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Abstract—Vehicle localization service is a fundamental compo-
nent of intelligent transportation systems. The widely used satel-
lite navigation systems perform poorly in urban areas because
the lines of sight to satellites are blocked by complex terrain
characteristics, e.g., buildings, elevated streets and interchanges.
In this paper, we design RadioLoc, a novel system achieving
accurate, efficient, all-terrain vehicle localization with two key
design points. First, RadioLoc harvests the frequency modulation
(FM) signal, which has a higher availability than satellite signal
in complex terrains, as the signal source for localization. Second,
RadioLoc integrates modern machine learning techniques into
the processing of FM signals to efficiently learn the accurate
vehicle localization in all-terrain environments. We validate the
feasibility of FM-based vehicle localization and corresponding
challenges and practical issues via field tests (e.g., signal distor-
tion, signal inconsistency and limited in-vehicle radio bandwidth),
and develop a series of advanced techniques in RadioLoc to
address them, including a new multipath delay spread filter, a
reconstructive PCA denoiser, a tailored FM feature extractor, an
adaptive batching technique and a frequency sweep technique.
We implement a prototype of RadioLoc and perform extensive
field experiments to evaluate its efficiency and efficacy. Results
show that (1) RadioLoc achieves a real-time localization latency
of less than 100 milliseconds; (2) RadioLoc achieves a worst-case
localization accuracy of 99.6% even in an underground parking
lot, and (3) the horizontal error of RadioLoc is only one sixth
of a dedicated GPS device even when the vehicle is moving at a
high-speed (i.e., 80 km/h) in a complex highway scenario.

I. INTRODUCTION

Vehicle localization is one of the most critical services
in intelligent transportation systems (ITS), and the founda-
tion of many ITS applications, such as navigation, elec-
tronic toll collection, traffic monitoring, emergency response
and autonomous driving. Global Navigation Satellite Systems
(GNSS), such as the Global Positioning System (GPS) [1],
are the most widely used civilian vehicle localization systems.
However, even being augmented by advanced technologies,
the efficacy of GNSS is still constrained by an inherent
limitation: GNSS require a clear line of sight from the ve-
hicle to at least three satellites for accurate localization. The
impact of this limitation is particularly magnified in urban
environments, where the line of sights are blocked by a large
amount of obstacles made of concrete and steels such as stack
interchanges, multi-level garages, underground parking, street
canyons, elevated roads and tunnels.

To cope with this limitation and achieve all-terrain vehicle
localization, academia and industry have investigated the feasi-
bility of many alternative signal sources. For example, Assisted
GPS (A-GPS) [2], [3], [4] utilizes the assistance of cellular
networks to provide localization service to smart phones under
a partially blocked sky. However, the localization errors of
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A-GPS are substantially larger than those of dedicated GPS
devices [4]. Systems using other signal sources (e.g., WiFi [5],
[6], [7], [8], acoustic signals[9] and visible light [10], [11])
provide a high accuracy for indoor localization. However, such
signals are either less available or highly dynamic for vehicles
in complex terrains.

In this paper, we design RadioLoc, a novel system that
achieves accurate, efficient, all-terrain vehicle localization
with two key design points. First, RadioLoc adopts the FM
radio signal, a wireless signal highly available in all-terrain
environments, as the signal source for localization. The FM
signal is more advantageous over other signals (i.e., satellite,
cellular, WiFi, acoustic and visible light) for all-terrain vehicle
localization, because it is free, highly available in complex
urban terrains (e.g., underground parking garages and tunnels),
and requires no additional reception hardware on vehicles.
Second, RadioLoc integrates modern machine learning tech-
niques into the processing of FM signals, including adaptive
sampling, profile feature extraction and location computation,
to efficiently generate the accurate vehicle localization in all-
terrain environments.

Even with all the advantages of FM signal, the previous
studies on FM-based indoor localization [12], [13], [14], and
the recent progress of modern machine learning theories and
systems [15], [16], however, realizing accurate, efficient, all-
terrain vehicle localization is still non-trivial. Through field
experiments in Section II, we identify a series of unique
challenges. First, the multipath richness of FM radio signal
propagation generates large delay spreads, leading to signif-
icant signal distortions around some FM station frequencies.
Second, even at the same location, the power offsets and
interference levels of FM signals could vary significantly,
due to the diversities of vehicle models, weather conditions,
and the manual tuning of radio power gains by users, which
leads to the inconsistency of FM signal fingerprints. Third, the
high mobility of vehicles, as well as the limited bandwidth of
in-vehicle radios, further degrades the localization accuracy.
Fourth, the location of vehicles needs to be computed in real-
time even when vehicles are moving at a high speed.

To address these challenges, in RadioLoc, we develop
multiple advanced techniques (Section III and Section IV). In
particular, RadioLoc detects and eliminates the signal distor-
tions caused by delay spreads directly (instead of estimating
the delay spreads themselves), with a Mahalanobis distance
based filter. A reconstructive Principle Component Analysis
(rPCA) denoising technique is then designed to further reduce
the residual noises. Second, to cope with the inconsistency
of FM signal fingerprints, RadioLoc extracts essential signal
features that are immune to diverse vehicle models and chang-
ing weather. The variations in power offsets and interference
levels are neutralized. Third, RadioLoc embraces an adaptive
batching technique, which adjusts the data collection periods
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Fig. 1. FM RSS profiles of four positions.

according to the current vehicle velocity, and utilizes a fre-
quency sweep technique to increase the system bandwidth for
low-end radios. Fourth, RadioLoc adopts the random forest
learning method to develop an algorithm that swiftly learns
the accurate location of vehicles.

We implement a prototype of RadioLoc and perform exten-
sive field experiments to evaluate its performance (Section V).
Specifically, we conducted field experiments in two comple-
mentary scenarios with different terrains - a multi-floor parking
building and a street section in an open neighborhood. In the
first scenario, results show that RadioLoc achieves a worst-
case localization accuracy of 99.6% in totally 18 locations
scattering on four different floors (including one underground
floor). A high-speed (i.e., 80 km/h) test in the second scenario
shows that RadioLoc lowers the horizontal errors to 16.7% of
those given by a dedicated GPS device. And in both scenarios,
RadioLoc achieves a localization latency of less than 100
milliseconds.

The main contributions of this paper are as follows.
• We design RadoiLoc, a novel FM-based vehicle local-

ization system, which to the best of our knowledge is
the first working system that achieves efficient, accurate,
all-terrain vehicle localization;

• We identify the design challenges and practical issues
of FM-based all-terrain vehicle localization through field
tests, and develop a series of novel techniques to system-
atically address these issues;

• We fully implement RadioLoc and perform extensive
field experiments to demonstrate the efficiency and ef-
ficacy of RadioLoc, in terms of localization latency and
accuracy.

II. FM-BASED VEHICLE LOCALIZATION: FEASIBILITY

AND CHALLENGES

We identify the feasibility and corresponding challenges of
FM-based all-terrain vehicle localization through field exper-
iments in a four-floor parking building. The building has one
basement 1B floor and three floors 1F , 2F and 3F on the
ground. We used USRP B210 boards as onboard FM radios,
and left the built-in FM radios untouched to minimize the
inconveniences to the volunteers.

A. Feasibility Experiments
We first parked an equipped vehicle on four different floors

of the building. On each floor, this vehicle was parked at the
same horizontal position. Hence, these four locations shared
the same longitude and latitude, but had different altitudes.
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Fig. 2. Means and variances of RSS values at 1F over 200 samples.

RSS profiles of FM signals were recorded at these locations.
Here, an RSS profile is defined as a set of RSS values at
different frequency points over a certain bandwidth. For each
location, multiple samples of RSS profiles were recorded, and
an average profile was calculated based on these samples.

The average RSS profiles of four different positions are
illustrated in Fig. 1. In the RSS profiles, there are multiple
peaks, each of which corresponds to a local radio station.
It is shown that the peaks have different values and orders
at different floor. These profiles are distinguishable from
each other by analyzing their RSS peaks at the radio station
frequencies. As such, we conclude that FM-based all-terrain
vehicle localization is feasible.

B. Experimental Investigation of Challenges
Although we find that FM-based all-terrain vehicle local-

ization is feasible, and some FM-based indoor localization
systems are also recently developed, (e.g., [12], [13], [14]).
Many issues remain open when designing an FM-based ve-
hicle localization system. To identify these issues, we further
conduct several sets of field tests.

1) Impact of Multipath Delay Spread: The complicated
urban terrain introduces a rich set of multipaths to the FM
radio broadcasting, leading to a large delay spread in the FM
signals. This spread in the time domain introduces random
and unpredictable signal dispersion in the frequency domain.
To analyze the impact of the delay spread, we further study
the statistical details of FM RSS profiles. Fig. 2 takes 1F as an
example, and depicts the means and variances of RSS values
over 200 samples. An interesting observation is that, while
the peaks of means appear at the frequencies of radio stations
(we call them station frequencies in the rest of this paper),
the peaks of variances are a bit off these station frequencies.
This suggests that, while the centers of FM signals always
locate at station frequencies, the shapes of them are varying
dynamically. Since the vehicle was parked during recording,
these variations should be mainly introduced by the multipath
reflections of FM signals. The large and time-changing delay
spreads were reflected as signal distortions in the frequency
domain, leading to the large variances around radio station fre-
quencies. Therefore, we have a unique challenge summarized
as follows.

Challenge 1: The multipath richness of FM signals intro-
duces severe delay spreads, which lead to previously undis-
covered noises around station frequencies.

2) Impact of Vehicle Diversity: There are numerous ground
vehicle models. Each of them may have a distinct placement
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TABLE I
RELATIVE INTERFERENCE UNDER DIFFERENT WEATHER CONDITIONS

Sunny Rainy Cloudy
Interference level -78.2 -79.8 -76.3

(a) With different vehicles. (b) Under different weather.
Fig. 3. FM RSS variations due to different vehicles and weather conditions.

of radio antenna, a unique radio device, and different materials
resulting in special signal propagation factors. Even vehicles
from the same model may behave differently. To investigate
the impact of vehicle diversity, we next employ a second
vehicle from a different brand, and repeat the field tests at the
same day as before. Fig. 3(a) compares the average RSS values
in four different positions between two vehicles. Although
both vehicles are parked at the same positions, their average
RSS values are different. This suggests that the raw RSS
profiles are not consistent across different vehicle setups. A
closer investigation at the values reveals that there is a nearly
constant power offset of 4.3dB between the results of two
vehicles. Therefore, we summary the following challenge.

Challenge 2: The diversity in vehicle models may introduce
variations in power-related features such as path losses and
receiver-side gains. An almost constant yet unknown power
offset is brought to FM signals, making their RSS profiles
inconsistent.

3) Impact of Weather Conditions: Besides internal factors,
the consistency of FM signals may also be affected by ex-
ternal factors. FM signal broadcasting could be sensitive to
weather conditions. An example is the well-known rain fade
phenomenon. However, we still need to understand the impact
of weather conditions on FM RSS profiles and FM-assisted
localization. Therefore, we repeat the tests with the first vehi-
cle on different days under different weather conditions. Fig.
3(b) compares the average RSS values across three weather
conditions. It is illustrated that the average RSS values vary
with weather conditions. A further investigation reveals that
the changes in interference level (Table I) contribute to these
undesirable variations, leading to the following challenge.

Challenge 3: The diversity in weather conditions may
introduce variations to the interference level, resulting in
inconsistent FM profiles.

4) Other Practical Issues: In addition to the above chal-
lenges, there also exist other practical issues that need to be
addressed.

Practical Issue 1: To cancel the white noise, it is required
to collect multiple samples of RSS profiles at one location.
However, when the vehicles are moving, it is impossible to
gather multiple samples at exactly the same location. Instead,
we may resolve to the collection of multiple samples within a
small range. The size of this range may vary significantly with
vehicle speed, which prevents us from obtaining consistent
RSS profiles and FM fingerprints.

Practical Issue 2: The most important frequency compo-
nents of RSS profiles are located at the frequencies of radio

Fig. 4. Overview of RadioLoc.

stations, which are separated by hundreds of KHz. Low-end
in-vehicle radios may not have a large enough bandwidth to
cover an abundant number of radio stations in RSS profiles.
As a result, the resolution and accuracy of FM localization
may degrade.

Practical Issue 3: Vehicle localization has strong real-time
and accuracy requirements. The accurate location of vehicles
need to be computed in real-time even when vehicles are
moving at a high speed.

III. RADIOLOC OVERVIEW

In this section, we give an overview of the architecture
and workflow of RadioLoc, as illustrated in Fig. 4. RadioLoc
utilizes its radio to gather the ambient FM signals x centering
at the frequency fC . This center frequency is determined and
adjusted by the frequency selector. Suppose the bandwidth
of these frequency signals x is B. Continuous signals are
converted to digital signals, and are passed to the succeeding
adaptive sampler.

Upon receiving each signal sample, the adaptive sampler
calculates the RSS value on each frequency point, and obtains
a RSS profile �x covering the bandwidth B. These profiles
are output with a rate of R samples per second. This rate is
the output rate of digital samples with bandwidth B, and is
different from the sampling rate of FM radio. We denote each
sample of RSS profiles �x as

�x = {xf1 , . . . , xfl ..., xfL}T , (1)

where xfl denotes the RSS value at the lth frequency point fl,
and L is the total number of frequency points in the frequency
domain. The interval between two frequency points is thus
B/L Hz. Every T seconds, the sampler creates an RSS profile
batch with all the RSS profiles obtained during this period.

Each batch is denoted as �X = {�x(1), . . . , �x(i), . . . , �x(N)},
where N = RT , and the superscript i of �x(i) refers to the
sequential number of profiles in one batch. Each batch is then
output to the succeeding block. Note that the use of this batch
technique is necessary to compensate the white noise across
consecutive RSS profiles.

The denoiser is designed to eliminate the noises in each

batch of RSS profiles �X , and outputs the denoised result as
�Y . The noises to be cancelled include not only the white
noise but also the signal distortions introduced by multipath
delay spread. To avoid computationally heavy estimation of
delay spread, the proposed denoiser employs a Mahalanobis
distance based filter to detect and remove the distorted RSS
values directly. It then applies a reconstructive PCA denoising
technique to further reduce the residual noises.

The feature extractor aims to eliminate the FM signal
inconsistency brought by the diversities of vehicles, radios,
and weather conditions. It achieves this goal by extracting
FM signal features that are irrelevant to these diversities. The
extractor first normalizes each denoised profile �y(i) in the

denoised batch �Y , so as to compensate the unknown power
offsets brought by vehicle/radio diversity. It then calculates
features of each normalized RSS profile, including the heights
of peaks, the order of peaks, and a binary differential sequence
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Algorithm 1 Mahalanobis distance based filtering

Input: A batch of RSS profiles �X consisting of N samples, and the
empirical percentage ρ of outliers.

Output: A batch of filtered profiles �YM .
Step 1: Calculate the distribution of variances in RSS values on each
frequency point as follows.

1: for l = 1 to L do
2: xfl =

∑N

i=1
x
(i)
fl

/N.

3: vl =
∑N

i=1
(x

(i)
fl
− xfl )

2/N.
4: end for

Step 2: Calculate the Mahalanobis distances of all {vl, l = 1, . . . , L} as
follows.

5: μ =
∑L

l=1
vl/L.

6: δ =
(∑L

l=1
(vl − μ)2/L

)1/2
.

7: for l = 1 to L do
8: Calculate the Mahalanobis distance as

9: γl =
(
(vl − μ)(δ2)−1(vl − μ)

)1/2
.

10: end for
Step 3: Remove outliers based on the Mahalanobis distances as follows.

11: Collect the largest �ρL� Mahalanobis distances, and put them into a set
Γ.

12: γth = min{γl|γl ∈ Γ}.
13: for l = 1 to L do
14: if γl >= γth then y

(i)
fl

= 0, ∀i = 1, . . . , N.

15: else y
(i)
fl

= x
(i)
fl

, ∀i = 1, . . . , N.
16: end if
17: end for
Step 4: Output �YM = {�y(1), . . . , �y(N)}.

of the profile (to be defined in Section IV-B). These features
are combined and weighted as a feature vector �z(i). The
extractor processes all denoised profile in a batch, and outputs

a batch of feature vector as �Z = {�z(1), . . . , �z(N)}. After

extraction, the resulting feature vectors �Z is sent to the
3D position identifier to compute the longitude, latitude and
altitude of the vehicle.

IV. RADIOLOC DESIGN DETAILS

After an overview of the basic workflow of RadioLoc, in
this section we present the design details of RadioLoc and how
these novel mechanisms address the challenges and practical
issues identified in Section II.

A. The Denoiser

The denoiser consists of a Mahalanobis distance based filter
and an rPCA denoising module.

1) Mahalanobis Distance based Filter: As previously il-
lustrated in Fig. 2, an interesting observation of multipath
delay spreads is that these spreads lead to large RSS variances
around the station frequencies. This motivates us to pinpoint
the distortions caused by delay spreads via detecting the
frequency locations of high RSS variances. Concretely, we
consider these high-variance points as outliers, and filter them
out by detecting RSS values that are far away from the
average distribution. We employ the Mahalanobis distance, as
it quantifies the distance between a point and a distribution.
The working procedure of the corresponding Mahalanobis
distance based filter is described as Algorithm 1. Here, ρ is
the empirical percentage of outliers, and is selected as 5% in
this paper.

Algorithm 2 rPCA denoising

Input: A batch of RSS profiles �YM consisting of N samples.

Output: A batch of denoised RSS profiles �Y .

Step 1: Conduct standard PCA on �YM , and achieve the PC coefficient
matrix, �C, the PC score vector vecS, and the estimated means �M as
follows.

1: The PC coefficient matrix: �C = {�c1, . . . ,�cL}, where �cl is of length L
and is the coefficient vector of the lth PC, and {�cl} are in descending
order of component variance.

2: The PC score matrix: �S = {�s1, . . . , �sL}, where �sl is of length N and
is the score vector the lth PC.

3: The estimated means: �m = {m1, . . . ,mL}T , where ml is the
estimated RSS mean at the lth frequency point.

Step 2: Extend the vector of the estimated means into a matrix as
�M = {�m, . . . , �m}︸ ︷︷ ︸

N

.

Step 3: Filter the PC with the largest variance as follows.

4: The filter coefficient matrix: Ĉ = {�0, . . . , �cL}, where �0 is a zero vector
of length L.

5: The PC score matrix: Ŝ = {�0, . . . , �sL}, where �0 is a zero vector of
length N .

Step 4: Reconstruct the RSS profiles as �Y = ĈŜT + �M , and output �Y .

Denoised
Profiles

Extracted
Features

Profile Normalization

Peak Detection

Sidelobe Removal

Differential Sequencing

Peak values &
sorted locations

Binary differential sequence

Fig. 5. Architecture of the feature extractor.

2) rPCA Denoising Module: To further clean the RSS
profiles �YM , we develop a reconstructive PCA denoising tech-
nique. The corresponding rPCA denoising module analyzes

the Principle Components (PCs) of the batch �YM , removes
the most noisy one among these PCs, and reconstructs the

profiles with the remaining ones as �Y . In this way, random
noises and residual distortions are reduced. This procedure is
described as Algorithm 2.

Note that this rPCA denoising technique is also able to
remove the distortions brought by delay spread, since it can
effectively eliminate high-variance elements from the profiles.
However, it is hard to determine the PCs corresponding to the
distortions in advance. Therefore, we develop the Mahalanobis
distance based filter instead, and employ this rPCA denoising
technique for other kinds of noises.

By applying the Mahalanobis distance based filter and the
rPCA denoising technique, RadioLoc removes the distortions
caused by delay spreads as well as other noises, and thus
addresses Challenge 1.

B. The Feature Extractor
Fig. 5 presents the architecture of the feature extractor.
1) Profile Normalization: As investigated in Section II-B,

the device diversity may introduce an unknown power offset to
the FM signals, leading to inconsistency RSS profiles among
different vehicles. In addition, drivers and passengers also
may also adjust the power gains of in-vehicle radios, which
also contributes to this unknown power offset. Such offsets
are frequency non-selective. Therefore, the feature extractor
minimizes the impact of these offsets by normalizing each

RSS profile in �Y , and achieves the normalized profiles as
Z = {z(1), . . . , z(N)}, where z(i) is the normalized version
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Algorithm 3 Light-weight sidelobe removal

Input: A vector of detected peaks �P , their corresponding frequencies �F , a
length of frequency window BW , and a threshold ratio β.
Output: Sidelobe removal results P̂ and F̂ .
Step 1: Take the first element in �P as the current element, denoted with
subscript c.
Step 2: Collect all the peaks whose frequencies are inside the range of
[fp

c −BW , fp
c +BW ], and put them into set W .

Step 3: Check sidelobes in W .

1: for ∀z̃l ∈W do
2: if z̃l/z̃c ≤ β then Remove z̃l from �P , and remove fp

1 from �F
3: end if
4: end for

Step 4: Repeat step 2 and step 3 for the next element in �P . Upon reaching

the end of �P , collect the remaining elements in �P and �F , conduct
zero-padding at the ends of them to make sure their lengths equal K, and
output the padding results as P̂ and F̂ , respectively.

of �y(i) with a range of [0, 1]. This normalization is able to
address Challenge 2 and Challenge 3 partially.

2) Peak Detection and Sidelobe Removal: In order to fully
address these two challenges, we need to extract FM features
that are irrelevant to the diversities of vehicles, radios, and
weather conditions. To this end, we resolve to the appearances
of different radio stations, as well as their relative order
in RSS. The reasons are as follows. At a certain location,
the number of radio stations and their frequencies inside a
fixed bandwidth should be the same, regardless the reception
hardware and weather conditions. In case that low-end radios
lose a few stations to the noise, we further extract the relative
order of these stations with respect to RSS values. In this way,
high-end and low-end radios will always share most part in
their orders of station RSS values.

To extract these features, the extractor first calculates the
mean RSS value at each frequency point for all profiles in Z:

z̃fl =
1

N

N∑
i=1

y
(i)
fl

, l = 1, . . . , L, (2)

and denote Z̃ = {z̃f1 , . . . , z̃f1 , . . . , z̃fL}T . The extractor

then finds the largest K peaks in Z̃ and their corresponding
locations, by applying the peak detection algorithm proposed
by Du et al. in [17]. The RSS values of the peaks are

recorded in a descending order as �P = {z̃1, . . . , z̃K}T . The
frequencies corresponding to these peaks are also recorded as
�F = {fp

1 , . . . , f
p
K}T . If the number of detected peaks is less

than K, the extractor performs zero-padding at the ends of

both �P and �F .
However, the peaks recorded in �P do not always correspond

to the main lobes of radio stations. They may include sidelobes
that are introduced by the finite FFT in digital signal process-
ing. Detect the sidelobes exactly is computationally complex.
Therefore, we resolve to a light-weight algorithm to remove

the sidelobes from �P and �F , as described in Algorithm 3.
3) Binary Differential Sequencing: Besides the peaks, Ra-

dioLoc also leverages the shape of the profiles as another set of
features. RadioLoc treats each profile as a series in frequency
domain, and extracts its evolving trend along frequency. We
utilize the differential sequence of each profile along frequency
to capture how the RSS values evolve. The generation of this
differential sequence is described as, for l = 1, . . . , L− 1,

d̂l =

{
1, z̃fl+1

− z̃f1 ≥ 0,
0, otherwise.

(3)

We denote D̂ = {d̂1, . . . , d̂L−1}T . We adopt a binary dif-
ferential sequence, because the magnitude information has
already been captured in the peaks P̂ . Using a binary format
allows us to minimize the data storage overhead without much
degradation on the localization performance.

4) Weighting the Features: After feature extracting, we
obtain two kinds of features, the peak-relating features P̂
and F̂ , and the trend-relating features D̂. The number of
peak-relating features are much less than the trend-relating
features. However, peak-relating features may carry more
important information about the RSS profiles. This information
would be overwhelmed by the trend-relating features in the
learning process, if we directly merge all features into one set.
Therefore, we adopt a weighting method to make sure that all
kinds of features will be treated equivalently regardless their
numbers. The weight vector of weights is described as

Ŵ = {wP
1 , . . . , wP

K , wF
1 , . . . , wF

K , wD
1 , . . . , wD

L−1}T , (4)

where {wP
i } are the weights for P̂ , {wF

i } are the weights for

F̂ , and {wD
i } are the weights for D̂. An example implemen-

tation of these weights is

wP
i = 1/K, i = 1, . . . ,K, (5)

wF
i = 1/K, i = 1, . . . ,K, (6)

wD
i = 1/(L− 1), i = 1, . . . , l− 1. (7)

The final output of the whole feature extractor is

�Z = {P̂T , F̂T , D̂T , ŴT }T . (8)

All features in �Z is uncorrelated to the diversities of vehicles,
radios and weather conditions. Therefore, RadioLoc addresses
Challenge 2 and Challenge 3.

C. Practical Issues
We next present the novel mechanisms in RadioLoc to cope

with the practical issues identified in Section II-B4.
Adaptive batching: The high mobility of vehicles is always
a concern of localization and navigation systems. Fortunately,
the impact of Doppler shift is small enough to be neglected
in our design. A straightforward calculation tells us that the
Doppler shift is 20Hz for a 216km/h vehicle speed at the
100MHz FM frequency band.

We consider another issue brought by the high speed of
vehicles, and propose a practical solution for it. Consider the
batching technique described in Section III, which packages
the RSS profiles as one batch in every T seconds. Suppose
there is a vehicle driving with the speed of v m/s. In this case,
each batch of RSS profiles is recorded during a journey of vT
meters. Depending on the variable v, the RSS profiles may
correspond to very different physical distances, even if they
were recorded from the same starting position. The RadioLoc
system could suffer from these variations in the distance
resolution. For example, it may compare real-time batches with
a 20m distance to fingerprint batches with a 2m distance, and
thus yields inconsistent results. To avoid this issue, we propose
to adaptively adjust the period of each profile batch according
to the vehicle’s speed. Suppose the required resolution of
distance is d (Without any further explanation, d is set to 3
meters in the rest of this paper.). Then the batch period is
online adjusted as T = d/v seconds. For instance, when the
speed is 10 m/s (i.e., 36 km/h), each batch will contain RSS
profiles recorded in 0.3 seconds. When the speed increases
to 20 m/s (i.e., 72 km/h), the batch period reduces to 0.15
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seconds. Both batches still cover the same distance of 3 meters.
As such, Practical Issue 1 is addressed.
Frequency sweep: The number of peaks (i.e., radio stations)
captured in each RSS profile determines on the bandwidth B
of the received FM signals. For some low-end FM radios,
the bandwidth B may be too small to cover an abundant
number of radio stations. The localization accuracy could be
unsatisfactory in this case. To overcome this issue, we propose
to adopt frequency sweep to enlarge the bandwidth. Support
the desired bandwidth is Bd > B, starting from the lowest
frequency of fC . Then the FM radio will switch its center
frequency one by one to cover the following frequencies: {fC ,
fC + B, fC + 2B, ..., fC + �Bd/B�B}. Therefore, with a
sweep of �Bd/B� narrowband samples, we can construct a
virtual wideband RSS profile by concatenating them on the
frequency domain. Note that in this case the batch period is
still the same as T seconds, but the number of wideband RSS
profiles in each batch reduces to RT/�Bd/B�. As such, we
address the Practical Issue 2.
3D position identifier: random forest based location learn-
ing Given the feature vectors �Z, the 3D position identifier
uses them as the input to an identification function G. In
RadioLoc, we adopt a random forest based learning algorithm
for this function G, due to its accuracy and efficiency. We
omit the details of the algorithm due to space limit. 1 The

output q = G(�Z) is the index of the estimated position in
a position dictionary D. Each position in the dictionary is

stored as (q, �Pq), where �Pq is position q’s 3D coordinate in
the format of (longitude, latitude, altitude). The function G can

take in �Z with different number of samples (i.e., the number
of N can vary). Each vector �z(i) will output an estimated
position qi. Then the majority of {qi} is taken as the final
identification output. In case of a draw, one of the majorities
will be randomly selected as the output. As such, we address
the Practical Issue 3.

V. PERFORMANCE EVALUATION

In this section, we evaluate RadioLoc with extensive field
experiments in different terrain scenarios with different vehicle
models, weather conditions and velocities.

A. Field Experiment Setup
1) Two Complementary Scenarios: The field experiments

were conducted in two complementary real-life scenarios with
different terrains.

Scenario 1 is a 3D scenarios used to evaluate the impact
of diversities in vehicles and weather conditions. In order to
achieve general conclusions, experiments in Scenario 1 may or
may not have a clear view of sky, depending on the experiment
positions. We choose a multi-level parking building to set up
our experiments. This is because that, in the parking building,
we can gather the ground truth data with 100% confidence.
Moreover, we are able to repeat and reproduce the experiments
exactly and safely without violating any traffic regulations.

The parking building has a total of four floors - three floors
on the ground (denoted respectively as 1F , 2F and 3F ) and
one underground floor (denoted as 1B). The height of each
floor is 5 meters. On each floor, we select the same five
horizontal positions (P1 to P5) as the reference points to
gather FM data. We denote each reference point in Scenario 1

1The design of RadioLoc is modular such that different learning algorithms
can be plugged in as G.

Fig. 6. Floor plan of parking building. Fig. 7. Reference points in street.

by its level and it horizontal position. For example, P1 on the
second floor is denoted as L2P1. The horizontal floor plan of
each floor is identical (except that L3P2 and L3P4 are both
occupied by offices on the third floor), and is illustrated by Fig.
6. On each floor, P2 is at the entrance to the higher level, P4
is at the exit from the higher level, and P3 is between the
entrance from the lower level and the exit to the lower level.
P2, P3 and P4 are in a line, separated by 15 meters. P1 is
5 meters away from P2, and line P1P2 is perpendicular to
line P2P4. The situation of P5 is similar to P1.

Scenario 2 is used to evaluate the impact of vehicle speed.
In order to concentrate on this issue and isolate others as much
as possible, this scenario is set up in an open area with a clear
view of sky. All field experiments in Scenario 2 are conducted
at the same day. As illustrated by Fig. 7, we evaluate RadioLoc
on a straight section of a 6-lane bi-directional street. There is
no building (nor any sky-blocking object) within 100 meters of
this section. In order to collect the ground truth for evaluation,
we select three reference points (PA, PB , and PC) locating on
the midline of the rightmost lane. The distance between PA

and PB , as well as that between PB and PC , is 5 meters. And
the distance between PA and PC is 10 meters. During each run
of experiments in Scenario 2, the same vehicle drives through
this section with a constant speed, and passes the reference
points in the order of PA, PB , and PC .

Note that Scenario 1 and Scenario 2 are complementary
to each other with different focuses. On one hand, Scenario
1 concentrates on the impact of environment diversities. The
impact of speed is neutralized due to the nature that vehicles
in a parking building are either static or driving slowly. On
the other hand, Scenario 2 focuses on the impact of vehicle
speed, and eliminates the diversities in vehicles and weather
conditions by conducting experiments in the same day with
the same vehicle.

2) Vehicles, Devices and System Setup: We employ two
different vehicles in the experiments to evaluate the impact
of vehicle diversity. The first vehicle (denoted as V1) was a
Great Wall Haval M2 SUV. The second vehicle (denoted as
V2) is a Nissan Rogue SUV. These two vehicles are owned
and driven by two volunteering drivers, respectively.

In order to minimize the troubles that we bring to the
volunteering drivers, we resolve to a portable and non-intrusive
solution in collecting the FM signals. We adopt a USRP B210
board to create a software-defined FM radio, and connect it
to a laptop for recording. This FM radio is mounted in front
of the front passenger seat, next to the windscreen.

To collect the ground truth, we utilize the in-car Digital
Video Recorders (DVRs) - the Jado D610s DVRs, on the rear-
view mirrors of both vehicles. The ground truth locations at
each time slot are extracted from the recorded videos. These
videos are synchronized to the portable FM radio, so that we
can compare the results of RadioLoc with the ground truth.

We also record GPS information with a GPS device -
Garmin nuvi C265, which is also synchronized to the FM
radio for comparison.
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Fig. 8. The summary of data collection. Fig. 9. Confusion matrix of floor identification without
profile normalization.

Fig. 10. Average recall of RadioLoc with-
out feature extraction.

Fig. 11. Geometric errors in Scenario 1. Fig. 12. Confusion matrix of floor identification with
profile normalization.

Fig. 13. Average recall of RadioLoc with
feature extraction.

3) Data Collection: The ground truth, the FM signal mea-
surement and the GPS information are collected in seven days
with either one or both vehicles. The weather of each day is
either sunny, rainy or cloudy. For each weather condition, we
repeat the measurement twice in two different days. Moreover,
data collections are conducted either in the morning, at noon,
in the afternoon or at night. The weather conditions, the
number of vehicles, the scenarios of data collection and
the collection time are summarized in Fig. 8. Note that the
numerical order of days in Fig. 8 is different from their
calendar order.

4) Metrics: In this paper, we analyze the performance of
localization systems from two different aspects.

On one hand, we evaluate whether a vehicle is correctly
identified to the closest reference point. For many vehicular
applications, identifying a vehicle to a reference point is as
critical as (or even more important than) retrieving the exact
coordination. For example, the ETC service needs to know
not only the coordinations of nearby vehicles but also whether
the vehicles are at the ETC gates. Also, even if errors exist,
the navigation can still perform properly when vehicles are
accurately located to critical references such as intersections
and forks of roads, and levels of overpasses. Accordingly, the
following metrics are adopted.

The precision of position identification for reference point
i is defined as:

precisioni =
tpi

tpi + fpi
, (9)

where tpi and fpi are the numbers of true positives and
false positives of reference point i, respectively. The average
precision over all cases are then defined as:

precision =
1

N

N∑
i=1

precisioni, (10)

where N is the number of reference points.

The recall of position identification of reference point i is
defined as:

recalli =
tpi

tpi + fni
, (11)

where fni is the number of false negatives of reference point

i. The average recall is then defined as:

recall =
1

N

N∑
i=1

recalli. (12)

In this paper, we consider the recall to be equivalent to the
localization accuracy.

On the other hand, we are also interested in errors in the
geometric space. A geometric error is defined as the Euclidean
distance between the estimated coordination to the ground
truth coordination. The average geometric localization error
is then defined as:

ε̄ =
1

N

N∑
i=1

N∑
i=j

Pi,jdi,j , (13)

where Pi,j denotes the probability that vehicles at point i are

identified to reference point j,
∑N

j Pij = 1, and di,j denotes
the Euclidean distance between i and j.

In addition to the metrics presented above, one may wonder
how fast can RadioLoc localize the vehicle. We note that
in all of our experiments, we observe that our prototype
is able to compute the location of the vehicle in less than
100 milliseconds. This demonstrates that RadioLoc is able to
provide real-time vehicle localization. We omit the detailed
results on localization latency due to the space limit.

B. The Impact of Multipath Delay Spread

We first evaluate whether the proposed denoiser is able
to address the severe multipath reflections. We use the test
data collected in Scenario 1, and focus on the geometric
localization accuracy. Fig. 11 compares GPS, RadioLoc with
a standard denoising technique [18], and RadioLoc with the
proposed denoiser in terms of geometric errors. It is shown that
RadioLoc can indeed improve the 3D localization accuracy
over the existing GPS system. Furthermore, the standard
denoising technique still suffers from the severe multipath
delay spread, leading to a maximum error of 15 meters (i.e.,
wrong by 3 floors). The proposed denoiser is able to minimize
the impact of delay spread, and significantly reduces both
the mean and maximum errors (i.e., wrong by at most 1
floor). Therefore, we conclude that RadioLoc is able to address
Challenge 1.
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TABLE II
CROSS VALIDATION OF IDENTIFICATION W/O PROFILE NORMALIZATION.

Data being used V1 only V2 only V1 and V2

Worst-case precision 99.8% 99.9% 35.1%

Worst-case recall 99.7% 100.0% 30.2%

C. The Impact of Diversity in Vehicle Models
In this section, we analyze the impact of vehicle diversity,

and evaluate whether RadioLoc can work consistently across
different vehicle models. We evaluate the performance of
altitude localization, and check whether the vehicles can
be accurately located at the floor level. The data used for
evaluation are collected in Scenario 1 during Day 1 with
two vehicles. The measurement from both vehicles are mixed
together. Recall that the feature extractor is proposed to
address the vehicle diversity. Therefore, we compare RadioLoc
systems with and without the profile normalization module.
The confusion matricides are presented in Fig. 9 and Fig. 12,
respectively.

It is shown in Fig.9 that, without RSS profile normalization,
there will be a very high chance that vehicles are located to
a wrong floor. The worst-case precision and recall are 35.1%
and 30.2%, respectively. Considering the fact that there are
totally four floors, these results are only slightly better than
random guesses.

To investigate the cause of this, we further evaluate the
worst-case precision and recall using the data from only one
vehicle in Table II. We can see that the cross validation results
are nearly perfect when the data of only one vehicle is adopted.
However, the performance of floor identification degrades
significantly when it is applied on the mixed data from both
vehicles. This again confirms the existence of Challenge 2.
The diversity of vehicles may bring variations to path losses
and receiver gains, making the raw FM RSS inconsistent.

On the other hand, when the normalization module is ap-
plied, the diversity of vehicles can be appropriately addressed.
As shown in Fig. 12, the performance of floor identification
improves largely even with a mixture of data from both
vehicles. The worst-case precision and recall are raised to
99.0% and 99.3%, respectively. Moreover, it is shown that
the error in floor identification is at most one floor. Hence, we
conclude that the profile normalization addresses the power
offsets brought by different vehicle models, and thus solves
Challenge 2.

D. Impact of Weather Conditions
In this section, we evaluate the performance of RadioLoc

under different weather conditions in Scenario 1. The experi-
ments are conducted in six different days with three different
weather conditions, i.e., sunny, rainy and cloudy. For each
weather condition, experiments are repeated twice in two
different days. For Day 1, data sets from both vehicles are
employed.

We first try to identify the positions of vehicles to the 18
reference points on four floors. Again, a weighted random
forest is adopted as an example identifier. The evaluation is
conducted as follows. 1) We first conduct the training with
the data of a weather condition that is different from those
of testing data. Each run of the evaluation mixed all data of
one weather condition as the training data set, and considers
the rest as testing data sets. The classifier is trained with the

training data set, and is then test separately on testing data
sets. We denote the case of training on the sunny data set
and testing on rainy data set as the Sunny-Rainy pair (S-R for
short). Similarly, the rest pairs are S-C, R-S, R-C, C-S, and
C-R, respectively. 2) For pairs where the weather conditions
are the same (i.e., S-S, R-R, and C-C), we will take the data
from one day as the training data, and consider the data from
the other day with same weather as the testing data.

After iterating through all training-testing pairs, we sum-
marize the average recalls over all 18 reference points in Fig.
10. Note that the results in Fig. 10 are achieved using RSS

profiles �Y directly (i.e., RadioLoc w/o feature extraction). In
this case, when training and testing with the data from the
same weather condition, the FM position identification can
still perform quite well, even when the data are collected from
two different days. However, when training on one weather
condition and testing on others, the performance of position
identification is not satisfactory. In the worst case, the vehicles
have been located to wrong reference positions in 26.9% of the
time. This suggests that the weather condition indeed brings
variations to the FM fingerprints. Considering the fact that
the profile normalization has been already applied, we can
conclude that the fingerprint distortions happen not only in
the scale but also in the shape of the signals.

To address this issue, we adopt the extracted features �Z
instead of the RSS profiles �Y . Field test results confirm that the
extracted features are able to improve the accuracy of position
identification. As illustrated in Fig. 13, the worst-case recall
increases to 99.6% for training and testing on different weather
conditions, and reaches 100.0% for training and testing on the
same weather.

We further visualize the improvements brought by the fea-
ture extractor in Fig. 14. It is shown that the average geometric
localization errors of GPS are always greater than 15 meters.
These errors are reduced to less than 5 meters by RadioLoc
w/o feature extraction. Moreover, using the extracted features
helps RadioLoc lower the average errors to less than half a
meter. Therefore, we conclude that the RadioLoc addresses
Challenge 3.

E. Impact of Vehicle Speed
As discussed in Section II, the collected batches of FM

profiles at the same reference point could be inconsistent under
different speeds, undermining the performance of RadioLoc.
To evaluate the impact of vehicle speed and the adaptive
batching technique we proposed in Section IV-C to address
this issue, we conduct multiple runs of tests in Scenario 2 with
vehicle V2. At each run, V2 drives through three reference
points, i.e., PA, PB and PC , in a straight line with a constant
speed. Different speeds are adopted in different runs, ranging
from 10km/h to 80km/h. We first take the measurement data
of 10km/h as the training data of a weighted random forest,
and use the rest data to test the trained random forest. We
then repeat this procedure for other speeds, and obtain the
horizontal localization errors as shown in Fig. 15.

From Fig. 15, we can see that for all methods the lo-
calization errors increase with speed. Compared to GPS,
RadioLoc largely reduces the localization errors in the high
speed domain. However, when the speed is less than 40km/h,
RadioLoc with fixed batching period (Fixed BP) results in
larger errors than those of GPS. This is caused by the incon-
sistency in FM fingerprints at different speeds. This issue is
addressed by the use of adaptive batching period (Adaptive
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Fig. 14. Average 3D localiza-
tion errors under different weather
conditions in Scenario 1.

Fig. 15. Average horizontal localization
errors under different velocities in
Scenario 2.

BP). As demonstrated in Fig. 15, the use of adaptive batching
period helps reduce the average localization errors by at least
57.7%. In the worst case, the average localization error is
less than 2 meters. In the high speed scenario of 80 km/h,
RadioLoc with adaptive batching period reduces the average
error to 16.7% of the GPS error. Thus, we conclude that the
proposed RadioLoc system addresses Practical Issue 1.

In addition, we further compare the use of wideband FM
signals to the use of frequency sweep, so as to approach the
limits of RadioLoc with low-end devices. The bandwidth of
the wideband radio is 10 MHz, while the bandwidth of the
narrowband radio is 500 KHz. It is illustrated in Fig. 15
that the performance degradation brought by frequency sweep
is small. The worst-case average localization error is still
less than 2 meters. Therefore, we conclude that the proposed
RadioLoc system addresses Practical Issue 2, and can be
safely applied to existing FM radios on vehicles.

VI. RELATED WORK

Global positioning system. There has been a rich literature
on how to improve the performance of GPS [2], [3], [4], [19],
[20], including quality, accuracy, delay and etc. To support
the functionality of GPS under poor satellite signal conditions,
most GPS receivers nowadays are embedded with other radios,
such as WiFi and cellular, to download the content of the
GPS signal from assisted GPS (A-GPS) servers [2], [3], [4].
However, errors of A-GPS are significantly larger than those
of standard GPS [4].
Localization using other signal sources. People also explored
the potential and benefits of positioning with other wireless
techniques, such as LTE, WiFi, radio frequency identification
(RFID), acoustic signal and visible light [21], [6], [7], [22],
[23], [24], [25], [26], [27], [28], [9], [8], [10], [9], [10], [11].
Common approaches adopted in these systems include the
angle of arrival localization, the time of arrival localization
and WiFi signal fingerprint and challenge state information
localization. However, they mostly target on an indoor scenario
and cannot support all-terrain 3D vehicle localization because
(1) they usually require additional infrastructure and hardware
modification and (2) they cannot cope with the highly dynamic
vehicle environments.
Localization using FM signal. Recently, there has been a
growing interest on FM-based localization methods [12], [13],
[14]. Compared with other signal sources, FM radios consume
less power and can cover a very large area. Though these
systems demonstrate the benefits of FM-based localization.
They are designed for indoor localization. FM-based all-terrain
localization poses a series of unique challenges, such as the
severe signal distortion caused by the rich multipaths in FM
signal propagation, inconsistency of FM signals due to the
diversities of vehicle models, radios, and weather conditions,
the high mobility of vehicles, and the limited bandwidth of in-
vehicle radios. To the best of our knowledge, RadioLoc is the

first working system that systematically address these issues
to achieve efficient, accurate, all-terrain vehicle localization.

VII. CONCLUSION

We design RadioLoc, a novel system that uses the highly-
available FM signal as signal source and integrates modern
machine learning techniques into the processing of FM signals
to efficiently learn the accurate vehicle localization under
all-terrain environments. A series of novel techniques are
developed in RadioLoc to address the design challenges and
practical issues in all-terrain vehicle localization. Field tests in
real-life scenarios demonstrate that RadioLoc achieves a real-
time localization latency with a worst-case accuracy of 99.6%.
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