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Abstract—Machine learning enabled Internet of Things (IoT)
applications (e.g., object recognition and autonomous driving)
require collecting large amounts of multi-dimensional data, called
tensors, at IoT devices. Due to the lower-power and distributed
nature of these devices, however, many data are missing during
collection (i.e., incomplete tensors), impairing the performance
of IoT applications. The best practice to cope with this issue is
to collect the private raw data from all devices to a centralized
server to execute tensor completion algorithms, causing severe
privacy concerns. This paper systematically investigates the new
problem of privacy-preserving tensor completion, and designs
TwilightTensor, a lightweight, privacy-preserving tensor comple-
tion framework. In TwilightTensor, each IoT device works in
parallel to retrieve public shared data from a logically centralized
server, uses a novel, lightweight obfuscation mechanism to indi-
vidually disguise its private raw data, and sends the obfuscated
raw data to the server. The server then executes tensor completion
algorithms with the obfuscated tensors from all devices as input,
and distributes the corresponding results back to devices. Each
device then independently de-obfuscates the received results to
get its own reconstructed complete tensors. We rigorously analyze
the performance of TwilightTensor, implement a prototype of
TwilightTensor and conduct extensive experiments using real-
world datasets for different IoT applications. Results show that
TwilightTensor achieves comparable recovery accuracy of state-
of-the-art tensor completion algorithms, while preserving the data
privacy of IoT devices.

I. INTRODUCTION

Many IoT scenarios benefit substantially from machine

learning [1], [2]. These IoT applications collected large

amounts of data from IoT devices such as sensors, wearable

devices, and smartwatches to train models that are used

in various scenarios, including computer vision [3], traffic

prediction [4], weather forecasting [5], health care alerting [6]

and recommendation [7]. The collected data are of multiple

dimensions and the most widely used approach to encoding

such data is to organize them in a multi-dimension array, which

is also called tensors.

The completeness of tensors, representing to what extent

data elements are collected in tensors, plays a fundamental

role in deciding the efficiency of IoT machine learning appli-

cations (e.g., accuracy). However, due to the lower-power and

distributed nature of IoT devices, data missing and corruption

are common in IoT devices [8][9]. To cope with this, many

tensor completion algorithms [10], [3], [11] are developed,

with the aim of reconstructing the missing data in tensors.

Although much progress has been made in developing ten-

sor completion algorithms, the current best practice to deploy

these algorithms in IoT machine learning applications consists

of collecting the raw data from all IoT devices to a centralized

server to execute the tensor completion algorithms. This is due

to the limited computation capability of IoT devices [12].

However, collecting the raw data of IoT devices to a third

party server raises severe privacy concerns [13], [14] (e.g.,
Fig 1). First, adversaries participating in the data collection

and transmission process may conduct sniffing and spoofing

attacks [15]. Second, with the prevalence of cloud services,

the centralized server becomes the single point of failure,

increasing the chance of service hijacking [16][17]. Recent

work [18], [19] proposed solutions to preserve the privacy

of clients by having clients encrypt the private data before

sending it to the server. However, these methods only focus

on the protection of private data. Using the encrypted data

from these methods as input, the tensor completion algorithms

cannot yield accurate recovery results [8].

In this paper, we systematically investigate the privacy-

preserving tensor completion problem: how can the missing
data in tensors be accurately estimated while the private data
at devices are not exposed? This is a non-trivial task due

to the conflicting requirements of data privacy preservation

and tensor completion. In particular, to achieve the accurate

estimation of missing data in tensors, the data (i.e., the input of

tensor completion algorithms) collected from distributed IoT

devices should maintain their authenticity. In contrast, to avoid

the leakage of clients’ private data on IoT devices, these private

data should be distorted (e.g., encrypted or obfuscated) before

the transmission, and the distorted data are largely different

from the original one. However, using distorted data as input

may result in the severe inaccuracy of tensor completion.

Moreover, the solution to this problem must not introduce

heavy computation or communication overhead to IoT devices,

given the lower-power nature of these devices.

Our solution to this challenging problem is TwilightTensor,

a novel, lightweight, privacy-preserving tensor completion

framework. The basic idea of TwilightTensor is to equip each

IoT device with a lightweight obfuscation mechanism, so that

each device can work in parallel to disguise its private raw

data with public shared data retrieved from the server, and

only send the obfuscated data to the server (Fig 1). As such,

adversaries cannot access devices’ private data by tampering

the device-server communication or hacking the server. In the

meantime, the obfuscation mechanism is carefully designed

to maintain the homomorphic property of data. As such,

upon receiving the obfuscated data, the server can execute
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a tensor completion algorithm with the obfuscated data as

input and distributes the obfuscated results back to the devices

individually. Each IoT device can then independently de-

obfuscate the data to get the reconstructed complete tensors,

and use them to train local learning models (e.g., federated

learning [20] and distributed learning [21]). With this novel

design, TwilightTensor simultaneously protects the private data

of IoT devices from leaking, and maintains the accuracy of

tensor completion. In addition, the design of TwilightTensor is

also modular such that different tensor completion algorithms

can be plugged in at the server.

The main contributions of this paper are as follows:

• We systematically study the new problem of privacy-

preserving tensor completion. This problem sheds light

on many practical tensor completion use cases, e.g., traffic

prediction, health care alerting, and recommendation. To

the best of our knowledge, we are the first to systemati-

cally investigate and address this problem.

• We design TwilightTensor, a novel, lightweight, privacy-

preserving tensor completion framework, which allows

efficient, accurate tensor completion while protecting the

private data of clients from being exposed.

• We fully implement a prototype of TwilightTensor and

evaluate its performance extensively using real-world

datasets for different applications. Results show that

TwilightTensor can achieve similar recovery accuracy

compared with tensor completion algorithms that use un-

obfuscated raw data as input, while preserving the private

data of clients from being exposed.

II. MOTIVATION

Tensor completion is used to tackle many realistic problems

in IoT. For example, many computer vision applications can

be formulated as tensor completion problems (e.g., image in-

painting [22], video completion [11], and compressed sensing

[23]). In addition, applications in intelligent transportation

systems [7], social network [24], and mobile medical and

health monitoring [25] also rely on tensor completion to

reconstruct corrupted data. As such, many tensor completion

algorithms [3], [26], [10] are developed.

As shown in Fig. 1, a common design paradigm of all

these applications is to collect data from different sources to

a powerful centralized server, where tensor completion algo-

rithms are executed to reconstruct the missing data. Without

any encoding strategies, however, these data can be easily

acquired during the data transmission stage, which will lead to

privacy leakage, especially for sensitive private data, e.g., GPS

location data, medical data, and personal images or videos.

This potential drawback will decrease the users’ willingness

to share their data for tensor completion. Considering the rapid

growth of tensor completion and the increasing popularity of

IoT services we believe it is crucial to take the privacy problem

into consideration and address the privacy issues. Current

tensor privacy systems protect the data while do not address

the tensor completion problem. These privacy concerns prompt

us to study the novel problem of accurate, privacy-preserving

Fig. 1: Current best practice vs. TwilightTensor: collecting

private, raw data from IoT devices may cause severe privacy

issues. TwilightTensor addresses them by sending obfuscated

data from IoT devices to the server.

tensor completion problem. We design TwilightTensor, the first

system to simultaneously provide accurate tensor completion

and protect tensor privacy in IoT applications.

III. PROBLEM FORMULATION

Next, we present the system settings, and then formally

define the privacy-preserving tensor completion problem.

A. System Settings
Client/Server system model. We consider a typical

client/server model for data collection, process, and analysis.

IoT devices are clients that collect both public shared data, e.g.,
environment temperature, and private data, e.g., the trajectory

data. After data are collected, clients need to send the data

to a centralized server for processing and learning, due to

their limited local computing capability. For private data, the

problem of data preservation should be addressed.

Matrix and tensor representation. The data collected by

clients can be represented as tensors. We use upper case letters

for matrices, e.g., X , and lower case letters for entries, e.g.,
xi1i2 , which represents the element in the i1-th row and the

i2-th column. The Frobenius norm of matrix X is defined

as ||X ||F := (∑i1,i2 |xi1i2 |2)
1
2 . An n-D tensor is defined as

X ∈ RI1×I2×···×In . And the elements are denoted as xi1i2...in ,

where 1 ≤ ik ≤ Ik, 1 ≤ k ≤ n. The unfolding of a tensor

X along the k-mode is defined as unfoldk(X ) := Xk ∈
RIk×(I1×...Ik−1×Ik+1···×In). The folding operation is defined as

foldk(Xk) :=X . The Frobenius norm of tensor X is defined

as ||X ||F := (∑i1,i2,...,in |xi1i2...in |2)
1
2 , or written as ||X ||∗. We

use Ω to indicate the boolean index set of the same size of

X . We use XΩ to denote the tensor copying the entries in

set Ω from X , while the remaining entries are set to 0. And

a SliceSliceSlice of an n-D tensor is a 2-D section defined by fixing

all but two indices. A FiberFiberFiber of an n-D tensor is a 1-D section

defined by fixing all but one. For instance, a third-order tensor

of size n1×n2×n3 is denoted as X , and its (i, j,k)th entry is

represented as Xi jk. Moreover, a tensor tube of size 1×1×n3

is represented as xxx. And we use the Matlab notion X (k, :, :),
X (:,k, :) and X (:, :,k) to denote the kth horizontal, lateral and
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frontal slices, and X (:, i, j), X (i, :, j) and X (i, j, :) to denote

the (i, j)th mode-1, mode-2 and mode-3 fiber. In particular, we

use X (k) to denote X (:, :,k). We can view X as an n1×n2

matrix of tubes.

And the commutative operation ∗ between the tubes aaa,bbb ∈
R1×1×n3 via aaa∗bbb = aaa◦bbb, where ◦ denotes the circular convo-

lution between two vectors. And the t-product T = A ∗B
of A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is a tensor of size

n1× n4× n3 where the (i, j)th tube denoted by T (i, j, :) for

i = 1,2, . . . ,n1 and j = 1,2, . . . ,n4 of the tensor T is given by

∑n2
k=1 A (i,k, :)∗B(k, j, :).
Then we define the tensor transpose. Let X be a tensor of

size n1×n2×n3, and X T is the n2×n1×n3 tensor obtained

by transposing each of the frontal slices and then reversing

the order of transposed frontal slices 2 through n3. And we

use X̂ to denote the tensor obtained by taking the Fourier

Transform (FFT) of all the tubes along the third dimension

of X . For details of the computation, please refer to [27]. A

tensor is called f -diagonal if each frontal slice of the tensor

is a diagonal matrix.

Then, we define the tensor Singular Value Decomposition

(t-SVD). ForX ∈ Rn1×n2×n3 , the t-SVD of X is given by

X = U ∗S ∗V T , (1)

where U and V are orthogonal tensors of size n1×n1×n3 and

n2×n2×n3. S is a rectangular f -diagonal tensor of size n1×
n2×n3, and ∗ represents the t-product. This decomposition can

be computed by SVD in the Fourier domain.

Now we define a measure of tensor complexity based on t-
SVD: tensor multi-rank. The multi-rank of X ∈Rn1×n2×n3 is

a vector p∈Rn3×1 with the ith element equal to the rank of the

ith frontal slice of X̂ obtained by taking the Fourier transform

along the third dimension of the tensor. And the tensor-

nuclear-norm (TNN) is denoted as ||X ||T NN and defined as

the sum of the singular values of all the frontal slices of X̂ .

And it is the tightest convex relaxation to l1 norm of the tensor

multi-rank. We need to note that ||XT NN ||= ||blkdiag(X̂ )||∗,
and blkdiag(X̂ ) is a block diagonal matrix.

Low rank tensor. In practical applications, low rank or

approximately low rank tensors are broadly observed. For

example, in signal processing, [28] evaluates the scheme based

on low rank simulated exponential signals. The brain MRI data

used in [3] is also approximately low rank. As such, we focus

on low rank tensors in this paper.

Tensor completion. Suppose there is a n-D low rank tensor T
with the entries in the set Ω of T given while the remaining

are set to 0. For different tensor completion algorithms, this

problem can be formulated in a different way. Here we discuss

two methods of formulating the tensor completion problem for

Tensor Nuclear Norm (TNN) penalized algorithm and high

accuracy low rank tensor completion algorithm.

According to [11], We can solve the following problem

to complete this tensor with missing values and produce the

output X :
min : ||X ||T NN

s.t. : PΩ(X ) = PΩ(T ),
(2)

where PΩ is the orthogonal projector onto the span of ten-

sors vanishing outside of Ω. Let Y be the available data:

Y = PΩT . Then, we define G = ζ3PΩζ−1
3 where ζ3 and ζ−1

3

are the operators representing the Fourier and inverse Fourier

transform along the third dimension of tensors. Then, we have

Ŷ = G (T̂ ) where Ŷ and T̂ are the Fourier transforms of Y
and T along the third mode. Thus, Eq. (2) is equivalent to

min : ||blkdiag(X̂ )||∗
s.t. : Ŷ = G (X̂ ),

(3)

where X̂ is the Fourier transform of X along the third mode.

Another way to formulate the problem is to utilize the trace

norm. [3] defines the trace norm for tensors

||X ||∗ :=
n

∑
i=1

αi||X(i)||∗, (4)

where αi are constants satisfying αi ≥ 0, 1 ≤ i ≤ n and
n
∑

i=1
αi = 1 for n-D tensor X . The trace norm for tensor is

a convex combination of the matrix trace norm of tensor

unfolded along each mode. Then [3] proposes the tensor

completion optimization as

min
X

:
n
∑

i=1
αi||X(i)||∗

s.t. : XΩ = TΩ,
(5)

where X and T are n-D tensors with identical size, with the

entries in the set Ω of T given while the remaining are 0.

Adversary models. In this paper, we focus on two representa-

tive types of adversaries, whose goal is to acquire the complete

recovered private data of IoT devices.

• Eavesdroppers and hackers: An eavesdropper is an ad-

versary who intercepts the data transmission process to

capture the data traffic between clients and servers and a

hacker is an adversary who directly hacks into the servers

to obtain the data stored in the server. The data they

can acquire is in the same form. Thus, in the following

context, they are called by a joint name: hackers.

• Stalkers: A stalker is a special adversary model in trajec-

tory related scenarios. A stalker can tail after the client

and acquire k records of the actual data. We assume the

number of k is a small number compared with the original

data the client owns.

B. Problem Formulation
Performance metrics. We define two metrics to jointly eval-

uate the performance of our TwilightTensor system: recovery

error and distortion.

We use root mean squared error ε(i) to evaluate the recovery

accuracy, which is defined as

ε(i) = ||X (i)−X(i)||F , (6)

where X (i) is the original complete tensor and X(i) is the

recovered tensor of our system for client i. To evaluate the

overall recovery performance of our system, we use ε , which
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is defined as

ε =

√
||X −X||F 2

n
, (7)

where X is the original complete tensor, X is the recovered

tensor of our system and n is the number of private users.

We use distortion β(i) to describe the variance between the

obfuscated data and the original data of client i, which is

defined as

β(i) = ||X (i)−XXX (i)||F , (8)

where X (i) is the original complete tensor and XXX (i) is the

recovered obfuscated tensor for client i. The measurement of

distortion is root mean squared error. To evaluate the overall

distortion performance of our system, we use β , which is

defined as

β =

√
||X −XXX ||F 2

n
, (9)

where X is the original complete tensor, XXX is the recovered

obfuscated tensor and n is the number of private users.

Problem formulation. After defining the performance met-

rics, we then define The privacy-preserving tensor completion

problem (PPTC problem)s as follows:

Definition 1 (PPTC Problem): Design a tensor data collec-

tion, completion and encryption mechanism which minimizes

ε(i) while maximizing β(i) to accurately recover the missing

values in tensors while preserving the privacy for clients.

IV. TwilightTensor SYSTEM

In this section, we present TwilightTensor, a novel system

that tackles the PPTC problem. We first give an overview of

TwilightTensor, and then present the details of its components.

A. TwilightTensor Overview
The overview of TwilightTensor is shown in Fig. 2. Specif-

ically, TwilightTensor consists of three key components:

1) Data obfuscation: Clients obfuscate their private data

with public shared data based on a K-Tensor Obfuscation
(KTO) mechanism. Then, clients upload their obfuscated

data to the server.

2) Tensor completion: The server assembles the obfuscated

data from clients into a multi-dimensional tensor and

applies the tensor completion algorithm to the tensor to

estimate the missing values in the tensor. We need to

note that the tensor completion module is replaceable.

Users of TwilightTensor can plug the most suitable tensor

completion algorithm for the private data into the tensor

completion module.

3) Data de-obfuscation: Clients download their correspond-

ing recovered data and de-obfuscate it into the recovered

complete one.

B. Data Obfuscation
To tackle the privacy issues, the obfuscation operation of

private data is applied at the client side.

We use fob to denote the obfuscation operation. The goal

of fob is to disguise the original data with public data, so

even the adversaries acquire the obfuscated data, they cannot

distinguish the original data from the intercepted data. We use

X(i) to denote the original data with missing values and X(i)
for the obfuscated data after obfuscation operation of client i
and X(i) can be obtained by

X(i) = fob(X(i)). (10)

Then, we explain the details of K-Tensor Obfuscation
(KTO) mechanism, which serves the obfuscation function

in our system. In our system, we assume that the public

data are complete without missing values. Client i acquires

K public tensors I(i1),I(i2), . . . ,I(iK) from server or other

public clients. The sources of public tensors are uncertain,

which partially strengthens the privacy preservation feature.

Client i generates a length of K+1 randomly generated vector

< θi0 ,θi1 ,θi2 , . . . ,θiK >, where θi j ∈ (0,1) and
K
∑
j=0

θi j = 1, as

the private key. The main obfuscation operation of fob function

over X(i) can be presented by

X(i) = (θi0X(i) +θi1I(i1) + · · ·+θiK I(iK))◦Ω, (11)

where X(i) is the original data with missing values, X(i) is

the obfuscated data, Ω is the boolean index set, θi j ∈ (0,1)

and
K
∑
j=0

θi j = 1.

The impact of θi0 is essential in our system. Its value

determines the portion of original data in the obfuscated data.

The value of θi0 cannot be too small, otherwise, it will lead

to poor recovery accuracy. Meanwhile, the value of θi0 cannot

be too large, otherwise, the obfuscated data will be highly

identical to the original one, which makes the obfuscation

operation less effective. Empirically, we set θi0 ∈ [0.2,0.8] to

achieve high recovery accuracy and privacy preservation.

C. Tensor Completion

After collecting m obfuscated data from clients, the server

forms them into a multi-dimensional tensor with missing

values X ∈ Rm×I1×I2×···×In−1 . Then, TwilightTensor operates

the tensor completion algorithm on the obfuscated tensor. Most

existing low rank tensor completion algorithms can be used in

the tensor completion module of TwilightTensor. The tensor

completion algorithm is denoted as fTC. We use XXX to denote

the recovered tensor after the tensor completion operation

XXX = fTC(X ), (12)

where X is the obfuscated data with missing values.

The design of TwilightTensor is modular so that different

tensor completion algorithms can be plugged in. As a proof of

concept, in this paper, we choose a High accuracy Low Rank

Tensor Completion (HaLRTC) algorithm [3], which lever-

age the alternating direction method of multipliers (ADMM)

framework to solve the tensor completion problem.

HaLRTC Algorithm. In HaLRTC algorithm, additional ten-

sors M1, . . . ,Mn are introduced to obtain the formulation of
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Fig. 2: Illustration of TwilightTensor system.

this problem for n-mode tensor:

minX̂̂X̂X ,M1,...,Mn
:

n
∑

i=1
αi||Mi(i)||∗

s.t. : X̂̂X̂X Ω = XΩ
X̂̂X̂X (i) = Mi, for i = 1, . . . ,n,

(13)

where αi are constants satisfying αi ≥ 0, 1≤ i≤ n,
n
∑

i=1
αi = 1

and Ω is the binary index tensor. Then, we define the following

Lagrangian function according to ADMM formulation:

Lρ(X̂̂X̂X ,M1, . . . ,Mn,Y1, . . . ,Yn) =
n
∑

i=1
αi||Mi(i)||∗+(X̂̂X̂X −Mi)◦Yi +

ρ
2 ||Mi− X̂̂X̂X ||2F , (14)

where ρ is the input of the algorithm. According to the

architecture of ADMM, we can iteratively update Mis, X̂̂X̂X
and Y s as follows:

{M k+1
1 , . . . ,M k+1

n }= arg min
M1,...,Mn

: Lρ

= (X̂̂X̂X k,M1, . . . ,Mn,Y
k+1

1 , . . . ,Y k+1
n ),

X̂̂X̂X k+1 = arg min
X̂̂X̂X ∈Q

: Lρ

= (X̂̂X̂X ,M k+1
1 , . . . ,M k+1

n ,Y k
1 , . . . ,Y k

n ),

Y k+1
i = Y k

i −ρ(M k+1
i − X̂̂X̂X k+1).

(15)

HaLRTC can be accelerated by changing the value of ρ
iteratively. According to [29], we set ρ0 = ρ and ρk+1 = tρk.

D. Data De-obfuscation
After the obfuscated tensor is recovered, clients can down-

load their corresponding data and de-obfuscate it into a com-

plete one and fde to denote the de-obfuscation operation. We

use X(i) to represent the recovered data after de-obfuscation

for client i. The de-obfuscation operation over the obfuscated

recovered data XXX (i) to produce X(i) can be defined as

X(i) = fde(XXX (i)). (16)

The de-obfuscation operation is the inverse of obfuscation

operation. Based on the private key and public data, we

formulate the de-obfuscation operation as

X(i) = (XXX (i)− (θi1I(i1) + · · ·+θiK I(iK)))/θi0 . (17)

Due to the fact that the private key and the set of public data

are only known to clients themselves, their privacy concerns

are addressed against the attack from adversaries or latent

danger of information leakage.

V. TwilightTensor SYSTEM ANALYSIS

In this section, we analyze the performance of recovery

accuracy, privacy preservation and time and space complexity.

A. Accuracy Analysis
In TwilightTensor, we adopt obfuscation operation to dis-

guise the private data collected from clients and de-obfuscation

operation to decrypt the recovered obfuscated data to produce

the final output. From Eq. (11) and Eq. (17), we find that

these two operations are linear transformation, which will

not change the rank of the tensors. Thus, the rank of the

tensors before and after the obfuscation and de-obfuscation

operations are identical [30]. Because the essence of the tensor

completion is to minimize the tensor-nuclear-norm which is

the tightest convex relaxation to l1 norm of the tensor multi-

rank, the obfuscation and de-obfuscation operations do not

degrade the recovery accuracy of tensor completion algorithm

used in the server due to the consistent tensor rank.

B. Privacy Preservation
From the definition of distortion in Eq. (8), we can observe

that the degree of distortion is related to the distance δ
between the pair of points in the recovered obfuscated tensor

and original complete tensor and a large δ indicates stronger

privacy preservation against hackers. The encrypted tensor

is obtained by randomly combine K public records with

randomly generated vector < θi0 ,θi1 ,θi2 , . . . ,θiK >. Thus, we

can use the random distance distribution to approximate the

distortion of a pair of nodes.

We consider the random distance between two random

points in a a× b× c. The density function k(v) = 2vh(v2),
where v is the distance and h(v2) is the density of the

probability that (x1− x2)
2 +(y1− y2)

2 +(z1− z2)
2 ≤ v2. The

details of h(v2) can be found in [31]. With this distribution, we

simulate in a cube with a = 4, b = 5, and c = 6. The statistic

distribution of the density function k(v) is shown in Fig. 3.

For more generic cases and types of adversary models, we

will discuss in Section VI through real-world datasets.

C. Complexity Analysis
Computational Complexity. In K-Tensor Obfuscation mech-

anism, K + 1 records of data of size T are needed to output

an encrypted tensor. The obfuscation and de-obfuscation are

linear operations of the whole size of data used. Thus, their

time complexities are O((K +1)T .

Communication Overhead. The obfuscation and de-

obfuscation method operate locally at the user side. To achieve

the goal of privacy preservation, users need to download K
records of public data of size T from the server and upload

the encrypted data in obfuscation operation. Thus, the commu-
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Fig. 3: Density function of the distance.

nication overhead for obfuscation is O((K + 1)T ). Similarly,

for de-obfuscation operation, its communication overhead for

de-obfuscation is O(T ).

VI. PERFORMANCE EVALUATION

We implement a prototype of TwilightTensor and conduct

extensive experiments to evaluate its performance by using 2

real-world datasets: visual data, and climate data.

A. Experiment Settings
To simulate the missing values in real datasets, we randomly

generate the Ω boolean index set of the same size of our

datasets to indicate whether the entry is missing or not. The

total number of missing values in tensor is constrained by data

loss ratio α . Due to the constraints of limited client number

and the aim to simplify the system, we set the top 10 records of

data as public data. In this case, the K in K-tensor obfuscation
is set to 10 by default.

B. Experiment on Visual datasets
Dataset Description. There is a massive amount of appli-

cations of IoT services in the area of computer vision. We

use the BioID Face Database [32] for analysis and evaluation.

The dataset consists of images with a resolution of 384×286

pixels. Each one shows the frontal view of the face of one out

of 23 different test persons. We randomly select 100 images

to form a tensor with a size of 286× 384× 100 to simulate

the settings that users will upload pictures to the server for

recovery. In Fig. 4, we present the cumulative distribution

function (CDF) of the top i singular values of the tensor

unfolding along the first, the second, and the third dimension.

The sum of the singular values can be replaced by several

leading singular values. If we remove small singular values of

the matrices unfolding along each mode, which is less than 1%

of the tensor’s Frobenius norm, the rank of the BioID dataset

can decrease to 46× 57× 46 to satisfy the requirements for

low rank tensor completion algorithms.

Performance of Recovery Accuracy. We compare the results

of directly applying high accuracy low rank tensor completion

(HaLRTC) algorithm [3] and adopting this in the tensor

completion module of the TwilightTensor. The recovery error

CDF of two options is shown in Fig 5 (a) with the loss ratio

set to 50%. The overall recovery error is 1155.8 and 1239.0,

respectively. The overall recovery performance with loss ratio

increasing from 10% to 60% by every 10% is shown in Fig.
5 (b). Overall the recovery error in TwilightTensor is tolerable

for the feature of privacy preservation it can achieve.
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Fig. 4: Low rank property of visual data.

Performance of Privacy Preservation. The CDF of the

distortion for each user with the loss ratio set to 50% is shown

in Fig. 5 (c). The distortion of over 50% images is greater than

8793.0 and the overall distortion is 5218.6. Then, we adjust

the number of public records of data from 10 to 60 and record

the overall distortion performance in Fig. 5 (d). We can infer

that there is no clear pattern between the number of public

records and overall distortion.

Visual Results. We randomly sample a portrait image to give

a visual demonstration of TwilightTensor, as shown in Figure
6. Fig. 6 (a) is the ground truth of the original image. Fig. 6
(b) is the sampled image with the loss ratio set to 50%. Fig. 6
(c) is the output of directly applying the HaLRTC algorithm.

Fig. 6 (d) is the output of our TwilightTensor and Fig. 6 (e)
is the distorted image after recovery. The results of directly

applying the tensor completion algorithm and output of our

system are comparable. The obfuscation mechanism also has

an effect on privacy preservation.

C. Experiment on Climate dataset
Dataset Description. We also use climate data to validate

the efficiency of our system. From the climate data, one can

infer the location-based data which will expose the uploaders’

private information. Thus, there is still a privacy concern.

The climate dataset we use is the U.S. Historical Climatology

Network Monthly (USHCN) dataset which consists of monthly

climatological data of 108 stations with 17 variables spanning

from the year 1915 to 2000. It can form a 3-D tensor with a

size of 125×156×17. The first mode represents 125 locations,

the second represents 156 time series, and the third is for 17

variables. In Fig. 7, we present the CDF of the top i singular

values of tensors unfolding along the first and the second

dimension in the USHCN dataset. If we consider the top 75%

singular value along each mode, the rank of the tensor can be

decreased to 46×64×17, which meets the requirement of the

low rank tensor for our system.

Performance of Recovery Accuracy. For climate data, we

only observe the measurements for a subset of locations and

time series matrix. For missing data, the 17 variables at one

certain location and time frame are blank. We consider the

user should upload the climate data of 17 variables along

different time frames at one fixed location. When the loss

ratio is set to 50%, the recovery error CDF of the HaLRTC

algorithm and TwilightTensor adopting this algorithm in the

tensor completion module on the climate dataset are shown in
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Fig. 5: Experimental result of visual dataset.

(a) Ground truth (b) Sampled result (c) Directly recovered (d) TwilightTensor result (e) Distorted result

Fig. 6: A demonstration showing that TwilightTensor provides accurate tensor completion using obfuscated incomplete tensors.
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Fig. 7: Low rank property of climate data.

Fig. 8 (a). The overall recovery performance of directly apply-

ing HaLRTC and TwilightTensor is 14.2 and 14.6 separately.

With the loss ratio increasing from 10% to 60% by every 10%,

the overall recovery errors of directly applying HaLRTC and

TwilightTensor are shown in Fig. 8 (b), which are comparable

in all the explored cases.

Performance of Privacy Preservation. For the climate

dataset, we mainly focus on privacy preservation against

hackers. The distortion CDF for each user is shown in Fig. 8
(c). The distortion of TwilightTensor of over 80% locations is

greater than 23.6 and the overall distortion is 35.0. Considering

the overall recovery error of TwilightTensor is 14.6, this

kind of distortion can protect the information from leakage.

Moreover, we apply the TwilightTensor system on the climate

dataset with the number of public records K varying from 10

to 60. The overall distortion results are shown in Fig. 8 (d).
The conclusion is the same as it in the visual dataset and GPS

dataset that there is no clear pattern between the number of

public records and overall distortion.

VII. RELATED WORK

We classify the related work into two categories: tensor
completion and tensor privacy preservation.

Tensor completion. The goal of tensor completion is to accu-

rately estimate the missing data in tensors. Many algorithms

for tensor completion have been developed [10], [33], [3], [34].

And [3] applied the alternating direction method of multipliers

(ADMM) to develop several tensor completion algorithms

built on tensor trace norm. In addition, another approach

involved in applying the singular value decomposition on the

unfolding matrices along each mode of tensors [33]. To further

improve the accuracy and efficiency of tensor completion,

algorithms based on tensor-singular value decomposition are

recently proposed [26], [11]. [34] gives a comprehensive sur-

vey on tensor completion algorithm. Although much progress

has been made on improving the accuracy and efficiency of

tensor completion, directly applying them to IoT applications

[13], [14], [7], [25] would cause privacy concerns.

Tensor privacy preservation. There have been many studies

investigating the privacy preservation of tensor data. The

common design of these studies preserve the privacy of tensor

owners is data encryption. Qiu et al. [8], [18] defined two

attack models for cloud servers: direct access model and data

mining attack model, and proposed a scheme for tensor-based

encryption to balance the privacy and functionality. [35] pre-

sented a privacy-preserving High-Order Probabilistic C-Means

algorithm (HOPCM), which integrates the Brakerski-Gentry-

Vaikuntanathan (BGV) encryption into HOPCM. However,

current works on tensor privacy prevent the adversary from

getting the original tensor but have no guarantee on tensor

completion accuracy [36]. These designs have not investigated

the problem of estimating missing data in tensors. On the

contrary, we systematically study the privacy-preserving ten-

sor completion problem and design TwilightTensor, a novel,

modular and efficient system that solves this problem.

VIII. CONCLUSION

In this paper, we study the novel problem of privacy-

preserving tensor completion for IoT applications, and design

TwilightTensor, a lightweight, privacy-preserving framework
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Fig. 8: Experimental results of climate dataset.

that realizes privacy preservation and accurate tensor comple-

tion. We implement a prototype of TwilightTensor and perform

extensive evaluations to demonstrate its efficiency and efficacy

for supporting two representative IoT applications.
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