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Abstract— Vehicle localization service is a fundamental compo-

nent of intelligent transportation systems. The widely used satel-
lite navigation systems perform poorly in urban areas because
the lines of sight to satellites are blocked by complex terrain
characteristics, e.g., buildings, elevated streets and interchanges.
In this paper, we design RadioLoc, a novel system achieving
accurate, efficient, all-terrain vehicle localization with two key
design points. First, RadioLoc harvests the frequency modulation
(FM) signal, which has higher availability than satellite signal in
complex terrains, as the signal source for localization. Second,
RadioLoc integrates modern machine learning techniques into
the processing of FM signals to efficiently learn the accurate
vehicle localization in all-terrain environments. We validate the
feasibility of FM-based vehicle localization and corresponding
challenges and practical issues via field tests (e.g., signal distor-
tion, signal inconsistency and limited in-vehicle radio bandwidth),
and develop a series of advanced techniques in RadioLoc to
address them, including adaptive batching, frequency sweeping,
a novel multipath delay spread filter, a reconstructive PCA
denoiser and a tailored FM feature extractor. We then develop a
generic, modular localization module in RadioLoc, and design
different learning-based 3D position identification algorithms
for this module. We implement a prototype of RadioLoc and
perform extensive field experiments to evaluate its efficiency and
efficacy. Results show that (1) RadioLoc achieves a real-time
localization latency of less than 100 milliseconds; (2) RadioLoc
achieves a worst-case localization accuracy of 99.6% even in
an underground parking lot, and (3) the horizontal error of
RadioLoc is only one sixth of a dedicated GPS device even when
the vehicle is moving at a high-speed (i.e., 80 km/h) in a complex
highway scenario.

Index Terms— Localization, frequency modulation (FM) com-
munications.

I. INTRODUCTION

VEHICLE localization is one of the most critical services
in intelligent transportation systems (ITS), and the foun-

dation of many ITS applications, such as navigation, elec-
tronic toll collection, traffic monitoring, emergency response
and autonomous driving. Global Navigation Satellite Systems
(GNSS), such as the Global Positioning System (GPS) [1],
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are the most widely used civilian vehicle localization systems.
However, even being augmented by advanced technologies,
the efficacy of GNSS is still constrained by an inherent
limitation: GNSS requires a clear line of sight from the
vehicle to at least three satellites for accurate localization. The
impact of this limitation is particularly magnified in urban
environments, where the line of sight is blocked by a large
number of obstacles made of concrete and steel such as stack
interchanges, multi-level garages, underground parking, street
canyons, elevated roads and tunnels.

To cope with this limitation and achieve all-terrain vehi-
cle localization, academia and industry have investigated the
feasibility of many alternative signal sources. For example,
Assisted GPS (A-GPS) [2]–[4] utilizes the assistance of cel-
lular networks to provide localization service to smart phones
under a partially blocked sky. However, the localization errors
of A-GPS are substantially larger than those of dedicated GPS
devices [4]. Systems using other signal sources (e.g., WiFi
[5]–[8], acoustic signals [9] and visible light [10], [11])
provide a high accuracy for indoor localization. However, such
signals are either less available or highly dynamic for vehicles
in complex terrains.

In this paper, we design RadioLoc, a novel machine learn-
ing based system that achieves accurate, efficient, all-terrain
vehicle localization with two key design points. First, Radi-
oLoc adopts the FM radio signal, a wireless signal highly
available in all-terrain environments, as the signal source for
localization. The FM signal is more advantageous over other
signals (i.e., satellite, cellular, WiFi, acoustic and visible light)
for all-terrain vehicle localization, because it is free, highly
available in complex urban terrains (e.g., underground parking
garages and tunnels), and requires no additional reception
hardware on vehicles. More importantly, the uniqueness of
FM signal fingerprints in a given geographical area has
been identified and leveraged in earlier FM-assisted localiza-
tion methods [12]–[15]. Second, RadioLoc integrates modern
machine learning techniques into the processing of FM sig-
nals, including adaptive sampling, profile feature extraction
and location computation, to efficiently generate the accurate
vehicle localization in all-terrain environments.

Even with all the advantages of FM signal, the previous
studies on FM-based indoor localization [12]–[14], and the
recent progress of modern machine learning theories and
systems [16], [17], however, realizing accurate, efficient, all-
terrain vehicle localization is still non-trivial. For example,
in an earlier attempt to use FM signal for outdoor localiza-
tion [15], the average localization error is 8 km. Through
field experiments in Section II, we identify a series of unique
challenges. First, the multipath richness of FM radio signal
propagation generates large delay spreads, leading to signif-
icant signal distortions around some FM station frequencies.
Second, even at the same location, the power offsets and
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interference levels of FM signals could vary significantly,
due to the diversities of vehicle models, weather conditions,
and the manual tuning of radio power gains by users, which
leads to the inconsistency of FM signal fingerprints. Third, the
high mobility of vehicles, as well as the limited bandwidth of
in-vehicle radios, further degrades the localization accuracy.
Fourth, the location of vehicles needs to be computed in
real-time even when vehicles are moving at a high speed.

To address these challenges, in RadioLoc, we develop mul-
tiple advanced techniques (Section III and Section IV). In par-
ticular, RadioLoc detects and eliminates the signal distortions
caused by delay spreads directly (instead of estimating the
delay spreads themselves), with a Mahalanobis distance based
filter. A reconstructive Principle Component Analysis (rPCA)
denoising technique is then designed to further reduce the
residual noises. Second, to cope with the inconsistency of FM
signal fingerprints, RadioLoc extracts essential signal features
that are immune to diverse vehicle models and changing
weather. The variations in power offsets and interference
levels are neutralized. Third, RadioLoc embraces an adaptive
batching technique, which adjusts the data collection periods
according to the current vehicle velocity, and utilizes a fre-
quency sweep technique to increase the system bandwidth
for low-end radios. Fourth, RadioLoc develops a modular
classification component, which allows the adoption of differ-
ent machine learning classification algorithms for achieving
accurate all-terrain localization. As a proof of concept, this
paper presents a random forest based learning algorithm that
can swiftly learn the accurate location of vehicles using com-
modity CPUs. With this modular design, we also implement
a series of other learning algorithms, e.g., support vector
machine (SVM) and adaptive boosting (Adaboost), in Radi-
oLoc, and compare their performances in the field. We observe
that they provide similar accurate localization results. This
demonstrates the modularity of RadioLoc, and the efficacy
and wide applicability of the novel FM signal processing
techniques developed in RadioLoc (e.g., sampling, feature
extraction and batching).

We implement a prototype of RadioLoc and perform
extensive field experiments to evaluate its performance
(Sections VI, VII and VIII). Specifically, we conducted
field experiments in three complementary scenarios with
different terrains - a multi-floor parking building, a street
section in an open neighborhood, and two mountain tunnels.
In the first scenario, results show that RadioLoc achieves
a worst-case localization accuracy of 99.6% in a total of
18 locations scattering on four different floors (including one
underground floor). A high-speed (i.e., 80 km/h) test in the
second scenario shows that RadioLoc lowers the horizontal
errors to 16.7% of those given by a dedicated GPS device.
In the third scenario of mountain tunnels, results show that
RadioLoc achieves an average localization error less than
0.7 meter under uncontrolled driving behaviors. In all sce-
narios, RadioLoc achieves a localization latency of less than
100 milliseconds.

The main contributions of this paper are as follows.
• We design RadoiLoc, a novel FM-based vehicle local-

ization system, which to the best of our knowledge is
the first working system that achieves efficient, accurate,
all-terrain vehicle localization;

• We identify the design challenges and practical issues
of FM-based all-terrain vehicle localization through field
tests, and develop a series of novel techniques to system-
atically address these issues;

Fig. 1. FM RSS profiles of four positions.

• We fully implement RadioLoc and perform exten-
sive field experiments, including a federated setting,
to demonstrate the efficiency and efficacy of RadioLoc,
in terms of localization accuracy and latency.

The remainder of the paper is organized as follows.
Section II discusses the background and the design challenges
of locating vehicles with FM communications. Section III
gives an overview of the RadioLoc system, and Section IV
presents the details of the advanced techniques we develop in
RadioLoc to address the design challenges. Section V intro-
duces the implementation details of our RadioLoc prototype.
Sections VI, VII and VIII) present the results of extensive field
experiments of RadioLoc. Section IX discusses the related
work, and Section X concludes the paper.

II. FM-BASED VEHICLE LOCALIZATION:
FEASIBILITY AND CHALLENGES

We identify the feasibility and corresponding challenges of
FM-based all-terrain vehicle localization through field exper-
iments in a four-floor parking building. The building has one
basement 1B floor and three floors 1F , 2F and 3F on the
ground. We used USRP B210 boards as onboard FM radios,
and left the built-in FM radios untouched to minimize the
inconveniences to the volunteers.

A. Feasibility Experiments

We first parked an equipped vehicle on four different floors
of the building. On each floor, this vehicle was parked at the
same horizontal position. Hence, these four locations shared
the same longitude and latitude, but had different altitudes.
RSS profiles of FM signals were recorded at these locations.
Here, an RSS profile is defined as a set of RSS values at
different frequency points over a certain bandwidth. For each
location, multiple samples of RSS profiles were recorded, and
an average profile was calculated based on these samples.

The average RSS profiles of four different positions are
illustrated in Fig. 1. In the RSS profiles, there are multiple
peaks, each of which corresponds to a local radio station.
It is shown that the peaks have different values and orders
on different floors. These profiles are distinguishable from
each other by analyzing their RSS peaks at the radio station
frequencies. As such, we conclude that FM-based all-terrain
vehicle localization is feasible.

B. Experimental Investigation of Challenges

Although we find that FM-based all-terrain vehicle local-
ization is feasible, and some FM-based indoor localization
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Fig. 2. Means and variances of RSS values at 1F over 200 samples.

systems are also recently developed, (e.g., [12]–[14]). Many
issues remain open when designing an FM-based vehicle local-
ization system. To identify these issues, we further conduct
several sets of field tests.

1) Impact of Multipath Delay Spread: The complicated
urban terrain introduces a rich set of multipaths to FM radio
broadcasting, leading to a large delay spread in the FM
signals. This spread in the time domain introduces random
and unpredictable signal dispersion in the frequency domain.
To analyze the impact of the delay spread, we further study
the statistical details of FM RSS profiles. Fig. 2 takes 1F as an
example, and depicts the means and variances of RSS values
over 200 samples. An interesting observation is that, while
the peaks of means appear at the frequencies of radio stations
(we call them station frequencies in the rest of this paper),
the peaks of variances are a bit off these station frequencies.
This suggests that, while the centers of FM signals are always
located at station frequencies, their shapes vary dynamically.
Since the vehicle was parked during the recording, these varia-
tions should be mainly introduced by the multipath reflections
of FM signals. The large and time-changing delay spreads
were reflected as signal distortions in the frequency domain,
leading to the large variances around radio station frequencies.
Therefore, we have a unique challenge summarized as follows.

Challenge 1: The multipath richness of FM signals intro-
duces severe delay spreads, which lead to previously undis-
covered noises around station frequencies.

2) Impact of Vehicle Diversity: There are numerous ground
vehicle models. Each of them may have a distinct placement of
radio antennas, a unique radio device, and different materials
resulting in special signal propagation factors. Even vehicles
from the same model may behave differently. To investigate
the impact of vehicle diversity, we next employ a second
vehicle from a different brand, and repeat the field tests
on the same day as before. Fig. 3(b) compares the average
RSS values in four different positions between two vehicles.
Although both vehicles are parked at the same positions, their
average RSS values are different. This suggests that the raw
RSS profiles are not consistent across different vehicle setups.
A closer investigation of the values reveals that there is a
nearly constant power offset of 4.3dB between the results
of the two vehicles. Therefore, we summarize the following
challenge.

Challenge 2: The diversity in vehicle models may introduce
variations in power-related features such as path losses and
receiver-side gains. An almost constant yet unknown power
offset is brought to FM signals, making their RSS profiles
inconsistent.

TABLE I

RELATIVE INTERFERENCE UNDER DIFFERENT WEATHER CONDITIONS

Fig. 3. FM RSS variations due to different vehicles and weather conditions.

3) Impact of Weather Conditions: Besides internal factors,
the consistency of FM signals may also be affected by
external factors. FM signal broadcasting could be sensitive
to weather conditions. An example is the well-known rain
fade phenomenon. However, we still need to understand
the impact of weather conditions on FM RSS profiles and
FM-assisted localization. Therefore, we repeat the tests with
the first vehicle on different days under different weather
conditions. Fig. 3(b) compares the average RSS values across
three weather conditions. It is illustrated that the average RSS
values vary with weather conditions. A further investigation
reveals that the changes in interference level (Table I) con-
tribute to these undesirable variations, leading to the following
challenge.

Challenge 3: The diversity in weather conditions may
introduce variations to the interference level, resulting in
inconsistent FM profiles.

4) Other Practical Issues: In addition to the above chal-
lenges, there also exist other practical issues that need to be
addressed.

Practical Issue 1: To cancel the white noise, it is required
to collect multiple samples of RSS profiles at one location.
However, when the vehicles are moving, it is impossible to
gather multiple samples at exactly the same location. Instead,
we may resolve to the collection of multiple samples within a
small range. The size of this range may vary significantly with
vehicle speed, which prevents us from obtaining consistent
RSS profiles and FM fingerprints.

Practical Issue 2: The most important frequency compo-
nents of RSS profiles are located at the frequencies of radio
stations, which are separated by hundreds of KHz. Low-end
in-vehicle radios may not have a large enough bandwidth to
cover an abundant number of radio stations in RSS profiles.
As a result, the resolution and accuracy of FM localization
may degrade.

Practical Issue 3: Vehicle localization has strong real-time
and accuracy requirements. The accurate location of vehicles
needs to be computed in real-time even when vehicles are
moving at a high speed.

III. RADIOLOC OVERVIEW

In this section, we give an overview of the architecture and
workflow of RadioLoc, as illustrated in Fig. 4. On a high level,
RadioLoc consists of three key components: signal sampling,
data processing, and location computation.

Signal sampling. RadioLoc utilizes its radio to gather the
ambient FM signals x centering at the frequency fC . This
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Fig. 4. Overview of RadioLoc.

center frequency is determined and adjusted by the frequency
selector. Suppose the bandwidth of these frequency signals x
is B. Continuous signals are converted to digital signals, and
are passed to the succeeding adaptive sampler.

Upon receiving each signal sample, the adaptive sampler
calculates the RSS value on each frequency point, and obtains
an RSS profile �x covering the bandwidth B. These profiles
are output with a rate of R samples per second. This rate is
the output rate of digital samples with bandwidth B, and is
different from the sampling rate of FM radio. We denote each
sample of RSS profiles �x as

�x = {xf1 , . . . , xfl
. . . , xfL}T , (1)

where xfl
denotes the RSS value at the lth frequency point fl,

and L is the total number of frequency points in the frequency
domain. The interval between two frequency points is thus
B/L Hz. Every T seconds, the sampler creates an RSS profile
batch with all the RSS profiles obtained during this period.
Each batch is denoted as �X = {�x(1), . . . , �x(i), . . . , �x(N)},
where N = RT , and the superscript i of �x(i) refers to the
sequential number of profiles in one batch. Each batch is
then output to the succeeding block. Note that the use of this
batch technique is necessary to compensate the white noise
across consecutive RSS profiles. In addition to the normal
batching sampling, RadioLoc also develops novel solutions,
including adaptive batching and frequency sweeping, to cope
with the difficulty of collecting multiple samples within a
small range of location while vehicle is moving at different
speeds (i.e., Practical issue 1) and the limited bandwidth of
in-vehicle radio (i.e., Practical issue 2).

Data processing. To cope with the signal distortion caused
by the multipath richness of FM signals (i.e., Challenge 1),
and the inconsistency of FM signal fingerprints caused by
the vehicle and weather diversity (i.e., Challenges 2 and 3),
RadioLoc develops two novel modules to sequentially process
the collected signal samples before utilizing them for local-
ization. First, a denoiser is designed to eliminate the noises in
each batch of RSS profiles �X , and outputs the denoised result
as �Y . The noises to be cancelled include not only the white
noise but also the signal distortions introduced by multipath
delay spread. To avoid the computationally heavy estimation
of delay spread, the proposed denoiser employs a Mahalanobis
distance based filter to detect and remove the distorted RSS
values directly. It then applies a reconstructive PCA denoising
technique to further reduce the residual noises.

Second, a feature extractor is designed to eliminate the FM
signal inconsistency brought by the diversities of vehicles,
radios, and weather conditions. It achieves this goal by extract-
ing FM signal features that are irrelevant to these diversities.
The extractor first normalizes each denoised profile �y(i) in the
denoised batch �Y , so as to compensate the unknown power
offsets brought by vehicle/radio diversity. It then calculates
features of each normalized RSS profile, including the heights
of peaks, the order of peaks, and a binary differential sequence
of the profile (to be defined in Section IV-C). These features

are combined and weighted as a feature vector �z(i). The
extractor processes all denoised profile in a batch, and outputs
a batch of feature vector as �Z = {�z(1), . . . , �z(N)}.

Location computation. This component receives the
extracted feature vectors �Z from the feature extractor, and
computes the longitude, latitude and altitude of the vehicle.
In RadioLoc, we model the 3D localization of vehicle as a
classification problem. The design of RadioLoc is modular so
that different machine learning algorithms can be plugged in.
To compute the location of vehicle in real-time (i.e., Practical
issue 3) while making the deployment of RadioLoc feasible
on mainstream in-vehicle operating systems, we choose not to
use learning algorithms whose performance heavily relies on
specialized hardware (e.g., deep learning performs much faster
on GPU than on CPU). Instead, in RadioLoc, we choose to
use learning algorithms whose performance are less hardware-
dependent (e.g., random forest, SVM and AdaBoost).

IV. RADIOLOC DESIGN DETAILS

After an overview of the basic workflow of RadioLoc, in this
section, we present the design details of RadioLoc and how the
novel mechanisms address the challenges and practical issues
identified in Section II.

A. Signal Sampling

As introduced in Section III, the signal sampling component
in RadioLoc uses its radio to gather the ambient FM signals
x centering at the frequency fC . We denote the bandwidth
of these frequency signals x as B. Continuous signals are
converted to digital signals, and are passed to the succeeding
adaptive sampler. The sampler calculates the RSS value on
each frequency point, obtains an RSS profile �x covering the
bandwidth B, and periodically creates an RSS profile batch
with all the RSS profiles in a period of T .

Although simple and straightforward, the basic sampling
process has two issues. First, it cannot collect multiple samples
of RSS profiles within a small range of locations while the
vehicle is moving at different speeds, which is needed to
cancel the white noise (i.e., Practical issue 1). Second, the
bandwidth of in-vehicle radio limits the number of radio sta-
tions covered in RSS profiles, which may affect the accuracy
of the localization results (i.e., Practical issue 2). To this end,
RadioLoc introduces two novel mechanisms to address these
issues, respectively.

Adaptive batching: The high mobility of vehicles is always
a concern of localization and navigation systems. Fortunately,
the impact of the Doppler shift is small enough to be neglected
in our design. A straightforward calculation tells us that the
Doppler shift is 20Hz for a 216km/h vehicle speed at the
100 MHz FM frequency band.

We consider another issue brought by the high speed of
vehicles, and propose a practical solution for it. Consider the
batching technique described in Section III, which packages
the RSS profiles as one batch every T seconds. Suppose there
is a vehicle driving with the speed of v m/s. In this case,
each batch of RSS profiles is recorded during a journey of
vT meters. Depending on the variable v, the RSS profiles
may correspond to very different physical distances, even
if they were recorded from the same starting position. The
RadioLoc system could suffer from these variations in the
distance resolution. For example, it may compare real-time
batches with a 20m distance to fingerprint batches with a
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2m distance, and thus yield inconsistent results. To avoid
this issue, we propose to adaptively adjust the period of
each profile batch according to the vehicle’s speed. Suppose
the required resolution of distance is d (Without any further
explanation, d is set to 3 meters in the rest of this paper.).
Then the batch period is online adjusted as T = d/v seconds.
For instance, when the speed is 10 m/s (i.e., 36 km/h), each
batch will contain RSS profiles recorded in 0.3 seconds. When
the speed increases to 20 m/s (i.e., 72 km/h), the batch period
reduces to 0.15 seconds. Both batches still cover the same
distance of 3 meters. As such, Practical Issue 1 is addressed.

Frequency sweep: The number of peaks (i.e., radio stations)
captured in each RSS profile determines the bandwidth B
of the received FM signals. For some low-end FM radios,
the bandwidth B may be too small to cover an abundant
number of radio stations. The localization accuracy could be
unsatisfactory in this case. To overcome this issue, we propose
to adopt frequency sweep to enlarge the bandwidth. Support
the desired bandwidth is Bd > B, starting from the lowest
frequency of fC . Then the FM radio will switch its center
frequency one by one to cover the following frequencies: {fC ,
fC + B, fC + 2B, . . . , fC + �Bd/B�B}. Therefore, with a
sweep of �Bd/B� narrowband samples, we can construct a
virtual wideband RSS profile by concatenating them on the
frequency domain. Note that in this case, the batch period
is still the same as T seconds, but the number of wideband
RSS profiles in each batch reduces to RT/�Bd/B�. As such,
we address Practical Issue 2.

B. Data Processing: The Denoiser

The data processing component of RadioLoc consists of
two novel modules. We first give the details of the denoiser,
which eliminates the white noises in the RSS profiles as well
as the signal distortions introduced by multipath delay spread.
In particular, the denoiser consists of a Mahalanobis distance
based filter and an rPCA denoising module. With these two
novel techniques, RadioLoc removes the distortions caused
by delay spreads as well as other noises, and thus addresses
Challenge 1.

1) Mahalanobis Distance Based Filter: As previously illus-
trated in Fig. 2, an interesting observation of multipath delay
spreads is that these spreads lead to large RSS variances
around the station frequencies. This motivates us to pin-
point the distortions caused by delay spreads via detecting
the frequency locations of high RSS variances. Concretely,
we consider these high-variance points as outliers, and filter
them out by detecting RSS values that are far away from the
average distribution. We employ the Mahalanobis distance,
as it quantifies the distance between a point and a distribution.
The working procedure of the corresponding Mahalanobis
distance based filter is described as Algorithm 1. Here, ρ is
the empirical percentage of outliers, and is selected as 5% in
this paper.

2) rPCA Denoising Module: To further clean the RSS
profiles �YM , we develop a reconstructive PCA denoising tech-
nique. The corresponding rPCA denoising module analyzes
the Principle Components (PCs) of the batch �YM , removes
the most noisy one among these PCs, and reconstructs the
profiles with the remaining ones as �Y . In this way, random
noises and residual distortions are reduced. This procedure is
described as Algorithm 2.

Algorithm 1 Mahalanobis Distance Based Filtering

Input: A batch of RSS profiles �X consisting of N samples,
and the empirical percentage ρ of outliers.
Output: A batch of filtered profiles �YM .
Step 1: Calculate the distribution of variances in RSS values
on each frequency point as follows.
1: for l = 1 to L do
2: xfl

=
∑N

i=1 x
(i)
fl

/N.

3: vl =
∑N

i=1 (x(i)
fl

− xfl
)2/N.

4: end for
Step 2: Calculate the Mahalanobis distances of all
{vl, l = 1, . . . , L} as follows.
5: μ =

∑L
l=1 vl/L.

6: δ =
( ∑L

l=1(vl − μ)2/L
)1/2

.
7: for l = 1 to L do
8: Calculate the Mahalanobis distance as
9: γl =

(
(vl − μ)(δ2)−1(vl − μ)

)1/2
.

10: end for
Step 3: Remove outliers based on the Mahalanobis distances
as follows.
11: Collect the largest �ρL� Mahalanobis distances, and put

them into a set Γ.
12: γth = min{γl|γl ∈ Γ}.
13: for l = 1 to L do
14: if γl >= γth then y

(i)
fl

= 0, ∀i = 1, . . . , N.

15: else y
(i)
fl

= x
(i)
fl

, ∀i = 1, . . . , N.
16: end if
17: end for
Step 4: Output �YM = {�y(1), . . . , �y(N)}.

Fig. 5. Architecture of the feature extractor.

Note that this rPCA denoising technique is also able to
remove the distortions brought by delay spread, since it can
effectively eliminate high-variance elements from the profiles.
However, it is hard to determine the PCs corresponding to the
distortions in advance. Therefore, we develop the Mahalanobis
distance based filter instead, and employ this rPCA denoising
technique for other kinds of noises.

C. Data Processing: The Feature Extractor

After the noises in RSS profiles are eliminated, we next
design a feature extractor to eliminate the FM signal incon-
sistency brought by the diversities of vehicles, radios, and
weather conditions (i.e., Challenge 2 and Challenge 3). Fig. 5
presents the architecture of the feature extractor.

1) Profile Normalization: As investigated in Section II-B,
the device diversity may introduce an unknown power off-
set to the FM signals, leading to inconsistent RSS profiles
among different vehicles. In addition, drivers and passengers
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Algorithm 2 rPCA Denoising

Input: A batch of RSS profiles �YM consisting of N samples.
Output: A batch of denoised RSS profiles �Y .
Step 1: Conduct standard PCA on �YM , and achieve the PC
coefficient matrix, �C, the PC score vector vecS, and the
estimated means �M as follows.
1: The PC coefficient matrix: �C = {�c1, . . . ,�cL}, where �cl is

of length L and is the coefficient vector of the lth PC,
and {�cl} are in descending order of component variance.

2: The PC score matrix: �S = {�s1, . . . , �sL}, where �sl is of
length N and is the score vector the lth PC.

3: The estimated means: �m = {m1, . . . , mL}T , where ml is
the estimated RSS mean at the lth frequency point.

Step 2: Extend the vector of the estimated means into a
matrix as �M = {�m, . . . , �m}︸ ︷︷ ︸

N

.

Step 3: Filter the PC with the largest variance as follows.
4: The filter coefficient matrix: Ĉ = {�0, . . . ,�cL}, where �0 is

a zero vector of length L.
5: The PC score matrix: Ŝ = {�0, . . . , �sL}, where �0 is a zero

vector of length N .
Step 4: Reconstruct the RSS profiles as �Y = ĈŜT + �M , and
output �Y .

may also adjust the power gains of in-vehicle radios, which
also contributes to this unknown power offset. Such offsets
are frequency non-selective. Therefore, the feature extractor
minimizes the impact of these offsets by normalizing each
RSS profile in �Y , and achieves the normalized profiles as
Z = {z(1), . . . , z(N)}, where z(i) is the normalized version
of �y(i) with a range of [0, 1]. This normalization is able to
address Challenge 2 and Challenge 3 partially.

2) Peak Detection and Sidelobe Removal: To fully address
these two challenges, we need to extract FM features that are
irrelevant to the diversities of vehicles, radios, and weather
conditions. To this end, we resolve to the appearances of
different radio stations, as well as their relative order in RSS.
The reasons are as follows. At a certain location, the number
of radio stations and their frequencies inside a fixed bandwidth
should be the same, regardless of the reception hardware and
weather conditions. In case low-end radios lose a few stations
to the noise, we further extract the relative order of these
stations with respect to RSS values. In this way, high-end and
low-end radios will always share most part in their orders of
station RSS values.

To extract these features, the extractor first calculates the
mean RSS value at each frequency point for all profiles in Z:

z̃fl
=

1
N

N∑
i=1

y
(i)
fl

, l = 1, . . . , L, (2)

and denote Z̃ = {z̃f1 , . . . , z̃f1 , . . . , z̃fL}T . The extractor
then finds the largest K peaks in Z̃ and their corresponding
locations, by applying the peak detection algorithm proposed
by Du et al. in [18]. The RSS values of the peaks are
recorded in a descending order as �P = {z̃1, . . . , z̃K}T . The
frequencies corresponding to these peaks are also recorded as
�F = {fp

1 , . . . , fp
K}T . If the number of detected peaks is less

Algorithm 3 Light-Weight Sidelobe Removal

Input: A vector of detected peaks �P , their corresponding
frequencies �F , a length of frequency window BW , and a
threshold ratio β.
Output: Sidelobe removal results P̂ and F̂ .
Step 1: Take the first element in �P as the current element,
denoted with subscript c.
Step 2: Collect all the peaks whose frequencies are inside
the range of [fp

c − BW , fp
c + BW ], and put them into set W .

Step 3: Check sidelobes in W .
1: for ∀z̃l ∈ W do
2: if z̃l/z̃c ≤ β then Remove z̃l from �P , and remove

fp
1 from �F

3: end if
4: end for

Step 4: Repeat step 2 and step 3 for the next element in �P .
Upon reaching the end of �P , collect the remaining elements
in �P and �F , conduct zero-padding at the ends of them to
make sure their lengths equal K , and output the padding
results as P̂ and F̂ , respectively.

than K , the extractor performs zero-padding at the ends of
both �P and �F .

However, the peaks recorded in �P do not always correspond
to the main lobes of radio stations. They may include side-
lobes that are introduced by the finite FFT in digital signal
processing. Detecting the sidelobes exactly is computationally
complex. Therefore, we resolve to a light-weight algorithm
to remove the sidelobes from �P and �F , as described in
Algorithm 3.

3) Binary Differential Sequencing: Besides the peaks, Radi-
oLoc also leverages the shape of the profiles as another set
of features. RadioLoc treats each profile as a series in the
frequency domain, and extracts its evolving trend along with
frequency. We utilize the differential sequence of each profile
along frequency to capture how the RSS values evolve. The
generation of this differential sequence is described as, for
l = 1, . . . , L − 1,

d̂l =
{

1, z̃fl+1 − z̃f1 ≥ 0,

0, otherwise.
(3)

We denote D̂ = {d̂1, . . . , d̂L−1}T . We adopt a binary dif-
ferential sequence, because the magnitude information has
already been captured in the peaks P̂ . Using a binary format
allows us to minimize the data storage overhead without much
degradation on the localization performance.

4) Weighting the Features: After feature extracting,
we obtain two kinds of features, the peak-relating features
P̂ and F̂ , and the trend-relating features D̂. The number
of peak-relating features is much less than that of trend-
relating features. However, peak-relating features may carry
more important information about the RSS profiles. This
information would be overwhelmed by trend-relating features
in the learning process, if we directly merge all features
into one set. Therefore, we adopt a weighting method to
make sure that all kinds of features will be treated equiv-
alently regardless of their numbers. The weight vector of
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weights is described as

Ŵ = {wP
1 , . . . , wP

K , wF
1 , . . . , wF

K , wD
1 , . . . , wD

L−1}T , (4)

where {wP
i } are the weights for P̂ , {wF

i } are the weights
for F̂ , and {wD

i } are the weights for D̂. An example imple-
mentation of these weights is

wP
i = 1/K, i = 1, . . . , K, (5)

wF
i = 1/K, i = 1, . . . , K, (6)

wD
i = 1/(L − 1), i = 1, . . . , l − 1. (7)

The final output of the whole feature extractor is

�Z = {P̂T , F̂T , D̂T , ŴT }T . (8)

D. Location Computation

After denoising the RSS profiles and extracting features
that are uncorrelated to the diversities of vehicles, radios
and weather conditions, the location computation component

in RadioLoc takes in the extracted feature vector �Z , and
outputs the 3D positions of vehicle (i.e., longitude, latitude
and altitude). To compute the accurate vehicle location swiftly,
we resort to modern machine learning theories. In particular,
we model the 3D localization of vehicle as a classifica-
tion problem. This formulation is decoupled from the signal
sampling and data processing components, hence allowing
different machine learning algorithms to be plugged in.

To be concrete, in the location computation component,
we first collect a set of RSS profiles and their corresponding
ground truth 3D positions, use the denoiser and feature extrac-
tor to transform each RSS profile into a feature vector, and
construct a training dataset S as the set of resulting (feature
vector, 3D position) tuples. We leave the implementation
details on how to collect the RSS profiles and the ground
truth positions in Section V. We then use this training dataset
to train a classifier G(�Z), which takes in the feature vector
of an input RSS profile and outputs the corresponding 3D
position.

Different learning algorithms can be deployed in RadioLoc
due to its modular design. In our development, we imple-
ment several learning algorithms based on different machine
learning theories (e.g., random forest, SVM and AdaBoost)
to compute the 3D positions of vehicles. We next present a
random forest based 3D location learning algorithm as a proof
of concept, and omit the details of other algorithms due to the
space limit.

A random forest based 3D position identifier. Algo-
rithm 4 gives the pseudo code of the random forested based
3D position identifier. Specifically, given a training dataset
S, the identifier first generates Θ smaller training datasets,
each of which Sa is generated by randomly select samples
from S with repetition (Line 10). For each dataset Sa, the
identifier trains a decision tree (Line 15-20). As a result, the
random forest classifier G consists of a total of Θ decision
trees (Line 11). When the identifier receives a new feature
extractor �Z, G iterates through all its decision trees, gets all
Θ 3D locations qa computed by the trees, and returns the
majority of {qi} as the final identification output (Line 1-5).
In case of a draw, one of the majorities will be randomly
selected as the output.

Algorithm 4 A Random Forest Based 3D Position Identifier

1: procedure POSITIONIDENTIFIER(�Z)
2: for each decision tree ta in G do
3: qa = ta(�Z)
4: end for
5: Return the majority of {qa}a as the final localization

result
6: end procedure
7: procedure RANDOMFORESTCONSTRUCTION(S)
8: G = ∅
9: for a = 1, . . . , Θ do

10: Random select samples from S with repetition to
generate a new sample set Sa

11: Add DECISIONTREELEARN(Sa) to G
12: end for
13: Return the forest G
14: end procedure
15: procedure DECISIONTREELEARN(S)
16: At each node:
17: Randomly select a small subset of features
18: Split on the best feature in the selected features
19: Return the learnt decision tree
20: end procedure

Fig. 6. The RadioLoc implementation.

V. IMPLEMENTATION AND DEPLOYMENT

In this section, we describe the implementation of a Radi-
oLoc prototype, and the deployment settings of our field
experiments using private vehicles.

A. RadioLoc Prototype Implementation

Figure 6 shows the RadioLoc prototype implementation.
To avoid intrusive modifications to the test vehicles and
obey local regulations on car tunings, the RadoLoc prototype
is implemented on a USRP B210 software-defined radio
board [19] and a commodity laptop. In particular, an adaptive
sampler is implemented using GNURadio [20] on the USRP
board as the signal sampling frontend to collect the raw RSS
profiles of FM signals. These raw RSS profiles are then sent to
the RadioLoc backend on the laptop, and processed through
the denoiser and feature extractor before being sent to the
3D position identifier. The position identifier computes the
vehicle’s 3D location, and outputs the result to a graphic map
interface. The whole data processing and learning backend is
implemented in Python 3.7, with a total of ∼500 lines of code
(LoC).

B. Test Deployment

We deploy our prototype of RadioLoc on three different
vehicles to evaluate the impact of vehicle diversity. The first
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Fig. 7. Vehicles employed in the experiments.

vehicle (denoted as V1) was a Great Wall Haval M2 SUV. The
second vehicle (denoted as V2) is a Nissan Rogue SUV. The
third vehicle (denoted as V3) is a Volkswagen Bora middle-
size sedan. These three vehicles are owned and driven by three
volunteering drivers, respectively.

Collection of FM Fingerprints Before being launched,
RadioLoc needs to be trained with FM fingerprints of all
positions of interest. Specifically, an FM fingerprint is the
combination of its RSS profile and the corresponding ground
truth 3D coordination. There are multiple approaches to col-
lecting these FM fingerprints. We present two as examples in
the following.

A first approach is to have location service providers
drive their data collection vehicles (e.g., Google street view
vehicles) in different areas to collect the FM fingerprints.
Specifically, these vehicles are equipped with an FM radio,
a GPS device and a video camera. The GPS device collects
rough coordination readings containing both horizontal and
altitude errors, which are to be corrected with videos recorded
by the camera. This can be done by setting up ground truth
references in videos and interpolating the rest according to the
vehicle speed. In this way, the ground truth coordinations are
collected. The FM RSS profiles are then associated with these
coordinations by aligning their synchronous time stamps, and
the FM fingerprints are thus obtained.

Other than using vehicles designated for data collection,
a second approach is to utilize crowdsourcing services. Drivers
can collect and share their recorded FM fingerprints through
mobile Apps such as Waze and Uber. Confidence levels can be
applied to different users according to the resolution of their
devices and the historical performance of their fingerprints.
We note that the fingerprint collection process of RadioLoc
does not affect the driving behavior of participating vehicles.
The RSSI information is be automatically collected as the
driver drives his vehicle. In contrast, earlier fingerprint-based
FM-assisted localization methods require their system proto-
types to stay at each collection point for at least 2 seconds to
scan a large number of FM stations (i.e., 32 [12], [21]). As a
result, the fingerprints needed by these earlier methods cannot
be collected via crowdsourcing services of vehicles.

In our experiments, we utilize the in-car Digital Video
Recorders (DVRs) - the Jado D610s DVRs (Figure 8(a)),
on the rear-view mirrors of both vehicles. The ground truth
locations at each time slot are extracted from the recorded
videos. These videos are synchronized to the portable FM
radio, so that we can compare the results of RadioLoc with
the ground truth. We also record GPS information with a
GPS device - Garmin nuvi C265 (Figure 8(b)), which is also
synchronized to the FM radio for comparison.

Scalability of RadioLoc. Theoretically, there are an infinite
number of fingerprints in a global FM localization system.
Putting them all together in one fingerprint library is non-
scalable and infeasible. Instead, a distributed solution is
described as follows. The urban areas are divided into hexago-
nal cells, each of which has its own identifier associated with
a local library of FM fingerprints. Each vehicle determines

Fig. 8. Additional devices used in the deployment to collect FM fingerprints.

Fig. 9. The federated RadioLoc framework.

which cell it belongs to with the rough GPS readings, and
adopts the FM fingerprints at that cell for localization. In case
the vehicle is close to the edges of cells, it first determines
the three closest cells, and prioritizes them according to the
GPS distances from the vehicle to the centers of cells. The
subsystem in each cell outputs an estimated position within
its own fingerprint library, together with a confidence score
(methods such as SVM and random forests all provide confi-
dence scores). These confidence scores are then weighted by
the priorities of the cells. The final position output is the one
corresponding to the largest weighted confidence score. With
this distributed solution, the proposed RadioLoc system can
scale to a global level.

C. A Federated Framework of RadioLoc

Motivated by the recent progress in federated learning
[22]–[24], we also extend the deployment RadioLoc with
a federated framework (Figure 9). Compared with the ear-
lier presented standalone mode, where vehicles collect FM
fingerprints and send to a centralized server to train the
localization model, federated RadioLoc allows vehicles to keep
their FM fingerprints private to protect their sensitive infor-
mation (e.g., moving traces), while still provides the accurate,
all-terrain localization service to vehicles.

In particular, given an area (e.g., a street district), an edge
server is deployed to store an area-level localization model.
When a vehicle deployed RadioLoc drives into this area, it can
retrieve the localization model from the edge server and use
it for real-time localization.

The vehicle is also provided the option to participate in the
federated training of the localization model in this area. If the
vehicle chooses to participate, it first collects FM fingerprints
as designed in Section V-B. It then uses the retrieved area-
level localization model as the base, and uses its collected FM
fingerprints to train its own vehicle-level localization model.
Not only can this model be used by the vehicle itself for local-
ization, it is also sent to the edge server. The latter then updates
the area-level localization model by aggregating the received
vehicle-level model. The specific model aggregation algorithm
adopted by the edge server depends on which machine learning
algorithm is used. For example, for SVM, the server can use
the classic FedAvg algorithm [22] for model aggregation. For
decision tree based algorithms (e.g., Algorithm 4), we use the
federated forest algorithm [23] to aggregate the decision trees
built by different vehicles.
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Fig. 10. Scenario 1: the floor plan of a parking building and the corresponding
referencepoints.

Fig. 11. Scenario 2: open street and the corresponding reference points.

VI. EXPERIMENT METHODOLOGY

In this section, we describe the experiment settings and the
evaluation metrics.

A. Three Complementary Scenarios

The field experiments were conducted in three complemen-
tary real-life scenarios with different terrains.

Scenario 1 is a 3D scenarios used to evaluate the impact
of diversities in vehicles and weather conditions. In order to
achieve general conclusions, experiments in Scenario 1 may or
may not have a clear view of sky, depending on the experiment
positions. We choose a multi-level parking building to set up
our experiments. This is because that, in the parking building,
we can gather the ground truth data with 100% confidence.
Moreover, we are able to repeat and reproduce the experiments
exactly and safely without violating any traffic regulations.

The parking building has a total of four floors - three
floors on the ground (denoted respectively as 1F , 2F and
3F ) and one underground floor (denoted as 1B). The height
of each floor is 5 meters. On each floor, we select the
same five horizontal positions (P1 to P5) as the reference
points to gather FM data. We denote each reference point in
Scenario 1 by its level and it horizontal position. For example,
P1 on the second floor is denoted as L2P1. The horizontal
floor plan of each floor is identical (except that L3P2 and
L3P4 are both occupied by offices on the third floor), and is
illustrated by Fig. 10. On each floor, P2 is at the entrance to
the higher level, P4 is at the exit from the higher level, and
P3 is between the entrance from the lower level and the exit
to the lower level. P2, P3 and P4 are in a line, separated by
15 meters. P1 is 5 meters away from P2, and line P1P2 is
perpendicular to line P2P4. The situation of P5 is similar
to P1.

Scenarios 2 and 3 are used to evaluate the proposed system
under dynamic environments. Scenario 2 concentrates on the
impact of speed, and isolates other factors. Therefore, Sce-
nario 1 is set up in an open and straight street with a clear view
of sky. All field experiments in Scenario 2 are conducted at the
same day. As illustrated by Fig. 11, we evaluate RadioLoc on
a straight section of a 6-lane bi-directional street. There is no
building (nor any sky-blocking object) within 100 meters of
this section. In order to collect the ground truth for evaluation,
we select three reference points (PA, PB , and PC ) locating on
the midline of the rightmost lane. The distance between PA

and PB , as well as that between PB and PC , is 5 meters. And
the distance between PA and PC is 10 meters. During each run
of experiments in Scenario 2, the same vehicle drives through
this section with a constant speed, and passes the reference
points in the order of PA, PB , and PC .

Fig. 12. The map of two tunnels, where the reference points are set every
5 meters.

Fig. 13. The summary of data collection.

In Scenario 3, we evaluate our proposed system under
normal, uncontrolled driving behaviors in Xiamen, China,
a tourist city with complex terrain environments. A driver
drove through 2 mountain tunnels, denoted as Tunnel 1 and
Tunnel 2, in both directions, in which no GPS signals can
be received by the vehicle. The experiment in Tunnel 1 is
performed at 2pm on a weekend day, representing the scenario
of normal traffic. The experiment in Tunnel 2 is performed at
5pm the same day, representing the scenario of heavy traffic.
We further note that Tunnel 1 was under road construction
on the day of experiment. As such, its south-north route and
north-south routes are asymmetric. Therefore, we separate the
experiment in Tunnel 1 into two: denoted as Tunnel 1-SN and
Tunnel 1-NS. Tunnel 1-SN is of 1227 meters long. Tunnel
1-NS is of 1161 meters long. Tunnel 2 is of 2715 meters long
each way.

Scenarios 1, 2 and 3 are complementary to each other with
different focuses. Scenario 1 concentrates on the impact of
environment diversities. The impact of speed is neutralized
due to the nature that vehicles in a parking building are either
static or driving slowly. Scenario 2 focuses on the impact of
vehicle speed, and eliminates the diversities in vehicles and
weather conditions by conducting experiments in the same day
with the same vehicle. Scenario 3 focuses on the real driving
environments, where GPS signals are mostly unavailable.

B. Data Collection

The ground truth, the FM signal measurement and the
GPS information are collected in seven days with either one
or both vehicles. The weather of each day is either sunny,
rainy or cloudy. For each weather condition, we repeat the
measurement twice in two different days. Moreover, data
collections are conducted either in the morning, at noon, in the
afternoon or at night. The weather conditions, the number of
vehicles, the scenarios of data collection and the collection
time are summarized in Fig. 13. The numerical order of days
in Fig. 13 is different from their calendar order.
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During all experiments, the FM signal measurement is
collected by drivers driving their vehicles through the reference
points specified in Section VI-A and Figures 10, 11 and 12,
without the need of stopping at any reference point. Each
dataset consists of less than 20 data points per second. This is
because RadioLoc only requires collecting the FM signals of
one FM broadcast stations, as specified in Section V-B. This
is different from, and much simpler than previous FM-based
localization methods [12], [21], which require the device to
stay at each reference point over 2 seconds to scan and collect
the FM signals of 32 FM broadcast stations.

Furthermore, the size of our raw FM data shows that to
perform all-terrain localization, the amount of data needed
for a specific area is very small (e.g., less than 10 MB for
Tunnel-2 which is over 2.7 km). As such, with emerging
storage techniques (e.g., NVMe), RadioLoc can store FM
signal data in vehicles with a low storage overhead.

C. Metrics

In this paper, we analyze the performance of localization
systems from two different aspects.

On one hand, we evaluate whether a vehicle is correctly
identified to the closest reference point. For many vehicular
applications, identifying a vehicle to a reference point is as
critical as (or even more important than) retrieving the exact
coordination. For example, the ETC service needs to know
not only the coordinations of nearby vehicles but also whether
the vehicles are at the ETC gates. Also, even if errors exist,
the navigation can still perform properly when vehicles are
accurately located to critical references such as intersections
and forks of roads, and levels of overpasses. Accordingly, the
following metrics are adopted.

The precision of position identification for reference point i
is defined as:

precisioni =
tpi

tpi + fpi
, (9)

where tpi and fpi are the numbers of true positives and
false positives of reference point i, respectively. The average
precision over all cases are then defined as:

precision =
1
N

N∑
i=1

precisioni, (10)

where N is the number of reference points.
The recall of position identification of reference point i is

defined as:

recalli =
tpi

tpi + fni
, (11)

where fni is the number of false negatives of reference point i.
The average recall is then defined as:

recall =
1
N

N∑
i=1

recalli. (12)

In this paper, we consider the recall to be equivalent to the
localization accuracy.

On the other hand, we are also interested in errors in the
geometric space. A geometric error is defined as the Euclidean
distance between the estimated coordination to the ground

Fig. 14. Confusion matrix of floor identification of RadioLoc without profile
normalization.

Fig. 15. Average recall of RadioLoc without feature extraction.

truth coordination. The average geometric localization error
is then defined as:

�̄ =
1
N

N∑
i=1

N∑
i=j

Pi,jdi,j , (13)

where Pi,j denotes the probability that vehicles at point i are
identified to reference point j,

∑N
j Pij = 1, and di,j denotes

the Euclidean distance between i and j.
In addition to the above metrics, one may wonder how fast

can RadioLoc localize the vehicle. In all of our experiments,
our prototype is able to compute the location of the vehicle in
less than 100 milliseconds. This demonstrates that RadioLoc
is able to provide real-time vehicle localization. We omit the
detailed results on localization latency due to the space limit.

VII. EXPERIMENT RESULTS UNDER

STATIC ENVIRONMENTS

In this section, we present the experiment results in Sce-
nario 1, which represents the low-speed, mostly static envi-
ronments. The purpose is to clearly illustrate the impacts of
different factors with relatively clean settings.

A. The Impact of Multipath Delay Spread

We first evaluate whether the proposed denoiser is able
to address the severe multipath reflections. We use the test
data collected in Scenario 1, and focus on the geometric
localization accuracy. Fig. 16 compares GPS, RadioLoc with
a standard denoising technique [25], and RadioLoc with the
proposed denoiser in terms of geometric errors. It is shown that
RadioLoc can indeed improve the 3D localization accuracy
over the existing GPS system. Furthermore, the standard
denoising technique suffers from the severe multipath delay
spread, leading to a maximum error of 15 meters (i.e., wrong
by 3 floors). This demonstrates the efficacy of the proposed
rPCA-based denoiser in efficiently filtering out the noises
and only leaving the signals from the FM station As such,
it can minimize the impact of delay spread, and significantly
reduces both the mean and maximum errors (i.e., wrong by
at most 1 floor). Therefore, RadioLoc is able to address
Challenge 1.

B. The Impact of Diversity in Vehicle Models

In this section, we analyze the impact of vehicle diversity,
and evaluate whether RadioLoc can work consistently across
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Fig. 16. Geometric errors in Scenario 1.

Fig. 17. Confusion matrix of floor identification of RadioLoc with profile
normalization.

TABLE II

CROSS VALIDATION OF IDENTIFICATION W/O PROFILE NORMALIZATION

different vehicle models. We evaluate the performance of
altitude localization, and check whether the vehicles can be
accurately located at the floor level. To this end, we use
two datasets collected using V1 and V2, respectively, in Sce-
nario 1 during Day 1. We then mix these data together. Recall
that the feature extractor is proposed to address the vehicle
diversity. Therefore, we compare RadioLoc systems with and
without the profile normalization module. The confusion mat-
ricides are presented in Fig. 14 and Fig. 17, respectively.

As shown in Fig.14, without RSS profile normalization,
there is a high chance that vehicles are located to a wrong floor.
The worst-case precision and recall are 35.1% and 30.2%,
respectively. Considering that there are a total of four floors,
these results are only slightly better than random guesses.

To investigate the cause of this, we further evaluate the
worst-case precision and recall using the data from only one
vehicle in Table II. We can see that the cross validation results
are nearly perfect when the data of only one vehicle is adopted.
However, the performance of floor identification degrades
significantly when it is applied to the mixed data from both
vehicles. This again confirms the existence of Challenge 2.
The diversity of vehicles may bring variations to path losses
and receiver gains, making the raw FM RSS inconsistent.

On the other hand, when the normalization module
is applied, the diversity of vehicles can be appropriately
addressed. As shown in Fig. 17, the performance of floor
identification improves largely even with a mix data from
both vehicles. The worst-case precision and recall are raised
to 99.0% and 99.3%, respectively. Moreover, it is shown that
the error in floor identification is at most one floor. Hence,
we conclude that the profile normalization addresses the power
offsets brought by different vehicle models, and thus solves
Challenge 2.

C. Impact of Weather Conditions

In this part, we evaluate RadioLoc under different weather
conditions in Scenario 1. The experiments are conducted on
six different days with three different weather conditions,
i.e., sunny, rainy and cloudy. For each weather condition,

Fig. 18. Average recall of RadioLoc with feature extraction.

Fig. 19. Average 3D localization errors under different weather conditions
in Scenario 1.

experiments are repeated twice on two different days. For
Day 1, datasets from both vehicles are employed.

We first try to identify the positions of vehicles at the
18 reference points on four floors. Again, a weighted random
forest is adopted as an example identifier. The evaluation is
conducted as follows. 1) We first conduct the training with
the data of a weather condition that is different from those
of testing data. Each run of the evaluation mixed all data of
one weather condition as the training data set, and considers
the rest as testing data sets. The classifier is trained with the
training data set, and is then tested separately on testing data
sets. We denote the case of training on the sunny data set and
testing on the rainy data set as the Sunny-Rainy pair (S-R for
short). Similarly, the rest pairs are S-C, R-S, R-C, C-S, and
C-R, respectively. 2) For pairs where the weather conditions
are the same (i.e., S-S, R-R, and C-C), we will take the data
from one day as the training data, and consider the data from
the other day with the same weather as the testing data.

After iterating through all training-testing pairs, we summa-
rize the average recalls over all 18 reference points in Fig. 15.
Note that the results in Fig. 15 are achieved using RSS profiles
�Y directly (i.e., RadioLoc w/o feature extraction). In this case,
when training and testing with the data from the same weather
condition, the FM position identification can still perform quite
well, even when the data are collected from two different
days. However, when training on one weather condition and
testing on others, the performance of position identification
is not satisfactory. In the worst case, the vehicles have been
located to wrong reference positions in 26.9% of the time. This
suggests that the weather condition indeed brings variations
to the FM fingerprints. Considering the fact that the profile
normalization has been already applied, we can conclude that
the fingerprint distortions happen not only in the scale but also
in the shape of the signals.

To address this issue, we adopt the extracted features �Z
instead of the RSS profiles �Y . Field test results confirm that the
extracted features are able to improve the accuracy of position
identification. As illustrated in Fig. 18, the worst-case recall
increases to 99.6% for training and testing under different
weather conditions, and reaches 100.0% for training and
testing on the same weather.
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Fig. 20. RadioLoc-SVM: Geometric errors in Scenario 1.

Fig. 21. RadioLoc-SVM: Confusion matrix of floor identification with profile
normalization.

Fig. 22. RadioLoc-SVM: Average recall with feature extraction.

We further visualize the improvements brought by the
feature extractor in Fig. 19. It is shown that the average
geometric localization errors of GPS are always greater than
15 meters. These errors are reduced to less than 5 meters
by RadioLoc without feature extraction. Moreover, using the
extracted features helps RadioLoc lower the average errors
to less than half a meter. Therefore, we conclude that the
RadioLoc addresses Challenge 3.

D. Impact of Different Learning Methods

The results in earlier subsections focus on the RadioLoc
prototype that uses the random forest based positioning algo-
rithm presented in Section IV-D. To verify the modularity
of RadioLoc, we also repeat all the earlier experiments on
RadioLoc prototypes that use a linear kernel SVM positioning
algorithm, and an AdaBoost based positioning algorithm.
We find that these prototypes provide similar performances
on all four major metrics (i.e., about 1-5% performance fluc-
tuation on precision, recall, accuracy and localization error).
As an example, Fig. 20, Fig. 21 and Fig. 22 show the geometric
errors, the confusion matrix of floor identification and the
average recall of RadioLoc-SVM, a prototype using a linear
kernel SVM positioning algorithm. Comparing them with the
corresponding results of the prototype using the random forest
based positioning algorithm (i.e., Fig. 16, Fig. 17 and Fig. 18),
we observe that the performance of RadioLoc-SVM is very
similar, with a slight degradation. This finding demonstrates
the efficiency and efficacy of the novel sampling and data
processing mechanisms developed in RadioLoc. It also shows
that the modularity of RadioLoc allows the plugin of different
learning-based localization algorithms. As such, it paves the
way for the wide deployment and adoption of RadioLoc.
We omit the remaining figures due to the space limit.

VIII. EXPERIMENT RESULTS UNDER

DYNAMIC ENVIRONMENTS

In this section, we push the system towards more realistic
environment of our daily driving.

Fig. 23. Average horizontal localization errors under different velocities in
Scenario 2.

A. Impact of Vehicle Speed

As discussed in Section II, the collected batches of FM
profiles at the same reference point could be inconsistent under
different speeds, undermining the performance of RadioLoc.
To evaluate the impact of vehicle speed and the adaptive
batching technique we proposed in Section IV-D to address
this issue, we conduct multiple runs of tests in Scenario 2 with
vehicle V2. At each run, V2 drives through three reference
points, i.e., PA, PB and PC , in a straight line with a constant
speed. Different speeds are adopted in different runs, ranging
from 10km/h to 80km/h. We first take the measurement
data of 10km/h as the training data of a weighted random
forest, and use the rest data to test the trained random forest.
We then repeat this procedure for other speeds, and obtain the
horizontal localization errors as shown in Fig. 23.

From Fig. 23, we can see that for all methods the localiza-
tion errors increase with speed. Compared to GPS, RadioLoc
largely reduces the localization errors in the high speed
domain. However, when the speed is less than 40km/h,
RadioLoc with fixed batching period (Fixed BP) results in
larger errors than those of GPS. This is caused by the incon-
sistency in FM fingerprints at different speeds. This issue is
addressed by the use of adaptive batching period (Adaptive
BP). As demonstrated in Fig. 23, the use of adaptive batching
period helps reduce the average localization errors by at least
57.7%. In the worst case, the average localization error is
less than 2 meters. In the high speed scenario of 80 km/h,
RadioLoc with adaptive batching period reduces the average
error to 16.7% of the GPS error. Thus, we conclude that the
proposed RadioLoc system addresses Practical Issue 1.

In addition, we further compare the use of wideband FM
signals to the use of frequency sweep, so as to approach the
limits of RadioLoc with low-end devices. The bandwidth of
the wideband radio is 10 MHz, while the bandwidth of the
narrowband radio is 500 KHz. It is illustrated in Fig. 23
that the performance degradation brought by frequency sweep
is small. The worst-case average localization error is still
less than 2 meters. Therefore, we conclude that the proposed
RadioLoc system addresses Practical Issue 2, and can be
safely applied to existing FM radios on vehicles.

B. Driving Through Tunnels

As described before, in Scenario 3, a volunteer driver
drove through 3 different routes, i.e., Tunnel 1 1-SN,
Tunnel 1-NS and Tunnel 2, multiple times. For Tunnel 1-SN
and Tunnel 1-NS, the driver repeated each route 6 times. For
Tunnel 2, the driver repeated this route 10 times (5 times per
direction). We asked the driver to drive as normal as possible,
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Fig. 24. RadioLoc errors in Tunnel 1-SN.

Fig. 25. RadioLoc errors in Tunnel 1-NS.

Fig. 26. RadioLoc errors in Tunnel 2.

and introduced no constraints on the driving behaviors (except
obeying the speed limits and other traffic regulations). As a
result, the speed of the vehicle changed dynamically during the
experiments in an uncontrolled manner. The distribution of the
speed during experiments in routes of Scenario 3 is illustrated
by a Cumulative Probability Function (CDF) in Fig. 27.

For each route, we used 66.7% data as the training data,
and tested on the rest 33.3% data. We repeated the model
training and evaluation 5 times with 5 different random seeds.
The geometric errors are reported in Table III. It is shown
that RadioLoc is able to limit the mean geometric error to
be smaller than 1 meter. Such an error performance is quite
robust across different random seeds. In addition, RadioLoc
constrains the worst-case errors to stay smaller than 10 meters
most of the time. (Note that the GPS is unavailable when
driving in tunnels, meaning that the GPS errors is infinite.)

We further illustrate the CDFs of the geometric errors at
Tunnel 1-SN, Tunnel 1-NS and Tunnel 2 in Fig. 24, Fig. 25,
and Fig. 26, respectively. From the above figures, we can
see that 80% of the time, RadioLoc achieved an error that is
smaller than 1 meter. And 95% of the time, RadioLoc obtained
an error that is smaller than 2 meters. These results remain
valid for all three routes. This again illustrates that RadioLoc
is able to support vehicle localization and navigation at the
areas, where GPS signals are not available.

We further recruit four more volunteer vehicles and let each
driver drive through Tunnel 2 with normal behaviors 10 times.

TABLE III

GEOMETRIC ERRORS IN THE TUNNELS

Fig. 27. CDF of speed during experiments in Scenario 3.

We use these four collected datasets and the earlier collected
dataset of Tunnel 2 to construct a federation of five vehicles,
and evaluate the performance of federated RadioLoc using
the same methodology. The last line of Table III gives the
average of geometric error of five vehicles. We see that the
mean error is still within 0.75 meters. This demonstrates
the feasibility of federated RadioLoc to achieve accurate
localization without requiring the exposure of vehicles’ FM
fingerprints and moving traces.

IX. RELATED WORK

A. Global Positioning System

Equipped on over a billion smart phones and various devices
such as digital cameras, sensors and etc., the global position-
ing system has become one of the most pervasive wireless
technologies [26]. There has been a rich literature on how to
improve the performance of GPS [2]–[4], [27]–[31], including
quality, accuracy, delay and etc. To support the functionality of
GPS under poor satellite signal conditions, most GPS receivers
nowadays are embedded with other radios, such as WiFi,
cellular and ZigBee. In this way, the content of the GPS
signal can be downloaded from assisted GPS (A-GPS) servers
instead of directly decoded from the satellite signals [2]–[4].
However, errors of A-GPS are significantly larger than those of
standard GPS [4]. In addition, A-GPS requires GPS receivers
to frequently re-synchronization with satellite signals, which
is both time and energy consuming. Nee et al. propose
the FFT-based GPS synchronization technique to reduce the
complexity of this process from O(n2) to O(n lg(n)) [27],
where n is the number of samples per C/A code.
Hassanieh et al. leverage this result and other advances
in sparse FFT to further reduce the complexity to
O(n

√
lg(n)) [28].

B. LTE, WiFi and RFID Based Localization

Other than satellite, people also explore the potential and
benefits of positioning with other wireless techniques [6], [7],
[32]–[51]. Some representative ones are LTE, WiFi and radio
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TABLE IV

COMPARISON BETWEEN RADIOLOC AND OTHER FM-ASSISTED LOCALIZATION METHODS

frequency identification (RFID). The most popular approaches
analyze the Angle of Arrival (AoA) or Time of Arrival (ToA)
to determine the relative position of the receivers to the
transmitters. For example, Kumar et al. propose the LTEye
platform to monitor and analyze LTE radio performance at
a fine granularity [32]. With the use of rotating antennas,
LTEye is able to locate mobile users in an indoor environ-
ment. Xiong et al. propose ArrayTrack, a WiFi-based indoor
localization system in which antenna arrays are installed at
each access point to support the AoA based localization [6].
Kotaru et al. design SpotFi, a decimeter-level WiFi-based
indoor localization system. One major advantage of SpotFi
is that it does not require a large number of antennas to
be installed on each access point, e.g., three antennas at
each access point is sufficient to provide satisfying perfor-
mance [34]. To avoid the cost and overhead of installing actual
antenna arrays at access points [6], [32], [34], Kumar et al.
propose Ubicarse, a system that constructs a virtual antenna
array at a human-holding mobile device (e.g., a smart phone)
by requiring the device owner to move the device in a
circular fashion [7], and use the measurement from this virtual
array to locate the device. Though Ubicarse does not require
additional hardware modification, it relies on the existence of
other in-device sensors such as accelerometers and gyroscopes
to achieve accurate localization. Different from the above
AoA localization scheme, Xiong et al. develop ToneTrack,
a time-of-arrival based localization scheme [33]. Different
from traditional ToA based solution, ToneTrack leverages the
frequency agileness of WiFi to improve the bandwidth so
that the localization accuracy can achieve sub-meter level.
Subramanian et al. in [52] consider the problem from the other
direction. They adopt directional antennas mounted on moving
vehicles to collect WiFi AoA information for localization of
roadside WiFi APs.

Some approaches also resolve to WiFi signal fingerprints
such as RSS, and Channel State Information (CSI) for local-
ization. Chintalapudi et al. in [53] adopts the RSS of WiFi as
location fingerprints of devices, and develops an EZ Localiza-
tion algorithm that captures the physical constraints of wireless
propagation to setup fingerprints automatically. Wu et al. are
able to utilize the fingerprints of WiFi CSI to enhance the
accuracy indoor localization [5]. Yang et al. propose to model
the FM signal distribution over the floors and use the collected
fingerprint to perform indoor localization [13]. Yang et al.

provide a comprehensive survey of WiFi fingerprint based
indoor localization in [54].

Other than localization, WiFi fingerprints have also been
applied to track 3D body movements through walls. WiVi [55]
is such a system, which leverages MIMO communication and
inverse synthetic aperture radar to identify simple gestures of
people and their relative locations in a closed room. WiTrack
is also designed to enable coarse-grained body part tracking
without requiring user to carry any wireless devices [56].
Meanwhile, the Wisee system [57] analyzes the Doppler shifts
in residential WiFi signals, and utilizes them to build WiFi
fingerprints for gesture recognition in home environments.
Recently, the Wikey system [58] is able to record fine-grained
fingerprints of WiFi CSI-waveforms for keys on a keyboard,
and recognizes keystrokes with these records.

Besides LTE and WiFi, fine-grained RFID localization
methods are also explored. Tagoram uses COTS RFID tags
and readers to track mobile RFID tags in real-time [38]. PinIt
uses a moved antenna to measure the multipath pro- files
of reference tags at known positions and locates the target
RFID tag [39]. Though all these LTE, WiFi and RFID based
systems enable accurate and low-cost localization of devices
and users, they mostly target on an indoor scenario [59] and
cannot support all-terrain 3D vehicle localization because (1)
they usually require additional infrastructure and hardware
modification and (2) they cannot cope with the highly dynamic
vehicle environments.

C. FM-Assisted Localization

Recently, there has been a growing interest on FM-based
localization methods [12]–[15]. Compared with the popular
GPS or WiFi based approaches, FM radios consume less power
and can cover a very large area. And existing methods also
demonstrated that given a geographical area, the FM signal
fingerprints are unique. Chen et al. demonstrate the feasibility
of FM-RSS based localization. They show that the RSSI of
FM radio signals can be used to achieve room-level indoor
localization with similar or better accuracy to the one achieved
by WiFi signals [12]. It is further revealed that when FM and
WiFi signals are combined to generate wireless fingerprints,
the localization accuracy can be significantly increased [21].
Matic et al. propose the spontaneous recalibration technique to
reduce the delay caused by frequent calibration in FM-based
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indoor localization systems [60]. Yoon et al. design ACMI,
an FM-based indoor localization system requiring no proactive
site profiling [14].

Though these systems demonstrate the benefits of
FM-based localization. They are designed for indoor localiza-
tion. FM-based all-terrain localization poses a series of unique
challenges, such as the severe signal distortion caused by the
rich multipaths in FM signal propagation, inconsistency of
FM signals due to the diversities of vehicle models, radios,
and weather conditions, the high mobility of vehicles, and
the limited bandwidth of in-vehicle radios. And these chal-
lenges are not addressed in existing studies. For example,
Youssef et al. explore the feasibility of the FM-modeling based
technique in an outdoor setup [15] with a resolution of several
kilometers. To the best of our knowledge, RadioLoc is the
first working system that systematically addresses these issues
to achieve efficient, accurate, all-terrain vehicle localization.
In the end, we compare key aspects of RadioLoc and these
related FM-assisted localization methods, in terms of their
design decisions, applicability, and performance in Table IV.

X. CONCLUSION

We design RadioLoc, a novel system that uses the
highly-available FM signal as the signal source and integrates
modern machine learning techniques into the processing of
FM signals to efficiently learn the accurate vehicle localization
under all-terrain environments. A series of novel techniques
are developed in RadioLoc to address the design challenges
and practical issues in all-terrain vehicle localization. Field
tests in real-life scenarios demonstrate that RadioLoc achieves
a real-time localization latency with a worst-case accuracy
of 99.6%.
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