Toward Stable Interdomain Network-Application Integration

Qiao Xiang Franck Le
Xiamen IBM
University Watson Center
ABSTRACT

As an exemplary paradigm of network-application integration
(NAI), flexible interdomain routing control, such as SDX and SDI,
provides programmable interfaces for applications to specify end-
to-end interdomain routes that span across multiple autonomous
systems (ASes). Not only do they provide opportunities for appli-
cations to optimize their route control, they also allow network
service providers to increase their business offerings. However, in
an interdomain network, providing these frameworks to applica-
tions while running BGP, the de facto interdomain routing protocol,
may introduce new stability issues. In this paper, we identify two
such stability issues that can happen even if an application only
wants to enforce very simple route control rules. To cope with
these issues and ensure stable interdomain NAI, we develop a series
of stability mechanisms to prevent them from happening, while
maintaining the use-announcement consistency among ASes. We
use real Internet topology and traffic traces to demonstrate the
effectiveness of the proposed mechanisms.

CCS CONCEPTS

« Networks — Programming interfaces; Routing protocols;
Programmable networks;

KEYWORDS

Network-Application Integration, Interdomain Routing, Programmable

Networks

ACM Reference Format:

Qiao Xiang, Franck Le, Jingxuan Zhang, and Y. Richard Yang. 2021. Toward
Stable Interdomain Network-Application Integration. In ACM SIGCOMM
2021 Workshop on Network-Application Integration (NAI "21), August 27, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3472727.3472804

1 INTRODUCTION

Flexible interdomain route control is an emerging and representa-
tive paradigm of NAL It draws interests from both academia and
industry [1, 2, 10, 11, 13-15, 22—24] because it can provide sub-
stantial benefits to both applications and networks. One one hand,
it provides programmable interfaces for applications to specify
end-to-end routes spanning multiple ASes that satisfy applications’
performance requirements (e.g., bandwidth and latency). On the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NAI °21, August 27, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8633-3/21/08...$15.00
https://doi.org/10.1145/3472727.3472804

Jingxuan Zhang Y. Richard Yang
Tongji Yale
University University

other hand, it provides network service provides new business
opportunities.

Programming model. Figure 1 gives an overview of the pro-
grammable model of representative flexible interdomain route con-
trol frameworks (e.g., SDX [10, 11] and SDI [22, 23]). Essentially,
each AS in the framework provides a virtual switch abstraction
with a pipeline of match-action tables. Given a request from the
application, the AS returns the virtual switch abstraction with the
currently selected interdomain route to the destination specified by
the application, as well as a number of available alternate routes to
the destination and its price. In each match-action table, the match
fields allow applications to specify policies matching on packet
header fields (e.g., TCP/IP 5-tuple) and metadata (e.g., counter) [8].
Compared with the standard SDN programming model, the match-
action table in flexible interdomain route control frameworks can
be extended to match on network state, including state of available
routes and next hops.

; Available Forward to zero or more
fields and Routes logical ports
metadata

Figure 1: Programming model of flexible interdomain route control frame-
works: a virtual switch abstraction with a pipeline of match-action tables.

Workflow. The basic workflow for applications to specify end-
to-end interdomain route can be illustrated using the example in
Figure 2(a). Assume that an application wants to enforce a flexible
route policy for traffic destined to IP prefix p at AS F, and that AS
B provides the virtual switch abstraction for the application.

First, the application sends a request for a virtual switch ab-
straction to AS B, expressing that it is interested in the routing
information for destination prefix p. Upon receiving the request,
B verifies the credentials of the application, and then builds the
virtual switch abstraction for p, depicted in Figure 2(b). The virtual
switch abstraction indicates that B has two routes B— D — F and
B — E — F, to p, with the former currently being the selected one.

From the received virtual switch abstraction, the application
learns of alternate paths, and specifies the flexible routing policy
in Figure 2(c). The policy forwards all HTTP traffic destined to p
along a primary route B — D — F, fast reroutes such traffic to route
B — E — F when B — D — F becomes unavailable, and forwards all
non-HTTP traffic destined to p along route B— E — F.

https://doi.org/10.1145/3472727.3472804
https://doi.org/10.1145/3472727.3472804
https://doi.org/10.1145/3472727.3472804

NAI ’21, August 27, 2021, Virtual Event, USA

.m selected route -
mer]]

(b) The virtual switch abstraction returned
AS B.

Match Action

dstIP = p, dstPort = 80,
(B, D, F) = available
dstIP = p, dstPort = 80,
(B, D, F) = unavailable
dstIP = p, dstPort !=80 | fwd(B, E, F)

fwd(B, D, F)

ﬁ e

(a) Network topology: The application
wants to enforce flexible routing policy for
traffic destined to p at AS B.

fwd (B, E, F)

(c) The flexible routing policy specified by
the application.

Figure 2: An illustrating example to demonstrate the basic workflow of flexi-
ble interdomain route control framework.

When AS B receives the policy from the application, it compiles
the policy into device configurations, notifies the application of the
result, and sends route updates to its neighbors. In the event that
the route B — D — F becomes no longer available, B would notify
the application about the modified virtual switch abstraction, and
swiftly switch the route for HTTP traffic destined to p to route
B — E — F, as specified in the flexible routing policy.

Issues. Despite the substantial benefits of flexible interdomain
route control, integrating such frameworks with the existing Inter-
net routing system, i.e., the de facto interdomain routing protocol
BGP, may introduce various issues. Recent work [2, 6] has revealed
that the integration of SDX [11] and BGP can result in data plane
issues such as blackhole and persistent forwarding loops. More
importantly, new stability issues may arise in the control plane of
interdomain networking, causing the whole interdomain network
end up in permanent oscillations. These issues have not been fully
investiagted and are not yet completely understood.
Contributions of this paper. In this paper, we conduct a study
on the stability issues in interdomain networks that simultaneously
provide flexible interdomain route control to applications and run
BGP among ASes. Specifically, we identify two stability issues that
can happen even if an application only wants to enforce very sim-
ple route control policies through the programmable interfaces
provided by ASes. To cope with these issues, we develop a series
of stability mechanisms to prevent such issues from happening,
providing stability guarantees for interdomain NAI using flexible
interdomain route control. To demonstrate the feasibility and ben-
efits of the proposed mechanisms, we conduct experiments using
real Internet topology and traffic traces.

This work does not raise any ethical issues.

2 POLICY SELF-INDUCED INSTABILITY

In Section 1, we provide a simple overview on flexible interdomain
route control. Although implementing such control frameworks
in an interdomain routing network running BGP may appear sim-
ple, it can result in instabilities. In this and the next sections, we
illustrate two stability issues identify the two root causes behind
them, and present mechanisms to address them. For simplicity,
in the remaining of the paper, we refer ASes that provide flexible
interdomain route control frameworks to applications as FIRC ASes.

Xiang et al.

We also assume that all ASes (FIRC ASes or not) support and can
communicate only through BGP (without any new extension).

FIRC
AS
Match Action

dstlP = p, dstPort = 80, | fwd(A, C)
dstlP = p, dstPort!= 80 | fwd(A, B,)

Application

Figure 3: An example of policy self-induced instability.

FIRC
AS
Match Action

dstlP = p, dstPort = 80, |fwd(B, A, C)
dstlP = p, dstPort!=80 | fwd(B, C)

Prefix: p

2.1 Illustration

Interactions between FIRC ASes can result in policy self-induced
instabilities. To illustrate them, we consider the simple topology
in Figure 3, consisting of one application hosted at AS C, and two
FIRC ASes (A, B). The application at AS C wants incoming HTTP
traffic to enter C via the link A-C, and all other traffic to enter C via
the link B-C. To this end, it specifies a flexible routing policy at AS
A to forward HTTP traffic along A-C, and other traffic along A-B-C,
and another flexible routing policy at AS B to forward non-HTTP
traffic along B-C, and HTTP traffic along B-A-C.

At first glance, these flexible policies seem to satisfy the objec-
tives of AS C. However, in reality, they will result in persistent route
oscillations, as illustrated by the following sequence of events:

e Step 1. We assume the application has requested both A and B
to implement the flexible routing policies depicted in Figure 3.

o Step 2. Because B is forwarding its HTTP traffic to A, B must
withdraw its route B-C from A. Otherwise, A may select B as its
next-hop for some of its traffic including HTTP traffic, causing
a forwarding loop between A and B. As such, B sends a BGP
UPDATE WITHDRAW withdrawing the B-C route from A. Sim-
ilarly, A sends a BGP UPDATE WITHDRAW withdrawing A-C
from B.

e Step 3. Since B has withdrawn the B-C route from A in Step 2,
the only available route at A to C is A-C. A selects that route and
advertises it to B. Similarly, B selects B-C and advertises it to A.

e Step 4. B receiving the route A-C, installs flexible-match rules to
forward HTTP traffic destined to C to A. A receiving the route
B-C, installs flexible-match rules to forward non HTTP traffic
destined to C to B.

e Step 5. B and A perform the same actions as those described in
Step 2, resulting in a persistent route oscillation.

2.2 Root Cause

While the previous section illustrated that simple network topolo-
gies and flexible routing policies could result in persistent route
oscillations, this section identifies the root cause behind the policy
self-induced instability.

Fundamentally, the root cause of such instability is the granu-
larity mismatch between the flexible-match FIRC policy and the
coarse-grained routing information exchange using BGP. This mis-
match increases the possibility of forming a dispute wheel [9].

Toward Stable Interdomain NAI

Specifically, in the example above, If BGP was extended to sup-
port flexible-match updates, there would exist no dispute wheel for
HTTP traffic destined to C or non-HTTP traffic destined to C. How-
ever, because BGP cannot differentiate traffic based on destination
port, B must withdraw the complete route B-C from A to prevent
A from sending any HT TP traffic to B, and so does A. In this way, a
dispute wheel is created. In other words, the instability in Figure 3
is caused by use-announcement granularity mismatch.

2.3 Solution

Strawman approaches: A strawman to avoid the policy self-induced
instability is to let the application play the role of a centralized
controller to ensure the correctness of flexible routing policies at
different FIRC ASes, and break the use-announcement semantics
of BGP. For example, in Figure 3, using this strawman approach,
FIRC AS A forces the corresponding BGP speaker to not withdraw
route AC from AS B, and vice versa. In this way, A is given the
illusion that B is using BC, B is given the illusion that A is AC, while
each of them is using fine-grained policy to forward HTTP traffic
and non-HTTP traffic along different routes. Although this design
seems to work, it requires all FIRC ASes to have a strong faith
that the application can ensure the correctness of flexible routing
policies. More importantly, this design violates use-announcement
consistency, which can lead to black holes and forwarding loops.

One may think of another strawman approach, which is called
the single-route guideline. This guideline states that: when the ap-
plication specifies a set of routes R toward the same destination in
the flexible routing policies, if the application ensures that given
any AS X occurs in more than one route in R, the sub-route from X
to the destination in these routes must be the same, then the flexi-
ble routing policies will not lead to policy self-induced instability.
Consider the example in Figure 3: if the application only selects AC
and BC as the routes in its policies at AS A and B, respectively, no
policy self-induced instability will happen.

However, this guideline is too restrictive and limits the flexibility
of the application to assign routes on a fine-grained granularity,
e.g., in Figure 3, the set of routes ABC, AC and BC violate the single-
route guideline, but in fact, using them simultaneously in the flexible
routing policies will not cause policy self-induced instability.
Policy self-conflicting graph: To eliminate policy self-induced
instability while still ensuring the flexibility of applications to use
different routes when specifying flexible routing policies, we de-
velop a novel data structure, policy self-conflicting graph, which
enables a less restrictive guideline for applications. Specifically,
such a graph is constructed as follows. Assume the application
specifies a set of routes R toward the same destination in the fine-
grained policies. For each AS i shown in R, a node v; is created.
For any link i — j shown in R, a directed link v; — v; is created.
Using such a graph, we develop the following guideline to eliminate
policy self-induced instability.

PROPOSITION 1. Assume ASes exchange routing information
using standard BGP, and an application uses a set of routes R =
{r1,...,ri} in flexible routing policies to forward traffic toward the
same destination. If there is no loop in the corresponding policy self-
conflicting graph, such policies will not cause any policy self-induced
instability.

NAI ’21, August 27, 2021, Virtual Event, USA

ProoFr. (Sketch) In BGP, if AS A uses B as next-hop toward a
given destination D, A will not announce a route to B. Given any
route r € R: {N; — N —...— D}, there exists a path vn, — vn, —

. — D in the policy self-conflicting graph. When self-induced
instability happens in the network, a loop can be found in the self-
conflicting graph by following the propagation of BGP withdraw
messages. Hence the contraposition of this claim, i.e., Proposition 1,
is true. m]

Revisiting the example in Figure 3, we can create a policy self-
conflicting graph for the set of routes {A-C,A-B-C,B-C,B -
A — C}, and find it has a loop A — B — A. As such, by applying
Proposition 1, the application will know that using specify these
routes simultaneously in the policies sent to FIRC ASes A and B
will lead to policy self-induced instability; hence it should not do
that.

We develop a generic route enumeration framework to com-
pute the maximum set of routes that will not cause policy self-
induced instability. We omit the details of this framework due to
space limitation. In the example in Figure 3, by applying the route
enumeration framework, the maximal sets of routes the applica-
tion can use to specify fine-grained policies without causing any
policy self-induced instability are {A — C,A—- B - C,B — C} and
{A-C,B-A-C,B-C}

3 POLICY OVERWRITING INSTABILITY

Using the policy self-conflicting graph, an application can elim-
inate the policy self-induced instability when specifying flexible
interdomain route control policies. However, implementing flexible-
routing policy at FIRC ASes can still result in other instability issues.

3.1 Illustration

Consider Figure 4(a) as an example. In this network, AS A, B and C

are academic BGP ISPs (e.g., Internet2 [12]). B and C are also FIRC

ASes. AS D is a university network and hosts an application. D is

the BGP customer of B and C. A and C are BGP peers to each other,

and BGP providers of B. There also exists a BGP customer route

A — E — F — D. The route selection preference of A, B, and C are

shown in the figure. At the beginning, link A— B is not available. As

such, without FIRC flexible routing policy, the network converges
to a state where A, B, and C are forwarding traffic to D using

A—E—-F-D,B-D,andC — D, respectively.

e Step 1. Assume when link A — B becomes available and route
B — D is being sent to A, the application at D specifies a policy
to let B always prefer C as next hop, and let C always prefer A
as next hop, as shown in Figure 4(b). Before A receives the B— D
and B and C receive the FIRC policy from D, the routes used by
A,B,and Carestil A—E—F—-D,B—D,and C — D.

o Step 2. After A receives B-D from B, and B and C receive the FIRC
policy sent from D, the routes used by A, B and C are A— B - D,
B—-C—-D,and C - A—E - F — D, respectively.

e Step 3. A, B and C announce their routes counterclockwise, and
the updated routes used by A,Band Care A-B-C—-D,B-C—
A-E-F-D'andC-A-B-D.

1B announces this route A because this route is specified by the application at D, hence
is treated as a customer route

NAI ’21, August 27, 2021, Virtual Event, USA

Xiang et al.

8-D ‘ Match

‘ Action ‘ =

dstlP = p, C=available | fwd(C) |

B-C-D
FLRSC A-B-D (JA¥
A-EF-D

FIRC
AS

Match ‘ Action ‘

| dstiP=p, A= available | fwd(a) |

(a) Link A — B is not available. When the application at AS (b) When link A — B becomes available, and B — D is being (c) The corresponding policy self-conflicting graph is loop-

D does not specify any policy, the network converges.

sent to A, the application hosted at AS D specifies a policy to free, but network may enter persistent oscillation.

let B always prefer C as next hop, and let C always prefer A

as next hop.

Figure 4: An example of policy overwriting stability issue.

e Step 4. A, B and C announce their routes counterclockwise, and
the updated routes received by A,Band Care A—B-C—-A—
E-F-D,B—-C—-A-B-D,andC—-A-B-C-D.A BandC
all detect a loop in AS-PATH. Each of these routes is disregarded.
The routes used by A, B,and Care A—E—-F - D, B— D, and
C-D.

Step 5. A, B and C announce their routes counterclockwise, and
the updated routes received by A, Band C are A—-B—D,B—-C—-D,
and C — A—E — F — D, same as STEP 2, resulting in a persistent
route oscillation.

3.2 Root Cause

We illustrated above that even if the policy self-conflicting graph is
loop-free and hence the network is free from policy self-induced
instability, simple network topologies and flexible routing policies
could still result in route oscillations. Next, we identify the root
cause behind this instability.

The root cause of this instability is: allowing the application to
overwrite the standard BGP route selection policy at FIRC ASes
may create dispute wheels; the policy self-conflicting graph does
not capture the dynamics of BGP route selection and export; hence
fails to capture these dispute wheels.

Specifically, the policy self-conflicting graph is a special varia-
tion of the p-graph [18]. A p-graph captures both the order of route
rank functions within each AS and the route availability depen-
dence between all available routes in ASes. As such, it has a global
view to identify the existence of dispute wheel. In contrast, the
self-conflicting graph only captures the route availability depen-
dence between all currently available routes at a small number of
ASes (i.e., FIRC ASes). With only a partial view, it cannot identify
the dispute wheels caused by application overwriting the route
selection function at FIRC ASes. As such, we call this instability the
policy overwriting instability.

3.3 Solution

Strawman approach: A strawman approach to solving the policy
overwriting instability is limited-exposure. Specifically, in this ap-
proach, a FIRC AS treats the application as a BGP provider, exposes

BGP customer routes to the application, and only exposes BGP
peer/customer routes when no BGP customer route is available.
With this strawman, we have the following proposition:

PROPOSITION 2. When the underlying BGP routing protocol fol-
lows the standard route selection policy (i.e., prefer customer routes
over peer/provider routes first, and then prefer shortest AS path), the
limited-exposure approach ensures that an interdomain network with
FIRC ASes is free from policy overwriting instability.

The proof of this proposition is straightforward and hence omit-

ted. In Figure 4, we see that by using the limited exposure approach,
the application can only use route B — D and C — D at FIRC ASes
B and C, respectively, ensuring no policy overwriting instability
will happen. But as shown in this example, this approach provides
very limited flexibility for applications to pick different routes for
different traffic.
Full RIB exposure with self-stabilizing filter at FIRC AS: To
eliminate policy overwriting instability while still providing ap-
plications enough flexibility to select different routes in flexible
routing policy, we develop a novel design, which includes two key
design points. First, this design supports FIRC ASes treating the
application as BGP customer and expose all available routes to the
application. Second, a self-stabilizing filter based on SS-BGP [19] is
deployed at each FIRC AS X. Specifically, this filter intercepts every
BGP route update message at FIRC AS X and compare the new
route with the current route. Given a destination, if a new route r
learned from a neighbor AS Y has a higher rank than the current
route, but the AS-PATH of r contains X, the filter disregards r and
blocks all future routes to this destination learned from AS Y for
a short period, and notifies the application about this information.
Consider the example in Figure 4. Using this design, the FIRC ASes
B and C can expose all available routes to the application hosted
at D. Even if D specifies the same policies shown in the figure, the
self-stabilizing filters deployed at B and C ensure that the network
converges to a state where B — D and C — D are used to forward
traffic to D.

We prove the following proposition about the full RIB exposure
with self-stabilizing filter design.

Toward Stable Interdomain NAI

PROPOSITION 3. Assume the underlying BGP routing protocol in
the signaling plane layer follows the typical route selection policy (i.e.,
prefer customer routes over peer/provider routes first, and then prefer
shortest AS path). The full RIB exposure with self-stabilizing filter
design ensures that an interdomain network with FIRC ASes is free
from policy overwriting instability.

Proor. (Sketch) We show that allowing applications to select
route from all available routes at each FIRC AS, the route selection
functions at all ASes still maintain isotonicity” With this property,
the correctness of proposition can be proved by applying Theorem
31in [19]. O

Although this design ensures that an interdomain network with
FIRC ASes is free of policy overwrite instability, one concern is that
with this design, the routes selected by application may not be used
by FIRC ASes in the stable state. And this was also illustrated in
the example above. To address this, we give the following guideline
for applications to select routes that will be used by FIRC ASes in
the stable state.

PROPOSITION 4. Assume the BGP policies of each AS follows the
typical route selection policy and converges. Given a destination, if the
specified routes of an application to reach destination AS A at different
FIRC ASes only violates the local preference (i.e., prefer customer over
peer/provider) of at most one FIRC AS B, FIRC is free from policy
overwriting instability, and the application-specified local preference
always provides a route in the stable state.

ProoF. (Sketch) In the scenario described above, the only way
the self-stabilizing filter is triggered is because B receives a route
that contain A, and sends it to A. However, A is using B as next
hop. So the route B receives will have contain A — B. B will detect
the loop, disregard it, and not send to A. O

Revisit the example in Figure 4. Assume D only specifies one
policy at FIRC B to choose C as next hop. The network will converge
at a state where A, B,and Cuse A-B—-C—-D,B—-C-D,C-Dto
forward traffic to D.

4 EVALUATION

We conduct trace-driven experiments to demonstrate the feasibility
and benefits of the proposed stability mechanisms for guaranteeing
stable interdomain network-application integration, while provid-
ing applications sufficient flexibilities in conducting interdomain
route control.

Real AS-level Internet topology. We use the global AS-level In-
ternet topology annotated with the business relationships between
neighboring ASes from CAIDA from 2016-01-01 [3] to evaluate the
performance of FIRC. The topology includes 63361 ASes and 320978
AS-level connections.

Real Internet-scale traffic traces. We use the traffic traces col-
lected in the CAIDA Anonymized Internet Traces 2016 Dataset [4]
to evaluate FIRC with actual Internet traffic. The traffic traces are
captured from a 10GE Internet backbone link between Tier 1 ASes
in Chicago and Seattle.

2Isotonicity means that given two routes r; and ry, if AS A prefers ry over rs, a

neighbor AS B does not have the opposite preference after its local processing of the
two routes [19]

NAI ’21, August 27, 2021, Virtual Event, USA

1.0 S
PR
0.81 P
. 0.6 /,/".
a s
U SN
0.4 yacs
s —— Request 1 FIRC AS
0.24 / Request 2 FIRC ASes
N — - Request 3 FIRC ASes
0.0 / """ Request 4 FIRC ASes
0.00 0.05 0.10 0.15 020 025

Number of affected ASes / Number of all ASes

Figure 5: CDF of controlled FIRC ASes.

Scenario: inbound traffic engineering. In our experiments, we
consider the scenario where an application located as a multi-homed
stub AS wants to balance the incoming traffic along different in-
bound links of the stub AS. We assume FIRC ASes are deployed
at Tier 1 ASes. The application collects traffic statistics of the stub
AS’ inbound links and from FIRC ASes, uses such information to
compute the load balancing decisions and assign available routes
to different flows, and sends the flexible routing actions to corre-
sponding FIRC ASes. In each experiment run, we randomly select
a multi-homed stub AS as the one hosting the application, and
let it specify flexible routing policies for a destination IP prefix to
1~4 FIRC ASes while following the stability guidelines proposed
in Sections 2 and 3. We run experiments for 1k multi-homed stub
ASes. For each (stub AS, number of FIRC ASes) combination, we
run experiments 20 times, each of which randomly selects FIRC
ASes to specify flexible routing policies.

Results. Figure 5 presents the CDF of the percentage of ASes with a
change of selected BGP route. The key observation is: by following
the proposed guidelines when specifying flexible interdomian route
policies, the application can not only realize its inbound traffic
load balancing goal, but also make the global Internet converge
efficiently, causing a small number of AS rerouting. Specifically,
if only requesting fine-grained routing control on a single FIRC
AS, for 90% of policies to a destination, less than 10% of ASes are
affected. Even when an application specifies flexible routing policies
at 4 FIRC ASes, only less than 15% of ASes are affected.

5 DISCUSSION

Use policy self-conflicting graph in practice. This paper de-
signs the policy self-conflicting graph to eliminate policy self-
induced instability. It is a powerful theoretical tool, but it requires
collecting the selection and export policies of ASes to a centralized
server to construct this graph and check for loop on it. This is
problematic because selection and export policies are considered
private. One future work we plan to investigate is to develop a
privacy-preserving loop detection algorithm using secure multi-
party computation [7]. In this way, ASes can collaboratively check
whether the policy self-conflicting graph has a loop without expos-
ing their selection or export policies.

NAI ’21, August 27, 2021, Virtual Event, USA

Impact of interdomain NAI on interdomain routing proto-
col. Previous sections show that the co-existence of flexible inter-
domain NAI and the de facto interdomain routing protocol (i.e.,
BGP) may lead to severe stability issues. Other than restricting the
flexibility of interdomain NAI (i.e., use policy self-conflicting graph
and full RIB exposure with self-stabilizing filter), another direction
to cope with such stability issues is to design a new interdomain
routing protocol. Our previous work [21] SFP is an example of
such interdomain routing protocol. In a nutshell, SFP extends BGP
to allow neighboring ASes to exchange fine-grained interdomain
routing information (e.g., routes for different flows). By maintain-
ing the consistency between fine-grained route announcement and
fine-grained flexible interodomain routing, SFP can also eliminate
the policy self-induced instability. However, it does not eliminate
the policy overwriting instability. We leave this as another problem
to investigate in the future.

6 RELATED WORK

Several systems have been proposed to provide such flexible interdo-
main routing services (e.g., [1, 2, 5, 10, 11, 13-16, 21-24]). They can
be categorized into two classes. The basic idea of this category is to
make participating ASes express their fine-grained routing policies
to the infrastructure of a trusted third-party that composes and
enforces their fine-grained interdomain policies [2, 6, 10, 11, 13, 14].
An important representative system of this category is SDX [11]
and its variants [2, 6, 10]. The second category is tunnel-based
overlay [15, 20, 24, 25]. MIRO [24], ARROW [15] and RCS [20] are
the most recent systems in this category. The basic idea is to let
a stub AS negotiate with a remote AS to select routes different
from the BGP route, and then build a tunnel between stub and re-
mote ASes to utilize the negotiated routes. In addition, Google and
Facebook [17, 26] develop flexible peering systems to take route se-
lection back to edge by overriding the BGP. But they do not provide
services for clients. Despite the benefits of these systems, however,
none of them investigated the potential stability issues when inte-
grating such flexible interdomain route control with BGP, the de
facto interdomain routing protocol. To the best of our knowledge,
this paper is the first to fill this gap by identifying two new stability
issues and proposing corresponding stability mechanisms.

7 CONCLUSION

We identify two stability issues in an interdomain network running
FIRC and BGP simultaneously, analyze their root causes, propose a
series of stability mechanisms, and validate the mechanisms using
trace-driven experiments. These results shed lights toward stable
interdomain NAIL As future work, we plan to investigate (1) how
applications can enforce the proposed mechanisms when specifying
FIRC policies while allowing each AS to keep its routing policies
private, and (2) how to design fine-grained interdomain routing
protocols that avoids stability issues..

ACKNOWLEDGMENT

The authors thank the NAI reviewers and our shepherd Chunshan
Xiong for their extensive and valuable feedback. The authors thank
Haitao Yu, Danny Lachos, Daniel Ernst and Yan Zhu for their help

Xiang et al.

during the preparation of this paper. Qiao Xiang is the correspond-
ing author. This work is funded in part by the Facebook Research
Award, the Google Research Award and the U.S. Army Research
Laboratory and the UK. Ministry of Defence under Agreement
Number W911NF-16-3-0001.

Qiao Xiang dedicates this paper to Xi Chen, a close friend from
high school who recently passed away.

REFERENCES

[1] Gilad Asharov, Daniel Demmler, Michael Schapira, Thomas Schneider, Gil Segev,
Scott Shenker, and Michael Zohner. 2017. Privacy-preserving interdomain routing
at Internet scale. Proceedings on Privacy Enhancing Technologies 2017, 3 (2017),
147-167.

Ridiger Birkner, Arpit Gupta, Nick Feamster, and Laurent Vanbever. 2017. SDX-

based flexibility or Internet correctness? Pick two!. In Proceedings of the Sympo-

sium on SDN Research. ACM, 1-7.

[3] CAIDA. 2016. AS relationships dataset.

as-relationships/

CAIDA. 2016. The CAIDA anonymized Internet traces 2016 dataset. http:

//www.caida.org/data/passive/passive_2016_dataset.xml

Yichao Cheng, Ning Luo, Jingxuan Zhang, Timos Antonopoulos, Ruzica Piscac,

and Qiao Xiang. 2021. Looking for the maximum independent set: a new per-

spective on the stable path problem. In IEEE INFOCOM 2021-IEEE Conference on

Computer Communications. IEEE.

[6] Arnaud Dethise, Marco Chiesa, and Marco Canini. 2018. Prelude: ensuring inter-
domain loop-freedom in SDN-enabled networks. arXiv preprint arXiv:1806.09566
(2018).

[7] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2017. A pragmatic intro-
duction to secure multi-party computation. Foundations and Trends in Privacy
and Security 2, 2-3 (2017).

[8] Open Networking Foundation. 2013. OpenFlow Switch Specification 1.4.0.

Open Networking Foundation (on-line). https://www.opennetworking.

org/images/stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.4.0.pdf

Timothy G Griffin, F Bruce Shepherd, and Gordon Wilfong. 2002. The stable

paths problem and interdomain routing. IEEE/ACM Transactions on Networking

(ToN) 10, 2 (2002), 232-243.

Arpit Gupta, Robert MacDavid, Ridiger Birkner, Marco Canini, Nick Feamster,

Jennifer Rexford, and Laurent Vanbever. 2016. An industrial-scale software de-

fined Internet exchange point. In 13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 16), Vol. 16. 1-14.

Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P. Donovanand Bran-

don Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and

Ethan Katz-Bassett. 2014. SDX: a software defined Internet exchange. In Proceed-

ings of SSIGCOMM 2014. 233-239.

Internet2. 2019. Internet2. https://www.internet2.edu.

Vasileios Kotronis, Xenofontas Dimitropoulos, and Bernhard Ager. 2012. Out-

sourcing the routing control logic: better internet routing based on SDN principles.

In Proceedings of the 11th ACM Workshop on Hot Topics in Networks. ACM, 55-60.

[14] Karthik Lakshminarayanan, Ion Stoica, Scott Shenker, and Jennifer Rexford.

2004. Routing as a Service. Computer Science Division, University of California

Berkeley.

Simon Peter, Umar Javed, Qiao Zhang, Doug Woos, Thomas Anderson, and

Arvind Krishnamurthy. 2014. One tunnel is (often) enough. In ACM SIGCOMM

2014, Vol. 44. ACM, 99-110.

Shahrooz Pouryousef, Lixin Gao, and Arun Venkataramani. 2020. Towards logi-

cally centralized interdomain routing. In 17th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 20). 739-757.

Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V

Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi

Zeng. 2017. Engineering egress with edge fabric: steering oceans of content to

the world. In Proceedings of the Conference of the ACM Special Interest Group on

Data Communication. ACM, 418-431.

Joao Luis Sobrinho. 2003. Network routing with path vector protocols: Theory

and applications. In Proceedings of ACM SIGCOMM 2003.

Jodo Luis Sobrinho, David Fialho, and Paulo Mateus. 2017. Stabilizing BGP

through distributed elimination of recurrent routing loops. In 2017 IEEE 25th

International Conference on Network Protocols (ICNP). IEEE, 1-10.

[20] Yangyang Wang, Jun Bi, and Keyao Zhang. 2017. A SDN-based framework for

fine-grained inter-domain routing diversity. Mobile Networks and Applications

22,5,906-917.

Qiao Xiang, Chin Guok, Franck Le, John MacAuley, Harvey Newman, and

Y. Richard Yang. 2018. SFP: toward interdomain routing for SDN networks.

In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos.

[2

http://www.caida.org/data/

—_ =
o

[

[10

[11

==
L)

[15

[16

(17

(18

[19

[21

http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.internet2.edu

Toward Stable Interdomain NAI

[22]

[23]

[24]

87-89.

Qiao Xiang, Jingxuan Zhang, Kai Gao, Yeon-sup Lim, Franck Le, Geng Li, and
Y Richard Yang. 2020. Toward optimal software-defined interdomain routing.
In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
1529-1538.

Qiao Xiang, Jensen Zhang, Franck Le, and Y Richard Yang. 2020. Toward pro-
grammable interdomain routing. In Proceedings of the Applied Networking Re-
search Workshop. 22-24.

Wen Xu and Jennifer Rexford. 2006. MIRO: Multi-path interdomain routing. In
Proceedings of the 2006 conference on Applications, technologies, architectures, and

[25

[26

]

NAI ’21, August 27, 2021, Virtual Event, USA

protocols for computer communications. 171-182.

Xiaowei Yang, David Clark, and Arthur W Berger. 2007. NIRA: a new inter-
domain routing architecture. IEEE/ACM Transactions on Networking (ToN) 15, 4
(2007), 775-788.

Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
et al. 2017. Taking the edge off with espresso: Scale, reliability and programma-
bility for global internet peering. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. ACM, 432-445.

	Abstract
	1 Introduction
	2 Policy Self-Induced Instability
	2.1 Illustration
	2.2 Root Cause
	2.3 Solution

	3 Policy Overwriting Instability
	3.1 Illustration
	3.2 Root Cause
	3.3 Solution

	4 Evaluation
	5 Discussion
	6 Related Work
	7 Conclusion
	References

