoing
future work.
Testbed. We perform experiments on a Barefoot Tofino switch [4]
and a server with 2 Intel Xeon Silver 4210R CPUs, 128GB memory,
and a Mellanox ConnectX-5 NIC card.
Datasets.We collect formulas from two public datasets [1, 2]. There
are 39,949 formulas in these two datasets, of which 39,928 were
satisfiable and 21 were unsatisfiable. The scales of the variables in

these formulas range from 20 to 600, and the scales of the clauses
range from 80 to 2,237.
Comparison Methods. To study the performance of our solver,
we used five versions of the solver to compare: P4-DPLL, PServer,
ServDPLL, Z3, and MathSAT. MathSAT and Z3 are the most com-
monly used solvers for solving SAT problems with good perfor-
mance in the current application. Among them, MathSAT is im-
plemented based on the DPLL algorithm but with many advanced
scenario-dependent optimizations, and Z3 is implemented based
on the CDCL algorithm. We choose not to compare P4-DPLL with
any parallel SAT-solving algorithms because parallel SAT solver is
complex and does not necessarily have good accelerations.
Metric. We test and analyze the solving time of different meth-
ods of SAT solvers on the same data set. To fairly compare the
time-consuming of each solver, we do not include the time spent
on pre-processing. To analyze the time advantage area between
each method, we further divide solving time into search time and
judgment time to analyze the time advantage area between each
solver.

4.2 Results
Overall Performance.We perform statistics on the solving time
for the formulas collected from the dataset. Figure 11a plots the
CDF and Figure 11b gives the 90% quantile of all test cases for each
method. We can see that P4-DPLL improves the solving time by
101x and 16x respectively on 90% quantile of all test cases compared
to PServer and ServDPLL. Besides, from Figure 11a, we can see that
the SAT solving time of P4-DPLL is faster than that of MathSAT and
Z3 on 50% quantile of all test cases. The reason why MathSAT and
Z3 have a large portion of instances that are faster than P4-DPLL
is that Z3 uses CDCL which is inherently much faster than DPLL
and MathSAT applies many instance-dependent optimizations on
DPLL such as variable elimination, subsumed clause removal, and
backwards subsumption [6]. Realizing instance-dependent opti-
mizations in P4-DPLL is our future work, such as by recording the
polarity of variables to achieve better assignments.
Performance on Different Formula Size. To analyze the impact
of formulas of different sizes on the performance of the sat solver,
we select and divide the formulas in the dataset into eight different
categories according to the number of variables and the number
of clauses. For different types of formulas, we separately analyze
the evaluation results of different SAT solvers. Figure 11c plots the
solving time on 90% quantile of cases on different formula sizes.
With the increase in the number of variables in the formula, the
solving times of PServer, ServDPLL, and Z3 increase significantly.
MathSAT’s solving time and P4-DPLL’s solving time don’t vary
significantly. In addition, when the formula is small, P4-DPLL has
obvious advantages in performance over the other solvers. When
the formula is relatively large, P4-DPLL has a similar performance
to MathSAT.
Judgment Time and Search Time. Figure 11d gives the judgment
time and search time for each method. P4-DPLL solver has the
smallest judgment time, and ServDPLL has the longest judgment
time. This is because P4-DPLL uses the table of the programmable
switch to make judgments, and the judgment result can be obtained
in linear time. Although PServer also uses the programmable switch
to determine whether an assignment conflicts, it needs to send and
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Figure 11: P4-DPLL Performance Evaluation.
receive packets frequently through the server in order to obtain the
judgment result of the switch. So the judgment time of P4-DPLL is
shorter than the judgment time of PServer. We can see that P4-DPLL
improves the judgment time by 246x and 35x respectively compared
to PServer and ServDPLL. Besides, we can see that P4-DPLL has
the largest proportion of judgment time. This is due to the fact that
P4-DPLL implements the algorithm using the stack, which requires
multiple calls to the stack for each check. This greatly increases the
time spent on searches, which in turn results in a reduced share of
judgment time. We can also see that the search time of ServDPLL is
increased compared to that of PServer. This is because we introduce
an optimization in ServDPLL to make the judgment time shorter
and the search time longer on ServDPLL.
Summary. In summary, P4-DPLL has a significant performance
improvement compared with PServer and ServDPLL. Besides, the
SAT solving time of P4-DPLL is faster than that of MathSAT and
Z3 on 50% quantile of all test cases. Specifically, the P4-DPLL has
a clear performance advantage for small formulas. For relatively
large formulas, the P4-DPLL solver is comparable to the currently
popularMathSAT solver. Besides, the judgment time of the P4-DPLL
is significantly smaller than that of the PServer and the ServDPLL.

5 Discussion
In this paper, we take a first step toward using programmable

switches to accelerate problem-solving. Here, we discuss some
limitations of programmable switches in this direction.
Resource Constraint. The core idea of P4-DPLL is to use the
quick matching capability of the TCAM table to speed up the DPLL
algorithm. However, on existing programmable switches, the size
of the TCAM that can be used is limited.

For a TCAM table, the maximum bit width is 512 bits, and under
this condition, the maximum number of entries that can be used in
a single stage is 1024. In our implementation, we use a P4 switch
with 12 stages, which means that our conflict table and unit table
cannot accommodate an excessive number of clauses.

To handle the formula as well as possible, we empirically allo-
cated the TCAM resources to the conflict table and the unit table
in a ratio of one to three. This allows P4-DPLL to accommodate a
maximum of 768 variables or 3,096 clauses in a formula. Depend-
ing on our implementation, it is possible to implement P4-DPLL
together with multiple switches or multiple pipelines of a switch,
and we leave it as future work.

The design of P4-DPLL supports solving multiple SAT formulas
with one data plane configuration. But, in reality, this is constrained
by current P4 hardware.

Reconfiguration Constraint. A fundamental constraint of P4 is
that updating the match table on the switch is a time-consuming
operation. Due to this limitation, our P4-DPLL cannot make instant
updates to the conflict table and the unit table at runtime. Therefore,
it is difficult to extend the design of the P4-DPLL to other more
efficient SAT algorithms, such as CDCL [22]. We believe this is a
key obstacle to accelerating other algorithms using programmable
switches. We plan to investigate this issue in-depth in the future.
Integration Constraint. P4-DPLL could be integrated into Z3 or
MathSAT as the judgment part in theory. However, this is con-
strained by the overhead of control path. How to efficiently imple-
ment integration is our ongoing work.
Cost. One may think using programmable switches to solve the
SAT problem is not financially efficient. However, we are exploring
solving multiple SAT problems using programmable switches to
reduce the cost further.

6 Related Work
In-network Computing. The networking community has exten-
sively explored to improve the performance of distributed systems
such as load balancing [5, 16], consensus algorithms [28], machine
learning [25], key-value stores [13, 18, 20], and network teleme-
try [9, 11]. Few have explored whether programmable switches can
speed up problems with high time complexity such as NP problems.
We believe we are one of the first to explore the feasibility and
benefits of this line of research.
SAT Solving. The DPLL algorithm is the basic algorithm for solv-
ing SAT problems. Many modern solvers use the CDCL algorithm,
which augments the DPLL algorithm with efficient conflict analy-
sis [7, 8, 10, 22]. Implementing the CDCL algorithm needs updating
the match table on the programmable switch on the fly, which con-
sumes lots of time. Therefore, the advantage of using programmable
switches may be less significant. We leave it to future work.

Some people use FPGA to accelerate SAT solving by leveraging
its increasing design capacity, high performance, massive flexibility,
and parallelism [15]. Comparing the acceleration performance of
FPGA-based SAT solvers and P4-DPLL is an important future work
for us, which can help us better understand how to accelerate SAT
problem-solving.

7 Conclusion
As a first attempt to explore whether programmable switches

can speed up solving problems with high computational complexity,
we design P4-DPLL to accelerate SAT-solving using P4 switches. In
the future, we plan to also study how to use programmable switches
to accelerate other problem-solving such as graph process.
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