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ABSTRACT

In this paper, we show that by capturing the causal rela-
tionship among the computation of routers, one can trans-
form the distributed program composed of routing processes
into a sequential program, which allows the use of various
sequential program analysis theories and tools for diagnos-
ing and repairing routing configuration errors. This insight
sheds light on future research on automatic network configu-
ration diagnosis and repair. To demonstrate its feasibility and
generality, we give the preliminary design of two methods
for routing configuration error diagnosis: (1) data flow analy-
sis using minimal unsatisfiable core and error invariants; and
(2) control flow analysis using selective symbolic execution.
Using real-world topologies and synthetic configurations,
we show that both methods can effectively find errors in
routing configurations while incurring reasonable overhead.

CCS CONCEPTS

« Networks — Network reliability; Routing protocols;

KEYWORDS

Network verification, Network diagnosis

ACM Reference Format:

Rulan Yang, Xing Fang, Lizhao You, Qiao Xiang, Hanyang Shao,
Gao Han, Ziyi Wang, Jiwu Shu, Linghe Kong. 2023. Diagnosing Dis-
tributed Routing Configurations Using Sequential Program Anal-
ysis. In 7th Asia-Pacific Workshop on Networking (APNET 2023),
June 29-30, 2023, Hong Kong, China. ACM, Hong Kong, HK, China,
7 pages. https://doi.org/10.1145/3600061.3600065

Lizhao You and Qiao Xiang are co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APNET 2023, June 29-30, 2023, Hong Kong, China

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 979-8-4007-0782-7/23/06....$15.00
https://doi.org/10.1145/3600061.3600065

1 INTRODUCTION

Network configuration verification tools [2-5, 11-13, 16,
17, 20, 22, 29-31] analyze the configuration of network de-
vices to decide whether they would compute invariant con-
forming (e.g., reachability, blackhole freeness, and loop free-
ness) forwarding rules. Although they are powerful tools
for preventing network configuration errors, they answer a
binary question: whether the configurations are correct or
not. Once they find that the configurations are incorrect, it
is still up to the operators to manually find which parts of
the configurations are erroneous and fix them, which is both
time-consuming and error-prone. For example, given a set of
incorrect configurations, Minesweeper [3] returns one coun-
terexample. However, fixing these configurations requires
finding all possible counterexamples, which is NP-complete.

Existing studies treat the diagnosis and repair of network
configurations as separate issues and propose point solutions
with different limitations. Data provenance-based tools [6, 21,
27, 28, 32] analyze the relationship among events in the net-
work to find the root causes (e.g., link failures) of network be-
haviors (e.g., updates of forwarding rules). However, they are
limited to diagnosing only observed events and require reim-
plementing routing protocols using datalog-based declara-
tive networking languages (e.g., NDLog [21]). CEL [15] ex-
tends Minesweeper’s SMT-based configuration verification
formulation and computes the formula’s minimal correction
set as the configuration errors. However, it cannot interpret
the found errors, which is important for operating real net-
works. Moreover, it cannot diagnose path-based errors (e.g.,
waypoint violation) due to the path encoding explosion is-
sue of the SMT-based formulation. Campion [25] focuses on
finding the differences between two given configurations
of one router, not finding the errors in one set of network
configurations. Configuration repair tools (e.g., [1, 9, 14])
compute patches to erroneous configurations without a di-
agnosis, making it difficult for operators to understand and
reason about the patches. In addition, they cannot handle
complex settings (e.g., BGP route announcements [14]).

In this paper, we advocate that distributed routing configu-
rations can be diagnosed as sequential programs using causal
relationships. As such, the localization and repair of configu-
ration errors are not independent of each other, where the
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localized root cause can provide guidance to repair the config-
urations. Specifically, the routing messages (e.g., BGP route
announcement and OSPF link state announcement) from one
routing process could trigger actions in another routing pro-
cess. This causal relationship can be encoded into a directed
acyclic graph (DAG), where nodes represent invocations of
the computation processes of different routers, instantiated
with a specific event and the internal state at the time, and
edges represent the (event, action) dependency among the
computation processes of different routers.

Given the causal relationship DAG, we make a key insight:
by traversing this causal relationship DAG in topological order,
we can transform the execution traces of a distributed system
(i.e., the set of individual execution history of each router) into
a single execution trace of a sequential program in which each
routing process is a function. This transformation allows us to
effectively diagnose and repair network configuration errors
because how to analyze a sequential erroneous program is a
well-studied problem in the area of program analysis [26].

As a first step to leverage this insight, we design Scalpel,

a companion of simulation-based configuration verification
tools (e.g., [13, 20, 22, 24]) that automatically diagnose rout-
ing configuration errors using two methods:
A data-flow diagnoser using minimal unsatisfiable core
and error invariant (§3). The diagnoser first uses satisfia-
bility modulo theories (SMT) to encode the error trace into a
conjunction formula of the data plane computation and the
desired network behavior (e.g., reachability) that was vio-
lated. It then computes a minimal unsatisfiable core (MUC), a
conjunctive unsatisfiable SMT formula becoming satisfiable
if any of its subsets are removed [19], of the SMT formula. It
corresponds to a minimal sequence of router computations
during the simulation that leads to the data plane error. Then,
it computes the error invariants [10] of this sequence, a set of
predicates that explain how these computations lead to the
error. Together, the responsible part of router configurations
contributing to the minimal computations and the attached
error invariants compose a root cause error explanation.

Although the data-flow approach is efficient in slicing the
error trace, it can only handle observable errors that lead to
erroneous paths. It cannot handle unobservable errors that
lead to the missing required paths. Furthermore, it cannot
diagnose latent observable errors, which (1) have not led to
erroneous paths yet due to the existence of other observable
errors, and (2) will lead to erroneous paths once the latter has
been repaired. Diagnosing and repairing only the observable
errors. As such, we resort to a second diagnosis method:

A control-flow diagnoser using selective symbolic ex-
ecution (§4). We extend the simulation process with sym-
bolic routes with symbolic router decisions to diagnose un-
observable and latent errors. To cope with the complexity
of encoding all possible router decisions, we are motivated
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Routing process on a router N:
best(N) = L
Receive ri from P
ri’ = Import(N <P: ri)
if Prefer(ri’, best(N)):
best(N) = ri’
for each V in Peers(N) do:
ro = DefaultExport (best(N))
ro’ = Export(N->V: ro)
Send ro’ to V

(a) The example network. (c) The transformed sequential program.
Figure 1: Distributed routing as a sequential program.

by the selective symbolic execution [7] to introduce sym-
bolic routes into the simulation selectively. Specifically, we
first compute a requirement-compliant forwarding tree as
a reference. We then purposely introduce symbolic routes,
which are part of the forwarding tree but are not supposed
to be propagated based on the actual configurations, into
forked simulation processes to answer "what if" questions,
e.g., "what if the router does not filter routes from other
neighbors?" or "what if the router chooses route r1 over r2
as the best route?". As such, the k-failure symbolic simu-
lation of Hoyan [29] is a special case of Scalpel’s selective
symbolic simulation. Eventually, the simulation would yield
at least one ghost execution trace with desired outputs (i.e.,
requirement-compliant routes) and the corresponding condi-
tions on router decisions. These conditions are a set of router
decisions that the correct configurations need to satisfy. As
such, the differences between the correct configurations and
the actual configurations are diagnosed as errors.
Experiment results (§5). We implement a prototype of
Scalpel as a plugin of Batfish [13] and evaluate its perfor-
mance on real-world network topologies of different scales
(i.e, O(10) ~ O(100)) with synthetic network configurations.
Results show that Scalpel finishes configuration diagnosis
within seconds or minutes with a high accuracy.

2 DISTRIBUTED ROUTING AS A
SEQUENTIAL PROGRAM

Distributed routing process. We consider the network as
a distributed system, where multiple routing processes run
on. Routing processes on different devices exchange routing
information (e.g., BGP UPDATE message, OSPF link state an-
nouncement) using a specific protocol (e.g., BGP, OSPF), and
routing processes on the same device may exchange rout-
ing information with each other using route redistribution.
We abstract the routing process as an event-driven function
that is controlled by configurations to compute routes. It
receives events such as routing information and local link
up/down, and responds to them in a first-in first-serve way
to (1) update its internal state (e.g., computing its routing
information base and updating its link-state database), and
(2) send routing messages to other neighbors if needed. As

(b) The causal relationship graph.

while (!converged):
foreach N in [D, A, B, S
execute N.RoutingProcess()
converged = ifEventQueueEmpty()
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such, an event is a cause of a router’s action (also referred as
route computation) to update its internal state and send out
derived routing messages, and the action will be the trigger
event of other events. In this way, the data plane computation
can be defined as the execution of a series of events.

Figure 1(a) shows an example, where there are four routers
in the network: S, A, and B belong to the same AS with source
prefix T0 in S; D belongs to the other AS with destination
prefix T1. S, A, and B use iBGP to connect to each other; D
and A (B) use eBGP to connect to each other. Figure 1(a) also
shows the program of a distributed routing process, where a
router N receives a route ri from a neighboring router P.
Causal relationship graph. A causal relationship graph
(CRQ) is a directed acyclic graph (DAG) that indicates the
dependency of distributed routing processes. The above rout-
ing process relationship can be encoded into a DAG, where
nodes represent invocations of the computation processes
of different routers, instantiated with a specific event and
the internal state at the time, and edges represent the (event,
action) dependency among the computation processes of
different routers and the state dependency among those of
the same router. Specifically, it abstracts each router as an
event-driven process and captures the causal relationship of
each process during the simulation of the verification tool,
by intercepting their input (i.e., inbound route control mes-
sages and internal state) and output (i.e., outbound route
control messages and new updated internal state). The cause
events at routers are route updates from neighbors (e.g., BGP
route announcements or link state announcements), and the
actions represent how routers handle these announcements:
discard, accept, or select (and forward them to neighbors).

CRG is highly dependent on the implementation of a sim-
ulator, where different scheduling orders of the routing pro-
cesses may generate different CRGs. However, given a sim-
ulator with a fixed scheduling order, Scalpel can capture a
deterministic CRG. Figure 1(b) shows an example CRG with
scheduling order (D, A, B, S), where the route announcement
A — B happens before the route announcement D — B, and
there is no further route announcement from B since the
announcement A — B has the higher local preference.
Sequential program. Given a CRG, we can transform the
distributed network computation into a linear execution se-
quence by topologically traversing the CRG. A topological
sort is a graph traversal in which each node v is visited only
after all its dependencies are visited. Then we can construct
a sequential program as shown in Figure 1(c) with sched-
uling order (D, A, B, S) that generates the same output as
the distributed routing protocol. In this way, we turn the
diagnosis problem of distributed routing configurations into
the diagnosis problem in a sequential program, while the
latter is well-studied in the area of program analysis.
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16: bestA2.permit /\ bestA2.as_path_len=2/\
bestA2.1p=130 /\ bestA2.np=D /\ (re2)
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Figure 2: The error trace of the CRG in Figure 1. (We
refer to Ip as local preference and np as next hop)
3 DATA-FLOW DIAGNOSER

In this section, we show how to diagnose traceable con-
figuration errors using data-flow analysis. In particular, we
adopt the minimal unsatisfiable core (MUC) and interpola-
tion approach to diagnose the error trace. MUC is a minimal
set of unsatisfiable statements that prove the unsatisfiability
of the trace and the interpolation of it is a set of formulas
that represent the network states that lead to the error. We
reduce the error trace to a minimal set of statements that
contribute to the error and compute the interpolation for
them to provide the minimal and sound error explanation.
3.1 Error Trace Generation

We first generate an error execution trace from CRG. The
linear execution sequence can be encoded as an execution
trace with SMT constraints. Informally, a trace is a tuple
(7, ¢) where x is the execution sequence of the network and
¢ is the state formula that describes the desired output state
of the trace (i.e,, the requirement of the network). The exe-
cution of a trace (7, ¢) is a conjunction of the trace formula
TF(r) =Ti A ... A T, where n is the length of the trace. Let
7[i] be the i-th statement in the execution sequence, and T;
be the corresponding transition formula. A trace is called an
error trace if TF(r) A ¢ is unsatisfiable.

We use the example in Figure 1(a) to show how to gener-
ate an error trace. The requirement is that the traffic from
TO0 to T1 should leave AS1 from router B (i.e., S-B-D). How-
ever, the actual forwarding path is S-A-D, which violates
the requirement. This is because router A sets a higher local
preference (i.e., 130) than that set by router B (i.e., 120) for
routes from router D. Figure 2 shows the corresponding error
trace, including route computation steps in all nodes.

3.2 Configuration Error Localization

We use the classical MACRO algorithm [19] to compute all
MUCs, each of which corresponds to one possible error root
cause. The algorithm shrinks the unsatisfiable core in order

Error Invariant (EI)
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and iteratively blocks up the computed MUC to enumerate
all MUC:s efficiently. The red rectangular in Figure 2 shows
an example MUC, which slices the error trace.

Another issue is how to map the MUC to the execution
sequence. The execution sequence 7[1,...,,n] is translated
into the trace formula TF(r) = Ty A ... A T,,. Let T; consist of
a set of clauses ¢; A ... Acy,. We add a new boolean constraint
pi to track these clauses so that we can map them to the
initial statement 7 [i], i.e, replacing ¢; with p; A (p; = ¢;)
3.3 Configuration Error Explanation

Given a pair of formulas A and B where —(A A B) holds,
an interpolant [8] of A and B is a formula I over the common
symbols of A and B suchthat A = JTand B = -I.
It indicates the inconsistency between the pair of formulas.
Given an indexed sequence ® = [A;], such that A; A ... A
A, = false (e.g., the execution sequence), the interpolants
for @ is a sequence Iy, I, ..., I, which labels each A; with
inconsistent variables that explain the unsatisfiablility of ®.

We generate the error explanation for the error trace by
interpolating MUC. Specifically, we compute interpolants
along the MUC slice based on the hybrid algorithm [23] and

preserve the dependency of specific variables (i.e., configuration-

related variables), so that we can observe which configura-
tion variables contribute to the error.

Then we localize configuration errors from the error ex-
planation. Each interpolant in the interpolation sequence of
MUC is a formula that captures the intermediate state that
produces the error. Since the execution trace is a serial of
route computations, interpolants can explain why an erro-
neous route is generated and the contributing configuration
variables. The right side of Figure 2 shows the error expla-
nation of the violation of the way-pointing requirement for
S (traffic from T0 to T1). First, D generates a target route to
T1 and propagates it to peer A and B (the first red dash line
box); node A then receives the route from D and selects it
as the best route since A has only one route, and propagates
it to peer B and S; third, B receives routes from A and D
respectively and selects the route from A as the best route
because of higher local preference (i.e., bestB2.Ip = 130 and
ri2.lp = 120 as the explanation). Finally, the requirement
(i.e., assertion) is violated, since the requirement specifies
the next hop of B must be D.

4 CONTROL-FLOW DIAGNOSER

We leverage control flow analysis to diagnose unobserv-
able errors. This is because the route computation data flow
of such errors is usually unobservable (e.g., the route propa-
gation will terminate prematurely once the target route is
filtered by the origin redistribution process). We view the
data plane computation as a program that consists of route
propagation and computation and is controlled by network
configurations. Symbols of the program are router decisions
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(a) The propagation of symbolic routes. (b) The execution path.

Figure 3: Symbolic execution of the example network.
such as the delivery of routes and the transformation of
routes. Configuration errors that contribute to the devia-
tions of router decisions will not surprisingly result in in-
correct route computation outputs (i.e., incorrect forwarding
behaviors of routers). So our goal is to find a minimal deci-
sion deviation set by symbolically executing the data plane
computation to localize configuration errors.

We use the same network topology in Figure 1(a) to present
details. Assume there are multiple errors: (1) D has not con-
figured the network command to redistribute the target route
to its BGP process, (2) S filters route to T'1 from both peers
A and B. The requirement is: T0 and B should reach T1.

4.1 Selective Execution Conditions

We efficiently execute the symbolic data plane computa-
tion using selective execution conditions to avoid exploring
huge execution path space. We first introduce how to gener-
ate such conditions using the forwarding tree representation.
Each forwarding tree is a directed graph toward a prefix that
specifies the forwarding paths of all nodes. The reversal of
it indicates the route propagation and selection conditions
that nodes need to comply with. We construct such a tree
based on previous causal relationships to avoid incurring
unnecessary interference. Specifically, we first keep exist-
ing policy-compliant paths in the tree. Second, we complete
paths for remaining source nodes that do not satisfy require-
ments. Figure 3(a) shows the forwarding tree of the network:
node S and node B forward traffic to T1 along with path
S-A-D and path B-D respectively.
Priority condition for route selection. To ensure that
each node i eventually follows the path in the forwarding
tree to propagate traffic, we use prefix, next-hop, and as-path
attributes to identify the target route for node i. The priority
condition is that i always chooses the target route as the best
route (i.e., has the highest priority) for the destination prefix.
Export condition for route delivery. Each node i is ob-
ligated to propagate the route to its in-neighbors so that
its in-neighbors can receive the target route. Additionally,
if node i adjacent to its out-neighbor ne,; and in-neighbor
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Figure 4: Running time on diagnosing observable errors.
ni, uses different protocols, node i needs to redistribute the
target route to the routing processes of nodes i and n;p,.
Import condition for route delivery. The import con-
dition follows the same intuition as the export condition:
ensuring the target route is delivered to the corresponding
node in the forwarding tree. Specifically, node i has to re-
ceive the target route from its out-neighbor rather than filter
it. If a node has no out-neighbor, the condition for it is to
filter all routes from adjacent peers.
Adjacency condition between routers. The adjacency
condition is a pre-condition for route deliveries between
routers. We define the adjacency condition for nodes that
have out-neighbors in the forwarding tree as the node needs
to establish the peer session with its out-neighbor.

4.2 Symbolic Data Plane Computation

We define four types of conditions (i.e., router decisions)
as symbols when executing them. These conditions are the
abstraction of router decisions that are sufficient to result
in one of the error-free data planes towards the prefix. To
improve efficiency, we do not keep all execution paths trig-
gered by the above conditions. We tend to always guard the
newest execution path that satisfies all conditions in this
way: once a condition is triggered and the actual router de-
cision deviates from it, we enforce the condition satisfiable
and record it as the deviation condition of this path, and then
continue to execute the computation. Figure 3(b) shows the
correct execution path that results in the same data plane
as the forwarding tree. We only symbolically execute two
symbols during the computation: export and import deci-
sions on nodes D and B, respectively (the purple and pink
branches). We forcibly assign them the true values so that
the divergences are the deviations of router decisions.

4.3 Configuration Error Localization

After symbolic data plane computation converges, each
route carries these symbols to represent its existing con-
ditions (concrete conditions), as shown in Figure 3(a). The
symbolic conditions are the minimal deviation set of router
decisions that indicates the causes of the error. We map their
keywords to defined types and localize configuration errors.
5 PERFORMANCE EVALUATION

We implement a prototype of Scalpel as a plugin of Bat-
fish [13] in 6K LoC in Java and Python. For observable errors,
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Network #Reqs | #MUC+EI | #Clause | Len
Arnes 2/4 2/10 287/450 | 11/23
Bics 1/4 4/1 301/666 11/4
Canerie 1 1 236 21
Renater2008 1/4 2/4 555/522 12/4
Columbus 1/4 2/4 602/368 62/7
Colt 1 1 1052 18
Cogentco 1 10 1217 7
UsCarrier 1 3 731 19

Table 1: Diagnosis results on observable errors.
we use Z3 as the SMT solver to encode the error trace and
compute MUCs to localize errors. For unobservable errors,
we integrate the selective symbolic execution into the data
plane simulation to localize errors. All the experiments are
performed on a Linux server with two Intel Xeon Silver
4210R 2.40GHz CPUs and 128GB of DDR4 DRAM.

5.1 Methodology

To demonstrate the soundness and correctness of the di-
agnosis results Scalpel provided, we run experiments on real
topologies from Topology Zoo [18].
Datasets. We use 10 synthesized networks ranging from
0O(10) to O(100) nodes and as datasets. We synthesize BGP
configurations ranging from 3,000 to around 20,000 lines
written in Cisco’s IOS language using NetComplete [9].
Requirements. Each requirement is a packet forwarding
path towards a pair of (source, destination) nodes and the
reachability of all nodes to one destination node for observ-
able and unobservable errors, respectively.
Injecting configuration errors. In order to demonstrate
that Scalpel can find and correct configuration errors, we
manually introduce errors to node configurations and record
the configuration lines we changed as the errors in configura-
tions. We communicate with network operators in a famous
network company and conclude three common errors in the
network with BGP protocol: wrong local preference value,
route denial when propagation, and route denial from ori-
gin. To inject configuration errors, we randomly add, delete
or modify some lines in node configurations (e.g., set local
preference to another value, add route maps to deny im-
ported routes, or just delete configuration segments in origin
configurations). Furthermore, we modify the original path
requirement: we select another packet forwarding path from
source to destination as the requirement, and generate new
configurations as the erroneous configuration corresponding
to previous requirements.

5.2 Experiment Results

Overhead of capturing casual relationships. Our Scalpel
prototype modifies the source code of Batfish [13] to capture
the causal relationship during simulation. The causal rela-
tionship is recorded as logs and stored in files. Then we use
the logs to construct CRG and encode the error trace.
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Figure 5: Running time on diagnosing unobservable errors.
We measure the time of recording causal relationships and
generating CRGs. Figure 4(a) shows that 80% of networks’
CRGs can be generated in 2s. We find that the overhead
increases linearly with the increasing size of the topology as
larger size topology always has a longer iteration process. To
summarize, capturing causal relationships takes little time
in Scalpel’s whole process.
Efficiency. We capture Scalpel’s diagnosis results on error
traces on different topologies with different numbers of re-
quirements in Table 1. We substitute clauses with shorter
MUCG:s, shrinking the scope for repair. There always exists
more than one MUC and EI pair in a single error trace be-
cause there could be more than one explanation for the error.
Figure 4(b) gives the time of computing the single and all
MUC/EI(s). Scalpel computes single MUS < 10s in 90% cases.
We compute up to ten MUCs for each test, and all tests are
finished in < 50s. Computing EI is more time-consuming. It
takes < 30s (< 50s) to compute a single (all) EI in 80% (60%)
of cases. In the worst case, it takes 340s to compute all Es.
We plot the execution time for two kinds of unobservable
errors in Figure 5. Diagnosing origin-deny errors in each
network finishes in less than 50ms. For most networks con-
taining route propagation errors, SSE takes less than 50ms
for most cases and up to 230ms. Diagnosing origin-deny
errors tends to take less time than other errors. We guess
it is because SSE could find the "origin" error at the very
beginning of the simulation.
Accuracy. We then leverage the accuracy of the diagnosis re-
sults by repairing the network with the diagnosis results that
Scalpel provides. For observable errors, Scalpel outputs pairs
of MUC and EI, and we have checked that Scalpel locates all
local preference errors we introduce to the configurations.
Table 2 gives the diagnosis results on unobservable errors.
We form the result in bituple corresponding to (prop-deny
error, origin-deny error). RE, FP and FN represent the re-
ported errors, false positive errors, and false negative errors,
respectively. Scalpel can diagnose different types of errors,
especially for the origin-deny type where no miss detection
occurs. For the false positive errors in the diagnosis results,
although it seems inconsistent with the injected errors, it
may also be a valid but different diagnosis method for the
same erroneous data plane. In fact, this kind of result may

Table 2: Diagnosis results on unobservable errors.
not be counted as an error, if the network can be repaired

using the diagnosis results.

6 DISCUSSIONS

Supporting link-state routing protocol. So far, we have
discussed the configuration error diagnosis using the BGP
protocol (i.e., path-vector protocol). Another popular rout-
ing protocol is the link-state protocol (e.g., OSPF and IS-IS),
which has been implemented in several simulation-based ver-
ifiers. Scalpel can also diagnose these protocols as sequential
programs if the CRG can be captured.

Supporting networks running multiple protocols. Mul-
tiple routing protocols often co-exist in the same network.
For example, the OSPF protocol serves as the underlay to
connect peering IP addresses, and the BGP protocol serves as
the overlay to exchange routing information. Our approach
can be extended to support such settings. The data-flow
diagnoser can analyze the error trace generated by multi-
ple routing protocols. The control-flow diagnoser can be
extended to include more symbolic conditions.

How to choose between data-flow diagnosis and control-
flow diagnosis? Similar to the case in program analysis
where data-flow and control-flow analysis each have their
pros and cons, so are data-flow and control-flow diagnosis.
In particular, control-flow diagnosis can diagnose unobserv-
able errors. Yet its scalability in large networks with complex
configurations is still an open question we are investigating.
Repair of erroneous configurations. This workshop pa-
per focuses on diagnosing erroneous configurations. In our
ongoing study on configuration repair, we continue leverag-
ing the key insight of transforming distributed routing com-
puting into a sequential program and apply program repair
techniques (e.g., mutation-based repair and constraint-based
repair) or domain-specific repair techniques (e.g., incremen-
tal synthesis) to fix the diagnosed root cause.
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