
Unicorn: Unified Resource Orchestration
for Multi-Domain, Geo-Distributed Data Analytics

Qiao Xiang+‡, Shenshen Chen+, Kai Gao⇤‡, Harvey Newman⇧,
Ian Taylor�†, Jingxuan Zhang+, Yang Richard Yang+‡

+Tongji University, ‡Yale University, ⇤Tsinghua University,
⇧California Institute of Technology, �Cardiff University, †University of Notre Dame

{qiao.xiang, kai.gao, yang.r.yang}@yale.edu, {jingxuan.zhang, cs9091}@tongji.edu.cn,
newman@hep.caltech.edu, taylorij1@cardiff.ac.uk

Abstract—Data-intensive analytics is entering the era of multi-
organizational, geographically-distributed, collaborative comput-
ing, where different organizations contribute various resources,
e.g., sensing, computation, storage and networking resources,
to collaboratively collect, share and analyze extremely large
amounts of data. This new paradigm calls for a framework
to manage a large set of distributively owned heterogeneous
resources, with the fundamental objective of efficient resource
utilization, following the autonomy and privacy of resource
owners. In this paper, we design Unicorn, the first unified frame-
work that accomplishes this goal. The foundation of Unicorn
is RSDP, an autonomous, privacy-preserving resource discovery
and representation system to provide accurate resource availabil-
ity information. Its core is a novel abstraction called resource
vector abstraction which describes the resource availability in
a set of linear constraints. In addition, Unicorn also provides
a series of advanced solutions to support automatic, efficient
management of resource dynamics on both supply and demand
sides, including an automatic workflow transformer, an intelligent
resource demand estimator and an efficient, scalable multi-
resource orchestrator. Being the first unified framework for
this new paradigm, Unicorn plays a fundamental role in next-
generation data-intensive collaborative computing systems.

Keywords—multi-domain, data analytics, resource allocation.

I. INTRODUCTION

As the data volume increases exponentially over time, data-
intensive analytics is transiting from single-domain computing
to multi-organizational, geographically-distributed, collabora-
tive computing, where different organizations contribute var-
ious resources, e.g., computation, storage and networking re-
sources, to collaboratively collect, share and analyze extremely
large amounts of data. Examples of this paradigm include the
Compact Muon Solenoid (CMS) experiment at CERN [1],
coalitions between different combating units, etc. Figure 1
summarizes the general settings of collaborative computing:
data-intensive analytics workflows consume resources supplied
by participating sites/resource owners, coordinated by a log-
ically centralized orchestrator. Collaborative computing calls
for a framework to manage a large set of distributively owned
heterogeneous resources, with the fundamental objective of
efficient resource utilization, following the autonomy and pri-
vacy of resource owners. To achieve this goal, this framework
must be capable of the following functionalities.

• Managing resource supply dynamic. This requires
a system for joint computation, storage and networking
resource discovery and representation, which allows re-
source owners to make and practice their own resource

Resource
Demand

Resource Supply

Supply-Demand
Matching

Site 1 Site N

. . .

Data-Intensive
Analytics Workflows

Resource
Orchestrator

Fig. 1. General settings of multi-organization, geo-distributed, data-intensive
collaborative computing: (1) users submit analytics workflows to produce
resource demand; (2) different sites/resource owners provide resource supply;
(3) a logically centralized orchestrator matches demand with supply, i.e.,
allocating resources to analytics workflows.

supply strategies without exposing private information.
Without such a component, it is infeasible to manage a
large set of distributively owned, heterogeneous, dynamic
resources.

• Managing resource demand dynamic. This requires
a system for automatic, effective resource demand esti-
mation, which automatically transforms high-level data
analytics workflows (e.g., Spark) to low-level task work-
flows (e.g., HTCondor ClassAds) and finds the optimal
configuration, i.e., resource demand, for each task. With-
out such a component, users have to manually configure
the low-level workflows for data analytics. On one hand,
users might request more than necessary resources for
workflows, resulting in inefficient use of resources. On
the other hand, if users request insufficient resources for
workflows, the system may need more resource distribu-
tion transactions, resulting in larger overhead.

• Matching demand with supply. This requires a system
for efficient, scalable multi-resource orchestration, which
makes efficient resource allocation decisions for analytics
workflows based on resource supply and demand. This
component is essential for achieving efficient resource
utilization.

In this paper, we propose Unicorn, the first unified
framework providing all these functionalities for multi-
organizational, geographically-distributed collaborative com-
puting.

The fundamental design challenge for Unicorn is: how to ac-
curately discover and represent resource availability in a large
set of distributively owned heterogeneous resources? Although
there is much related work on resource management of cluster

computing [2]–[11], current systems are mostly designed for
a single administrative domain and focus on computation
and storage resources by assuming the networking resource
is not a bottleneck. Such settings usually lead to easier
designs. In particular, current systems typically adopt a graph
representation to describe resource availability, where each
node is a physical node representing computation or storage
resources and each edge between a pair of nodes denotes
the networking resource. In the multi-domain collaborative
computing, where resources are distributively owned and all
resources (i.e., computation, storage and networking) have the
same probability of becoming the bottleneck of analytics [12],
this graph representation has quite a few drawbacks. First,
it could lead to race conditions between resource suppliers
and consumers. Secondly, multi-resource interferences would
lead to inefficient use of allocated resources. Thirdly, this
representation hides the underlying resource sharing between
nodes or edges in the physical topology, which leads to the
over-provisioning of resources.

To address these drawbacks and the design challenge, we
developed RSDP, an autonomous, privacy-preserving resource
discovery and representation system, to accurately represent
available resources in collaborative computing systems. This
is achieved through a novel abstraction called resource vector
abstraction, which describes the resource availability using a
set of linear constraints.

With RSDP managing the resource supply dynamic, the
Unicorn framework also provides the Handyman system to
manage the resource demand dynamic, which automatically
transforms high-level analytics workflows to low-level task
workflows and finds them the optimal configurations. Between
supply and demand, Unicorn designs an efficient, scalable
multi-resource orchestrator called Miro to achieve efficient
resource utilizations.

The rest of the paper is organized as follows. We first
give an overview of the Unicorn framework and introduce its
core components in Section II. We then present the details of
RSDP, the core resource discovery and representation system
of the Unicorn framework in Section III and its preliminary
evaluation results in Section IV. We briefly discuss related
work in Section V and conclude the paper in Section VI.

II. SYSTEM ARCHITECTURE OF UNICORN

Unicorn aims to achieve two design goals simultaneously
for data-intensive collaborative computing: (1) achieve effi-
cient utilization of a large set of distributively owned heteroge-
neous resource, and (2) allow each participating site to practice
policies and protocols at its own choices without revealing
private information. The first goal ensures that the available
resource supply is efficiently matched to the resource demand
of data-intensive analytics workflows. The second goal ensures
the autonomy, privacy and security of each participating site.

Figure 2 gives the overall architecture of the Unicorn frame-
work, which consists of three components. The foundation of
Unicorn is RSDP, an autonomous, privacy-preserving resource
discovery and representation system to accurately represent
availability information of a large set of distributively owned
resources. On the resource demand side, Unicorn provides
Handyman, an analytics demand automation system, which au-
tomatically converts high-level analytics workflows into low-
level task workflows and finds the optimal configuration (i.e.,
resource demand) for each task. Between resource demand and
supply, an efficient, scalable multi-resource orchestrator called

Fig. 2. The Architecture of Unicorn framework.

Miro is provided in Unicorn to efficiently utilize resources in
the system for data-intensive analytics workflows.

RSDP: an automatic, privacy-preserving resource discov-
ery and representation system. RSDP provides an accurate
view on resource supply dynamic and is the foundation of
the Unicorn framework. This is achieved through a novel
abstraction called resource vector abstraction. Given a set of
tasks T , a set of resources R and a set of resource attributes P ,
resource vector abstraction uses a set of linear constraints to
represent the feasibility and constraints of resource availability
and sharing. When a set of original linear constraints C is
obtained, RSDP does not directly return the whole set as the
resource availability information. Instead, it uses a lightweight,
optimal algorithm to compress C into a minimal, equivalent
set of constraints C 0 where the feasible regions represented
by C and C 0 are the same. Through this compression, RSDP
(1) avoids the high communication overhead of transmitting
resource availability information between the orchestrator and
sites, and (2) minimizes the risk of each site exposing pri-
vate information about its computing facilities, e.g., topology,
policies, etc.

Handyman: an analytics demand automation system.
Handyman automatically (1) converts high-level analytics
workflows into low-level task workflows, i.e., a set of tasks
with precedence encoded in a directed acyclic graph (DAG),
and (2) finds the optimal configuration for each task. This
component saves users from the trouble of manually specifying
low-level task workflows. During the conversion, a critical
challenge must be addressed is that high-level analytics work-
flows are sometimes stateful while low-level workflows are
not. To guarantee that the workflows are equivalent before and
after conversion, the current Handyman design performs con-
version against the state, and schedules automatic conversion
re-execution when state changes happen. Another solution un-
der investigation involves changing the programming models
of low-level task workflows by allowing them to be stateful.

After the conversion, Handyman automatically estimates the
optimal configuration (resource demand, e.g., the number of
CPUs, the size of memory and disk, I/O bandwidth, etc.) for
each task. It leverages the fact that low-level tasks are typically
repetitive with strong similarities and applies reinforcement
learning to estimate optimal configurations for similar tasks.
In articular, it records the utilization and configurations of each
task executed and predicts the resource utilization for different
configurations. When a task comes, Handyman chooses an
unrecorded configuration with the best prediction, and records
the resource utilization of the actual execution for next round
of reinforcement learning.

Miro: an efficient, scalable multi-resource orchestrator.
Miro makes resource allocation decisions based on resource
demand and supply dynamic. It receives the resource demand
information, i.e., a set of low-level task workflows and their
configurations, from Handyman. Then it sends queries to the
RSDP system at each site with a what-if question: what
resource would be provided if the requested tasks were to
be executed here? After receiving the responses encoded in
resource vector abstraction, Miro looks up different resource
provisions and makes task placement decisions to guarantee
that the available resources are efficiently matched with the
resource demand of each task. These decisions are then sent
to the task execution agents at each site, who execute the
tasks, monitor the progress and resource usage and report back
to Miro. Miro supports different scheduling modes, including
FIFO, global mixed binary programming, least-demand-first
(LDF), etc. Comparing and understanding the performance of
different scheduling modes is the next step of Miro.

The most fundamental design challenge of Unicorn is how
to accurately discover and represent the resource availability
over a large set of distributively owned heterogeneous re-
sources. In the next two sections, we focus on addressing this
challenge and present our solution RSDP, the foundation of
Unicorn. Details of Handyman and Miro are omitted for the
interests of brevity.

III. RSDP: AUTONOMOUS, PRIVACY-PRESERVING
RESOURCE DISCOVERY AND REPRESENTATION

In this section, we first review the limitation of re-
source availability graph, a common resource discovery design
adopted in most current resource management systems (Sec-
tion III-A). We then propose RSDP, an autonomous, privacy-
preserving resource discovery and representation framework to
accurately represent available resources in collaborative com-
puting systems, in which the resource availability is encoded
in a novel abstraction called resource vector abstraction as
a set of linear constraints (Section III-B). Next, we discuss
the challenges of generalizing the resource vector abstraction
design and some practical concerns for production deployment
(Section III-C).

A. Resource Availability Graph: Incomplete State-of-the-Art

Basic idea. Computer systems typically consist of three types
of resources: computation, storage, and networking. A typical
design of resource discovery adopted by most current systems
is a resource availability graph, which is built on top of the
physical topology. Each node in the graph is a physical node,
with computation/storage resources annotated, and each edge
between a pair of nodes is annotated with available networking
resources.
Drawbacks. The main assumption of a resource availability
graph is that node and link attributes are described as indepen-
dent variables. However, it has several drawbacks when used
for resource discovery of a large set of distributively owned
resources. First, the multi-domain nature of collaborative com-
puting has determined that race conditions could happen fre-
quently using resource availability graphs. Suppose a resource
owner announces the availability of a set of resources, and
two different tasks both want to use these resources. Without
careful synchronizations, both tasks may try to use this set of
resources, leading to conflicts.

Secondly, current systems mainly focus on discovering com-
putation and storage resources (e.g., CPU, memory and disk)

and assume networking resource is not a bottleneck. However,
recently during a production trace of cluster computing, it was
shown that all three types of resources have approximately
the same probability of becoming a bottleneck in affecting the
performance of data-intensive analytics [12]. With this fact, the
graph representation could lead to inefficient use of allocated
resources. Consider an example where nodes A, B and edge
{A,B} are allocated to a task. Nodes A and B both have a
local I/O bandwidth of 1Gb/s while edge {A,B} is annotated
with a bandwidth of 10Gb/s. We see that the computation
and storage resources become the bottleneck of the task (i.e.,
1Gb/s), and the communication bandwidth (i.e., 10Gb/s) will
be at most utilized by 1/10 = 10%.

s1 d1

s2 d2

100Mb/s

100Mb/s

(a) The resource graph representa-
tion shows that {bw(s1, d1)
100Mb/s, bw(s2, d2) 100Mb/s}.

6

sw1

sw2

s1 d1

s2 d2

sw5 sw8

sw6

sw4sw7

l1

l7

l12

sw3
l6

Each	link:	100	Mbps

(b) The physical topology shows that the paths of
(s1, d1) and (s2, d2) share bottleneck links, i.e.,
bw(s1, d1) + bw(s2, d2) 100Mb/s.

Fig. 3. An example to demonstrate the inefficiency of resource graph
representation.

Thirdly, the graph representation abstracts each resource
into a single node or edge regardless of the shared resource
between nodes or edges in the physical topology. This would
lead to over-provisioning of resource and jeopardize the per-
formance of analytic workflows. Consider the example in
Figure 3. The resource graph in Figure 3a) contains two
sets of resources: {s1, (s1, d1), d1} and {s2, (s2, d2), d2}. The
available bandwidth on edges (s1, d1) and (s2, d2) are both
100Mb/s and for simplicity, we assume the I/O bandwidths of
all end hosts are larger than 100Mb/s. However, in the physi-
cal topology shown in Figure 3b), the communication between
two sets of nodes shares resources on links l3 and l4. Hence,
the actual networking resource for the two sets of physical
nodes must satisfy the constraint bw(s1, d1) + bw(s2, d2)
100Mb/s. This key constraint cannot be expressed using the
variable annotation in a resource availability graph.

The fundamental cause to these drawbacks is that resource
availability graph lacks the ability to represent the feasibility
and constraints related to resource sharing. To address this
problem, we propose a new resource discovery and represen-
tation system called RSDP.

B. RSDP: Autonomous, Privacy-Preserving Resource Discov-
ery and Representation

To address the aforementioned limitations of resource avail-
ability graph, we design a new system called RSDP for
resource discovery and representation over a large set of

heterogeneous distributively owned resources. In particular, we
provide a complete view of resource availability at each site
using a novel abstraction called resource vector abstraction.
Basic idea. The design principle of resource vector abstraction
is simple yet powerful: instead of abstracting resources into
a single node or edge out of the physical topology, we keep
the physical topology and use a set of linear constraints to
represent the feasibility and constraints of resource availability
and sharing.
Resource vector abstraction. Given a set of data-intensive
analytic tasks T , a set of physical resources R (i.e., computa-
tion, storage and networking) and a series of attributes r.P for
each resource r 2 R, we use C(r, p) to denote the capacity of
resource r in providing attribute p and use c(t, r, p) to denote
the usage of the attribute p 2 r.P of resource r 2 R by task
t 2 T , the resource availability of this set of physical resources
R over the set of tasks T can be expressed as:

P
t2T c(t, r, p) C(r, p), 8r 2 R, p 2 r.P.
c(t, ri, p) = c(t, rj , p) 8ri, rj 2 R, given (t, p) (1)

In addition to the generic representation, another benefit
of the resource vector abstraction is that the site-dependent
policies can be naturally mapped into additional linear con-
straints. This is because a site-dependent policy ps is typically
represented as a set of tasks/flows that (1) can or cannot use a
certain resource; (2) cannot exceed an upper bound of a certain
resource; or (3) will be guaranteed a lower bound of a certain
resource. All such policies can be expressed in the form of
linear constraints.
Example. To illustrate how resource vector abstraction repre-
sents the resource availability, we revisit the physical topology
in Figure 3b). Assume there are 2 tasks t1, t2 and we focus on
the bandwidth attribute of networking resource in the set of
links L, consisting of l1 to l12. We first follow the definition
in Equation (1) and represent the resource availability of link
bandwidth as:

c(t1, li, bw) + c((t2, li, bw) 100Mb/s, 8li 2 L.
c(t1, li, bw) = c(t1, lj , bw), 8li, lj 2 L.
c(t2, li, bw) = c(t2, lj , bw), 8li, lj 2 L.

(2)
Assume the policies in this site enforces that (1) t1 must

use computation/storage resources on s1 and d1; (2) t2 must
use computation/storage resources on s2 and d2; and (3) the
traffic of (s1, d1) and (s2, d2) must follow the predefined
routes. After combining these policies with the constraints in
Equation (2), we get:

c(t1, bw) 100Mb/s 8li 2 {l1, l2, l5, l6},
c(t2, bw) 100Mb/s 8li 2 {l7, l8, l11, l12},

c(t1, bw) + c(t2, bw) 100Mb/s 8li 2 {l3, l4},
c(t1, bw) + c(t2, bw) = 0 8li 2 {l9, l10},

(3)
which is a set of linear constraints that provides accurate,
complete information about resource availability in this site.
Computing minimal, equivalent resource state abstrac-
tion. The representation of resource availability specified in
Equation (1) and site policies is accurate and complete, but
may result in a large set of linear constraints with redundant
information. Directly sending them back to the querying
party would introduce a large communication overhead and

expose private information about each site, e.g., site policies
and topology. To address the efficiency, privacy and security
concerns, we develop a lightweight, optimal algorithm in
RSDP to compress the original large set of linear constraints
into a minimal, equivalent set of linear constraints, which
has the same feasible region as the original set but with
a much smaller number of constraints. The basis of this
compression algorithm is simple: given an original set of linear
constraints C : Ax b, we iteratively select one constraint
c 2 C : a

T
x b and calculate the optimal solution of problem

y maxa

T
x, subject to, C � {c}. If b is smaller than the

resulting y, c is an indispensable constraint in determining the
feasible region and will be put into the minimal, equivalent
constraint set C 0. Otherwise, c is a redundant constraint. We
prove the optimality of this algorithm via contradiction.

Applying the algorithm above on the original set of linear
constraints in Equation (3) with 12 constraints, RSDP can
compute and get the minimal, equivalent set of constraints C 0

with only 1 constraint: {(t1, bw) + bw(t2, bw) 100Mb/s},
achieving a compression ratio of 1

12 .
Schedulability. RSDP provides an accurate view of resource
availability while allowing resource owners to make and
practice their own policies with minimal exposure of private
information. One important remaining question is whether
RSDP provides full a schedulability of resources for a logically
centralized orchestrator. We answer this question with the
following theorem.

Theorem 1: When the resources represented by the resource
vector abstraction satisfies one of the following conditions:

1) resources represented in the original set of constraints C
can be fully controlled on the edge, i.e., all the attributes
of each resource can be controlled at end host;

2) all the attributes computed in C 0, the minimal, equivalent
resource vector abstraction, can be fully controlled on
the edge;

RSDP provides a full schedulability of resources to a
logically centralized resource orchestrator.

Proof: The proof of this theorem is straightforward. Con-
dition 1 requires that all the resources and their attributes can
be controlled on the edge for orchestration purposes. Because
resource vector abstraction encodes all resource attributes in
the original set of constraints C, it provides a complete view of
resource availability so that the orchestrator can control them
on the edge. For instance, if the sending rate of each end host
can be controlled by end host rate limiting, the bandwidth
usage of each end host, therefore, can be controlled by the
orchestrator to achieve efficient bandwidth utilization. On the
contrary, if TCP is used to perform window-based congestion
control, the control functionality of bandwidth allocation is
given to TCP and the orchestrator cannot allocate bandwidth
via the representation provided by resource vector abstraction.
Condition 2 relaxes condition 1 by only requiring the attributes
left in the minimal, equivalent resource vector abstraction C 0

to be controllable. Because of the equivalence between C and
C 0, satisfying condition 2 ensures that the orchestrator can
achieve a full schedulability of resources through the resource
vector abstraction representation.

C. Generalization of Resource Vector Abstraction
resource vector abstraction is a powerful abstraction for re-

source availability. However, several issues must be addressed
to apply it in the general case. We describe these issues,

propose potential solutions, and discuss practical concerns for
production deployment of RSDP.
Inter-attribute Correlation. The first limitation of resource
vector abstraction is that the availability of different resources
is only coupled through common resource attributes, e.g.,
bandwidth of storage and networking resources. But in prac-
tice, different resource attributes can have impacts on others
too. For example, the block size of storage resources will affect
the data transferring time between computation resources and
storage resources. Such correlation between different resource
attributes is not encoded in the current design of resource
vector abstraction.

To address this issue, we can add the following constraints
in the definition in Equation 1.

f(T,R, P) 0, (4)

which are a set of functions modeling the impact between dif-
ferent resource attributes. There are two challenging problems:
(1) formulations of f depend on specific resource attributes
and are often unknown; (2) whether it is possible to eliminate
the redundancy between different f to get a minimal, equiva-
lent resource vector abstraction depends on certain properties
of f (e.g., convex, linear or concave). Learning techniques
can be applied to cope with these challenges and is part of the
ongoing efforts in the Unicorn framework.
Coexistence of unschedulable resources. As Theorem 1
states, the orchestrator on top of RSDP cannot achieve full
schedulability of resources via the current resource vector
abstraction design, when some resources are not controlled
at the edge. For example, if the site uses TCP for congestion
control instead of end-host rate limiting, bandwidth of each
flow is decided by TCP via congestion signaling, e.g., packet
loss. The resulted packet-level rate fluctuation would prevent
an accurate prediction on the per-flow achievable bandwidth
in a network containing many TCP flows.

We use a black-box approach to predict the converged
resource availability of unschedulable resources. For instance,
by applying the Newton-Exact-Diagonal (NED) method in
network utilization maximization [13], it is possible to quickly
compute the converged rate of flows. This approach adds the
following constraint to resource vector abstraction:

g(t, R, P) a, (5)

where the resource availability of unschedulable resources
is predicted as a scalar a. Again, it also requires certain
learning techniques to accurately predict the performance of
unschedulable resources and is part of the ongoing efforts of
the Unicorn framework.

In addition, the generalization of resource vector abstraction
also requires consideration on the correlation between task
workflows and resource availability, the trade-off between
maximizing short-term resource utilization and the long-term
stability of resource availability, etc. We leave such topics as
future work.
Practical issues for production deployment of RSDP. Other
issues also arise when RSDP is deployed in production. First,
the current design of RSDP requires a logically centralized
controller to query resource availability at each site for a given
set of analytics tasks. This design may not scale if the whole
computing system involves many globally distributed sites
and have heavy analytics workflows. Potential solutions to

improve the scalability of RSDP include (1) using hierarchical
organized controllers; (2) leveraging the repetitive property of
analytics jobs to selectively query resource availability for only
a small set of tasks instead of all of them; and (3) applying
machine learning techniques to predict resource availability.

The second issue is whether site/resource owners should
have total autonomy. This is related to the specific form of
contracts between sites participating in collaborative comput-
ing. If all sites agree on partial autonomy, a resource enforcer
module needs to be deployed together with RSDP to ensure
that each site provides the amount of resources specified in
contracts. The third issue is how to enforce global scheduling
policies, e.g., user/group/virtual organization priorities, etc.,
when querying for resource availability information. Solutions
to this issue are overlapping with those of the previous two
issues and we leave them as future work.

IV. PERFORMANCE EVALUATION

A prototype of RSDP has been implemented and we present
key evaluation results to demonstrate its efficiency and effi-
cacy in providing an autonomous, privacy-preserving resource
representation. Without loss of generality, we focus on the
bandwidth attribute of networking resources in our evaluation.
We select 10 physical topologies from the topology zoo [14]
with the number of nodes ranging from 13 to 117. We vary
the number of tasks in the evaluation to range from 5 to 100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 25 30 35 40 45 50 55 60 65 70

C
o

m
p

re
ss

io
n

 R
at

io

Topology size (#node)

 mecs
 01-constraint

 mecs + parallel (8 threads)

(a) Compression ratio under different
sizes of physical topology.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
o

m
p

re
ss

io
n

 R
at

io

Number of flows

 mecs
 01-constraint

 mecs + parallel (8 threads)

(b) Compression ratio under different
numbers of tasks.

Fig. 4. Constraint compression ratio of RSDP.

We run different versions of the constraint compression
algorithm proposed in Section III-B, including the regular
version, a parallelized version and a modified version lever-
aging the fact that c(t, r, p) always has a coefficient of 0 or
1 to speed up the compression. We present the compression
ratio of RSDP in Figure 4. It can be observed that all three
versions of the constraint compression algorithm produce the
same compression ratio under all settings. Figure 4a) shows
that the compression ratio of RSDP decreases as the topology
size grows. This is because with more networking resource
entities (i.e., links) available, the chance for different tasks to
share the same resource entities decreases. Figure 4b) shows
that when the topology size is fixed, the compression ratio
grows as the number of tasks grows. Even so, we observe
that RSDP can still compress more than 40% of the original
resource state, achieving a compression ratio less than 0.6.
These results demonstrate the efficiency and scalability of
RSDP in providing autonomous, privacy-preserving resource
representation. We also measure the computation overhead of
RSDP and observe that RSDP using a parallel compression
algorithm has a very low computation delay, e.g., <100ms,
even for a combination of a large topology and a large set of
tasks. We omit other evaluation results due to the page limit.

V. RELATED WORK

The fundamental challenge of resource management for
multi-organizational, geo-distributed, data-intensive collabora-
tive computing is to accurately discover and represent resource
availability in a large set of distributively owned heterogeneous
resources. There exists a rich literature in the field of resource
management of cluster computing [2]–[11]. Most of these
studies focus on managing resources of a single cluster/data
center. YARN [4] is the core resource management framework
of Hadoop. Mesos [3] is a platform designed to share resources
among multiple cluster computing frameworks, e.g., MapRe-
duce [15], Spark [16], MPI and etc. Google designs a system
called Borg [5] to orchestrate the cluster resources for its pro-
prietary data analytics frameworks. Microsoft (i.e., Apollo [6])
and Facebook (i.e., Corona [7]) also develop similar systems
tailored to their data analytics needs. HTCondor [2] proposes a
ClassAds programming model, which allows different resource
owners to advertise their resource supply and the job owners
to advertise the resource demand. The CMS [1] experiment
at CERN uses HTCondor and glideinWMS [8] to manage a
set of distributively owned computing resources in a globally
distributed system.

The common settings of these systems, i.e.single-domain
(except for HTCondor) and no networking bottleneck, usually
lead to easier designs for resource discovery and represen-
tation. In particular, a graph representation is adopted by
current systems to represent available resources. However, in
multi-organizational, data-intensive collaborative computing,
this design suffers from race conditions between resource
suppliers consumers. What is worse, with the recent observa-
tion that computation, storage and networking resources have
approximately the same probability to become the bottleneck
affecting the performance of data-intensive analytics jobs [12],
such a graph representation would lead to inefficient use of
resources and resource over-provision. On the contrary, the
RSDP system in Unicorn addresses these drawbacks by using
a set of linear constraints to represent the feasibility and
constraints of resource availability and sharing.

Another line of work called geo-distributed data analytics
is also related to Unicorn. Solutions in this field include (1)
moving the input dataset to a single data center before the
computation [17], [18] and (2) placing different amounts of
tasks at different sites depending on dataset availability to
achieve a better parallelization and hence a lower latency [9]–
[11]. The main focus of these solutions is to optimize the usage
of a set of dedicated networking resources. This simplified
setting is different from that of Unicorn, where different types
of resources owned by different owners need to be orchestrated
for data-intensive collaborative computing.

VI. CONCLUSION AND FUTURE WORK

Multi-organizational, geo-distributed, data-intensive collab-
orative computing calls for a framework to manage a large set
of distributively owned heterogeneous resources, with the fun-
damental objective of efficient resource utilization, following
the autonomy and privacy of resource owners. In this paper, we
propose Unicorn, the first unified framework that accomplishes
this goal. The foundation of Unicorn is RSDP, an automatic,
privacy-preserving resource discovery and representation sys-
tem which describes the resource availability using a set
of linear constraints. In addition, Unicorn also provides an
analytics demand automation system, i.e., Handyman, and an
efficient, scalable multi-resource orchestrator, i.e., Miro. We

have implemented a prototype of Unicorn and performed a
preliminary evaluation. For future work, we plan to evaluate
the performance and scalability of Unicorn more extensively
before moving to production deployment.

ACKNOWLEDGEMENT

We thank Justas Balcas, Shiwei Chen, Lili Liu, Maria
Spiropulu and Jean-Roch Vlimant for helpful discussion
during the work. The Yale team was supported in part
by NSF grant #1440745, CC*IIE Integration: Dynamically
Optimizing Research Data Workflow with a Software De-
fined Science Network; International Technology Alliance
Agreement No W911NF-16-3-0002; Google Research Award,
SDN Programming Using Just Minimal Abstractions; NSFC
#61672385, FAST Magellan. The Tongji team was supported
by China Postdoctoral Science Foundation #2017M611618.
The Caltech team was supported in part by DOE/ASCR
project #000219898, SDN NGenIA; DOE award #DE-
AC02-07CH11359, SENSE, FNAL PO #626507; NSF award
#1246133, ANES; NSF award #1341024, CHOPIN.

REFERENCES

[1] T. C. Collaboration, “The CMS experiment at the CERN LHC,” Journal
of Instrumentation, vol. 3, no. 08, 2008.

[2] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the Condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in NSDI, 2011.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop
YARN: Yet another resource negotiator,” in SoCC. ACM, 2013, p. 5.

[5] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
EuroSys. ACM, 2015, p. 18.

[6] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” in OSDI, 2014, pp. 285–300.

[7] “Under the hood: Scheduling MapReduce jobs more efficiently with
Corona,” http://on.fb.me/TxUsYN, [Online; accessed: 09-May-2017].

[8] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and
F. Wurthwein, “The pilot way to grid resources using glideinWMS,” in
CSIE. IEEE, 2009, pp. 428–432.

[9] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese,
“WANalytics: Analytics for a geo-distributed data-intensive world,” in
CIDR, 2015.

[10] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low Latency Geo-distributed Data Analytics,” in SIG-
COMM. ACM, 2015, pp. 421–434.

[11] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in SoCC. ACM, 2015, pp. 111–124.

[12] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and
V. ICSI, “Making sense of performance in data analytics frameworks,”
in NSDI, 2015, pp. 293–307.

[13] J. Perry, H. Balakrishnan, and D. Shah, “Flowtune: Flowlet control for
datacenter networks,” in NSDI. USENIX Association, 2017.

[14] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” vol. 29, no. 9, pp. 1765–1775, 00249.

[15] D. Jeffrey and G. Sanjay, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, 2008.

[16] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in HotCloud’10.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined WAN,” in SIGCOMM’13.

[18] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in SIGCOMM. ACM, 2013.

